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A Bias of Screening†

By David Lagziel and Ehud Lehrer*

This paper deals with the issue of screening. It focuses on a  decision 
maker who, based on noisy unbiased assessments, screens  elements 
from a general set. Our analysis shows that stricter screening not only 
reduces the number of accepted elements, but possibly reduces their 
average expected value. We provide a  characterization for  optimal 
threshold strategies for screening and also derive  implications to 
cases where such screening strategies are suboptimal. We  further 
provide various applications of our results to credit ratings,  auctions, 
general trade, the Peter Principle, and affirmative action. (JEL C38, 
D44, F10, G24, J15)

This paper deals with the problem of screening and, in particular, with the issue 
of screening biases. Our screening problem arises when a decision maker (DM) 
who filters elements based on noisy unbiased assessments, tries to maximize the 
average expected value of accepted elements. For that purpose, she fixes a  threshold 
level, namely an acceptance criterion, to filter out low-value elements.

Our first main result concerns the influence of stricter screening on performance. 
By and large, we show that stricter screening not only reduces the number of accepted 
elements, but also could lower their expected average value. In other words, a higher 
bar carries no quality assurances, as a lower one may produce a win-win situation on 
both sides of the quality versus quantity (alleged) trade-off.

To exemplify this insight, we use the well-known setting of  peer-reviewed 
 academic publishing. Consider a set of academic papers whose potential impact 
on a standard 12-point grading scale is distributed as in Figure 1. The  values 
and  distribution are unknown to the editor and therefore each paper is eval-
uated via an unbiased noisy refereeing process. The evaluation process gen-
erates a  mean-preserving spread of the original valuation. Referees evaluate 
each paper accurately with probability (w.p.) 0.8; otherwise they deviate by 
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two  levels, either upward or downward, w.p.  0.1 each. As such, the noise is 
 well-defined (given the original distribution of values), independent, symmetric, 
and of a discrete  normal-like distribution. The evaluation distribution is given in  
Figure 2.

Now, the editor is confronted with the problem of fixing the bar. If she chooses 
to publish only the top 5 percent, namely all papers ranked  A  and above, then the 
expected value of the published work would be close to  B+ . However, if she lowers 
the bar to publish the top 13 percent, roughly all papers ranked  A−  and above, the 
inclusive addition of accurately evaluated  A−  papers would increase the expected 
value of the published work to  A− . In that case, not only are additional papers 
 actually published, but their average objective impact is higher!

The driving force behind this result is the influence of unbiased noise over 
 different values. A mass of average elements, subjected to unbiased noise,  produces 
a relatively large number of (noisy) scores that pass a high threshold, while a  similar 
effect over a small group of superior elements is relatively mild. To put it  differently, 
the effect of unbiased noise is potentially biased by the action of  screening. Note that 
this effect is locally generated and would still hold even if additional papers whose 
ranks are  A  and  A+  are added to the original distribution and their evaluation is 
completely undistorted.

The above example and insight are based on the key assumption that a threshold 
strategy has been implemented. Though such strategies are commonly used both 
in theory and in practice, their optimality has yet to be established. In the  example 

Figure 1. The Distribution of Papers’ Impact

Figure 2. Noisy Evaluation of Papers’ Impact 

Note: The distribution observed by the editor.
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above, a screening strategy that accepts valuations ranked  A−  and  A+  would 
 produce a higher average expected value than the threshold strategy which accepts 
every valuation of at least  A− . Thus, in the second part of the paper we extend 
the decision problem to include general utility functions, and address the issue of 
 optimal screening strategies.

The second main result of this paper provides a characterization of  optimal 
threshold strategies for screening. We relate optimal threshold strategies to  
first- and second-order stochastic dominance of the original valuation, condi-
tional on the noisy assessment at different levels. We then apply our charac-
terization to previous results regarding the Peter Principle (see Peter and  Hull 
1969), and derive policy implications concerning affirmative action. Our char-
acterization shows that eliminating affirmative action could lead to a suboptimal  
outcome.

I. Related Literature and Main Contribution

The study closest to our own is the seminal work of Stiglitz and Weiss (1981) 
which investigates the role of interest rates as a screening device. Similarly to our 
result, they showed that returns are not necessarily monotone with respect to interest 
rates. Once rates rise, some “safe” borrowers refrain from taking loans, potentially 
lowering the bank’s expected return. Despite these  similarities, there is a  significant 
difference between the two non-monotone outcomes. The result of Stiglitz and Weiss 
(1981) holds in equilibrium whenever borrowers  strategically react to the  interest-rate 
mechanism. We, on the other hand, show that  non-monotonicity could arise when 
borrowers are not better informed than lenders. In many respects, we respond to and 
augment the statement of Stiglitz (1975, p. 283) that “ … economies with imperfect 
information with respect to qualities of individuals differ in fundamental ways from 
economies with perfect information” by  showing that similar phenomena could be 
attributed to uncertainty rather than asymmetric information. Furthermore, from a 
technical point of view our results bear some resemblance to the Simpson Paradox 
in which changes in proportions distort probabilities and produce  counterintuitive 
results (see, e.g., Simpson 1951, Blyth 1972, and Wagner 1982).

From the vast literature that considers threshold strategies for screening, the 
 second part of our work strongly relates to the seminal study of Lazear (2004) which 
provides a theoretical basis for the Peter Principle and proves that  consecutive noisy 
screening leads to an upward bias. We continue this line of thinking by question-
ing the incentives for applying threshold strategies. Our results indicate that the 
upward bias could be eliminated once optimal  non-threshold policies are applied, 
 underlining the adverse effect of suboptimal threshold strategies.

Before we formalize the problem, we wish to emphasize that the widespread 
use of threshold strategies is well established both in practice and in theory. 
Whether it be a dynamic inventory problem as in Scarf (1959) or admission  criteria 
for top schools, threshold strategies appear to be a natural tool for screening and 
carry  considerable merit. For example, threshold strategies are simple, easy to 
 implement and  transparent, thus less vulnerable to manipulation. So regardless of 
their  optimality, the attributes and popularity of threshold strategies make them an 
important aspect for analysis, as done in the present work.
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A. Structure of the Paper

The paper is organized as follows. In Section II we present the basic  screening 
model. In Section IIA we establish the first main result concerning screening biases, 
and in Section IIB we derive implications to credit markets, auctions, and general 
trade. In Section III we extend the basic model to tackle the problem of optimal 
threshold strategies. In Section IIIA we provide a characterization for these  strategies 
which, in Section IIIB, is applied to several well-known scenarios. Concluding 
remarks are given in Section IV.

II. The Basic Screening Model

Consider a set of academic papers whose potential impact is distributed 
 according to a non-constant and bounded random variable  V , referred to as an 
impact variable. Since the value of each paper is unknown, every paper goes 
through an unbiased and noisy refereeing process and is publicly evaluated by  
V + N , where  N  is an unbiased random variable, i.e., it is symmetrically distrib-
uted around zero and independent of  V . The editor uses the noisy evaluation to 
perform a screening. She fixes a cap  b ∈ ℝ  such that a paper is filtered out if 
its evaluation is strictly below  b . The editor’s goal is to maximize the expected 
impact of the journal (i.e., the average impact of the accepted papers) which is  
given by

  π (b) = E [ V | V + N ≥ b ]. 

Note that the editor is required to accept some papers in order for the impact to 
be well-defined. Therefore, any cap  b  must be feasible, meaning that it should not 
exceed the maximal possible evaluation such that  Pr (V + N ≥ b) > 0 . We denote 
the support of any random variable  X  by  [   X ¯  ,  X 

–
   ] .

Assuming that some papers must be published, the editor is faced with the 
 general problem of fixing the cap. Namely, would it be optimal to set a higher 
threshold, while maintaining a minimal required volume of publications? A priori, 
it appears that an increased cap could only improve the journal’s expected impact. 
A higher benchmark screens out less influential papers, driving the average level 
of accepted papers upward at the cost of the aggregated impact (since fewer papers 
are  eventually published). To put it differently using various examples: stricter job 
interviews should improve average production; higher prerequisites should enhance 
the average student’s level; and a more selective choice of products should advance 
the franchise and increase average prices.

However, this intuition turns out to be false. We prove that a stricter screening 
not only produces fewer published papers, but could also lower the average level 
of published ones. Before we turn to solve this paradox, we first need to accurately 
define a screening bias.

DEFINITION 1: An impact variable  V  has a screening bias if there exists an 
 unbiased noise variable  N , such that  π (b)  is non-monotonic. An impact  variable  
V  has an extreme screening bias if for every positive  ε <  V 

–
  − E[ V ] , there 
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exists a noise variable  N  and feasible caps   b 2   >  b 1    (which could depend on  ε )  
such that

  π( b 1  ) ≥  V 
–
  − ε > E[ V ] = π( b 2   ). 

In simple terms, an impact variable has no screening biases if, independently of 
the noise, the expected impact of the published work cannot decrease as the bar is set 
higher. These biases are extreme if one can generate an almost  optimal  screening with   
b 1   , while an increase to   b 2    generates a result equivalent to no  screening whatsoever.

A. The Robustness of Screening Biases

We begin by establishing the existence of screening biases. Theorem 1 below 
states that every impact variable has extreme screening biases. One way to derive 
an intuition for this result is to think of a noise of significant magnitude which has 
a small probability of taking effect. Given a threshold level that captures a mass 
of accurate assessments, the screening is not significantly affected by the noise. 
However, for a higher threshold which is fixed above these accurate evaluations, low 
and high values fluctuate independently such that the screening becomes redundant. 
We emphasize (and prove later on) that this is only one possibility out of many for 
biases to emerge.

THEOREM 1: Every bounded impact variable has extreme screening biases.

PROOF: 
Fix  ε ∈ (0,  V 

–
  − E[ V ]) . Without loss of generality (up to a linear  transformation 

of the impact variable), we prove the above statement for an impact variable 
 supported on  [ 0, 1] . To be specific, we assume that  V ∈ [ 0, 1]  w.p. 1, with a CDF  F  
such that  F(1) = 1 , and  Pr (1 − δ ≤ V ≤ 1) > 0  for every  δ > 0 .

If  Pr (V = 1) > 0 , take   δ 1   ∈ (0, 1)  and consider   b 1   = 1 −  δ 1   < 1 +  δ 1    
=  b 2   . Define  N  by

  N =  
{

 
± (1 +  δ 1   )  w.p.    δ 1   _ 2     
0
  

w.p. 1 −  δ 1  
   .

It follows that  V + N ≥  b 2   ⇔ N = 1 +  δ 1   ; and so  π( b 2   ) = E[V ] . However,

  π( b 1  ) =   
E [V 1 {V + N ≥1− δ 1  }  ] 

  _______________  
Pr (V + N ≥ 1 −  δ 1   )

  

 =   
Pr (N = 0)E [ V 1 {V ≥ 1− δ 1   }  ]  + Pr (N = 1 +  δ 1   )E[V ]

     ___________________________________     
Pr (N = 0)Pr(V ≥ 1 −  δ 1   ) + Pr (N = 1 +  δ 1   )

  

 =   
(1 −  δ 1   )E [ V 1 {V ≥ 1− δ 1  }  ]  +   

 δ 1   __ 2   E [V ]
   _______________________   

(1 −  δ 1   ) Pr(V ≥ 1 −  δ 1   ) +   
 δ 1   __ 2  

   → E [V | V ≥ 1], as  δ 1   → 0 .
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Hence, the result holds true for a sufficiently small   δ 1   > 0 .
If  Pr (V = 1) = 0 , follow the same computation with  0 <  δ 1  ,  δ 2   < 1 , caps   

b 1   = 1 −  δ 2   < 1 =  b 2   , and

  N =  
{

 ± 1  w.p.    δ 1   _ 2     
0
  

w.p. 1 −  δ 1  
    .

The computation yields  π(  b 2   ) = E [V ] , and   lim  δ 1  →0   π( b 1   ) = E[V | V ≥ 1 −  δ 2   ] . 
By taking sufficiently small   δ 1    and   δ 2   , the statement of Theorem 1 holds. ∎

Remark 1: As a technical generalization, one can partially extend Theorem 1 to 
show that all random variables, including unbounded ones, have screening biases. 
See the online Appendix for the extension and proof.

Once existence of screening biases is established, we move on to the important 
issue of robustness. In general, one could argue that the phenomenon of screening 
biases is restricted to significant noises that completely distort the screening. We 
approach this concern in several ways. First, note that even mild noises instigate 
biases. For example, the noise used in the proof of Theorem 1 is not only unbiased, 
but maintains an infinitesimal variance. Second, in Claims 1 and 2 below we demon-
strate the universal nature of the relevant noise variables. In particular, Claim  1 
considers a normal-like continuous1 noise—with a high probability it is uniformly 
distributed on a small interval around zero; otherwise, it is uniformly distributed on 
a broader interval around zero. The claim states that for every impact variable one 
can find such bias-generating noises.

CLAIM 1: Every impact variable has a continuous noise variable that produces 
screening biases.

PROOF: 
Similarly to Theorem 1, consider  V  on  [ 0, 1]  with a CDF  F  where  

Pr (1 − δ ≤ V ≤ 1) > 0  for every  δ > 0 , and  Pr (V ∈ (0, 1)) > 0 . Fix  
ε, c ∈ ( 0, 1)  such that  N  is, w.p.  c , distributed uniformly on  (− ε, ε) , and w.p.  1 − c  
is distributed uniformly on  (− 1, − ε) ∪ (ε, 1) . Take   b 1   = 1  and   b 2   = 1 + ε .  
A direct computation shows that

  π (  b 2   ) =   
 ∫ 

ε
  
1
   v(v − ε) dF(v)

  ____________  
 ∫ 

ε
  
1
   (v − ε) dF(v)

   , 

  π( b 1   ) =   
  1 − c _ 2 − 2ε    ∫ 

0
  
1−ε

    v   2  dF(v) +   1 _ 2ε    ∫ 
1−ε

  
1
    v[ε + c (v − 1)] dF(v)

     ____________________________________     
  1 − c _ 2 − 2ε    ∫ 

0
  
1−ε

   v dF(v) +   1 _ 2ε    ∫ 
1−ε

  
1
    [ε + c (v − 1)] dF(v)

   . 

1 We use the term “continuous” to describe a non-atomic random variable that is fully supported on an interval.
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If  c → 1 , then

  π( b 1   ) →   
 ∫ 

1−ε
  

1
    v[ε + v − 1] dF(v)

  ________________  
 ∫ 

1−ε
  

1
    [ε + v − 1] dF(v)

   . 

In addition, if  ε → 0 , then  π(  b 1   ) → 1 , while  π(  b 2   ) < 1 . Thus, Claim 1 holds for  
ε  and  c  sufficiently close to  0  and  1 , respectively. ∎

Claim 1 shows that the DM can have a very accurate screening system, such that 
errors are mild in terms of magnitude and plausibility and still encounter biases. 
Moreover, the fact that the screening process is highly accurate (but still noisy) 
 actually enables biases to emerge. The expected value is sensitive to changes in 
 valuations relative to their mass; therefore biases are amplified by the fact that 
 valuations are highly accurate although some errors are still possible.

The next result further extends the last conclusion. By restricting the discussion 
to finitely discrete distributions, one can prove that biases exist as long as the noise 
is not completely negligible relative to the impact variable. Formally, given finitely 
supported variables  V  and  N , the noise variable is considered  V -distinguishable 
if for every two adjacent values,   v 1   <  v 2   , of the impact variable it follows that  
 |  N 

–
   −   N 

¯
   | >  v 2   −  v 1   . That is, a noise variable is  V -distinguishable if its support 

 cannot be bounded by two adjacent values of  V . The following claim shows that any 
distinguishable noise produces biases.

CLAIM 2:  For every finitely supported impact and noise variables where the  
noise is  V -distinguishable, there exists  α ∈ (0, 1)  such that  αN  produces screening 
biases.

PROOF: 
Consider  V  and  N  where  N  is  V -distinguishable,  supp(V ) = { v 1   <  v 2   < ⋯  

<  v m   } , and  supp(N ) = {  n 1   <  n 2   < ⋯ <  n k   } . Denote   β ij   =  v i   +  n j    for any  i  
and  j . Since the two variables have finite support, we can replace N with any contrac-
tion αN such that the   β ij    s are distinct. Fix a cap of   b 1   =  β m1   . Then

  Pr (V + N ≥  b 1   ) = Pr (V =  v m  , N =  n 1   ) +   ∑ 
n> n 1  

   Pr (V >  β m1   − n, N = n), 

so that the second term in the RHS contains positive-probability events where  
 V <  v m    due to the assumption on  N .

If the cap is infinitesimally increased to   b 2   >  b 1   , without crossing the  following   
β ij   , we get  Pr (V + N ≥  b 2   ) = Pr (V + N ≥  b 1  ) − Pr (V =  v m  , N =  n 1  ) , and 
the probability  Pr (V =  v m   | V + N ≥ b)  decreases. Since   v m   = max{V } , the 
 conditional probability of non-maximal values of  V  increases as well. Thus, the 
weighted average of  V  (given  V + N ≥ b ) decreases if the cap is increased from   b 1    
to   b 2   , and Claim 2 follows. ∎
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The role of the scaling factor  α  is twofold. On the one hand, it is technically 
used to eliminate potential equalities and ensure that all assessments are distinct. 
On the other hand, the factor shows that a high-magnitude noise is not a necessary 
 condition for a screening bias. These two attributes exemplify how the noise mag-
nitude is relevant only to the extent to which it enables strict ordinal changes of the 
original valuations. Moreover, the proof of Claim 2 is based on the top two values 
of  V  (i.e.,   v 2   = max{V  } ), so one can weaken the condition on the distinguishable 
noise to these two values specifically.

It is not a mere coincidence that the top valuations are essential for the proof of 
Claim 2. The result of the following lemma builds on this notion, showing that biases 
are likely to emerge at a top-level screening rather than at a lower one. Specifically, 
biases do not occur when thresholds are bounded from above by  E[V ] +   N 

¯
    , which 

implies biases are more prevalent in screening at high levels. In addition, Lemma 1 
shows that the magnitudes of biases are bounded by the size of the noise, meaning 
that the decrease in expected impact is limited to the support of the noise.

LEMMA 1: If  b < E [V ] +   N 
¯

     , then the expected impact  π(b)  is an  increasing 
function. Moreover, for every two feasible caps   b 2   >  b 1   , we have that  
 π( b 2   ) ≥ π( b 1   ) − |  N 

–
   −   N 

¯
   | .

PROOF: 
Fix  V ,  N , and   b 1   <  b 2   < E[V ] +   N 

¯
    . A necessary and sufficient condition 

for a bias is  E[V | V + N ∈ [ b 1  ,  b 2  )] > E[V | V + N ≥  b 2  ] . Since the LHS equals  
 E[V |  b 1   − N ≤ V <  b 2   − N ]  and   b 2   − N < E [V ]  w.p.  1 , we conclude that the LHS 
is bounded by  E [V ]  while  E [V | V + N ≥  b 2   ] ≥ E [V ]  (as needed for Lemma 1).

For the second part of the lemma, fix feasible caps   b 2   >  b 1   , and define  
Y = V + N . Then

  π( b 2   ) − π( b 1  ) +  N 
–
   −   N 

¯
   = E[Y − N | Y ≥  b 2   ] − E [Y − N | Y ≥  b 1   ] +  N 

–
   −   N 

¯
   

 ≥ E[ N | Y ≥  b 1   ] − E[ N | Y ≥  b 2   ] +  N 
–
   −   N 

¯
  

 ≥   N 
¯

   −  N 
–
   +  N 

–
   −   N 

¯
   = 0, 

which concludes the proof. ∎

Both statements follow the same motivation as Claim 2—the ordinal changes 
are bounded by the magnitude of the noisy deviation, and filtering at bottom 
 levels  cannot generate a significant impact. The leading conclusion, therefore, is 
that designers should not concern themselves with biases whenever screening is 
restricted to  low-level elements and when the potential loss from a limited noise is 
negligible.

Screening Biases and the Monotone Likelihood Ratio Property. —Two  
probability distributions are said to have the monotone likelihood ratio property 
(MLRP) if their ratio is non-decreasing. In our context, one can take two realized 
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signals   s 1   >  s 2    and consider the ratio between the distributions of  V | {V + N =  s 1  }   
and  V | {V + N =  s 2   } . Under the MLRP, this ratio is a non-decreasing function. 
Moreover, if the MLRP holds, then the distribution of  V | {V + N =  s 1   }   first-order 
stochastically dominates the distribution of  V | {V + N =  s 2   } , which leads to a 
higher expected value (i.e.,  E[V | V + N =  s 1   ] > E[V | V + N =  s 2   ]  ). Therefore, 
the law of total expectation implies that a screening bias can exist only if the MLRP 
fails. This observation becomes useful in Section III, where we provide a weaker 
property than MLRP to eliminate screening biases, which also characterizes optimal 
threshold strategies.

B. Implications of Screening Biases

Credit Ratings.—Potential errors in credit ratings occur more frequently than 
thought. In many cases, either high- or low-risk debtors are wrongfully flagged 
as low- and high-risk ones, thus posing a substantial problem in credit markets.2 
To address this problem using our formulation, assume that  V  defines the actual 
 solvency of a group of debtors and  N  denotes the evaluation error of the rating 
agency. Thus, screening biases correspond to stricter loan conditions that generate 
lower expected returns. Typically, this is not surprising in credit markets. Stricter 
screening regularly limits the potential profit by reducing the risk. Yet, our screening 
biases are fundamentally different since the relation between returns and risk via the 
interest-rate mechanism is irrelevant. In our context, the lower expected returns are 
due to bad loans, rather than safer ones. In other words, a stricter screening elim-
inates high-value debtors who could increase expected profits, while reducing the 
creditor’s risk.

Building on the result of Theorem 1, extreme screening biases suggest that not 
only expected returns decrease, but the investment becomes riskier. Specifically, 
once  π(b)  is  ε -close to optimality, the variance over accepted valuations is close 
to zero. This result follows directly from the Bhatia-Davis inequality (see Bhatia 
and Davis 2000), stating that  var(X ) ≤ ( X 

–
   − E[X ])(E[ X ] −   X ¯    )  for every bounded 

random variable  X . Therefore, for every extreme screening bias with a sufficiently 
small  ε , the transition from a low cap to a higher one increases the variance over the 
investment and decreases the expected return: a lose-lose situation.

Auctions and the Winner’s Curse.—Aside from the general screening  problem, 
our model also applies to auctions. For example, consider an English auction 
where  b  is the starting price. Under uncertainty regarding the value of the auc-
tioned item, whether it is a given commodity in regular auctions or a certain project 
in  procurement auctions, the opening price is of key importance. Assuming that 
the valuation among bidders is given by  V , and bidders’ uncertainty is projected 
through  N , then the opening bid determines the distribution of valuations among the  
auction participants. Only bidders with noisy valuations above the cap (i.e.,  

2 For example, see, Aaron Klein, “ The Real Problem with Credit Reports is the Astounding Number of Errors,” 
CNBC, September 27, 2017, https://www.cnbc.com/2017/09/27/the-real-problem-with-credit-reports-is-the-as-
tounding-number-of-errors-equifax-commentary.html.

https://www.cnbc.com/2017/09/27/the-real-problem-with-credit-reports-is-the-astounding-number-of-errors-equifax-commentary.html
https://www.cnbc.com/2017/09/27/the-real-problem-with-credit-reports-is-the-astounding-number-of-errors-equifax-commentary.html
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V + N ≥ b ) would participate, and screening biases suggest that a higher opening 
bid is not necessarily productive and does not guarantee efficiency.

The implication of screening biases to auctions is related to the well-known 
 phenomenon of the winner’s curse. The fact that bids depend on a  mean-preserving 
spread of the true valuation suggests that the winning bidder may not be the one 
with  the highest valuation, but only the most optimistic one. Such  inefficiency 
becomes crucial in credit auctions,3 as a higher cap possibly increases the  
probability of a default.

General Trade.—The last implication we provide relates to general trade. Let  
V  represent the intrinsic quality of products in a given market, whereas  V + N  
reflects the subjective assessments among sellers. If  b  is the current price, then 
only sellers with a valuation of  V + N ≤ b  will agree to sell. With a few algebraic 
adjustments, it follows that a screening bias is equivalent to non-monotonicity of  
E [V | V + N ≤ b]  with respect to the price  b . Namely, a higher price may reduce 
the expected quality of products in the market by introducing relatively more 
 low-value products with overzealous sellers.

III. The Optimality of Threshold Strategies

The model and results of Section II are based on two key assumptions: (i) the 
DM’s goal is to maximize the expected value of  V ; and (ii) the DM uses a threshold 
strategy. Though both assumptions seem straightforward, one should bear in mind 
that the DM can exercise more sophisticated policies to maximize a utility function 
that depends on  V . In the current section, we extend the basic model by consider-
ing an expected-utility maximizer DM who faces a screening problem subject to 
the information encapsulated in  V + N . Our goal is to establish conditions under 
which threshold strategies are indeed optimal, and study the practical implications 
in cases where they are suboptimal. Doing so, we also establish a relation between 
the  optimality of threshold strategies and the preceding analysis of screening biases.

A. The Extended Model and Main Result

Fix an impact variable  V  and a noise variable  N , and consider a DM with a utility 
function  u : ℝ → ℝ . As an expected-utility maximizer, the DM sets a screening 
strategy  σ : ℝ → { 0, 1} , where  1  denotes the acceptance of a specific valuation and  
0  denotes a rejection. Given  σ , the DM’s expected utility is

  u (σ) = E [u(V )  1 {σ (V+N )=1}  ] . 

That is, the DM tries to maximize the expected utility from the accepted  elements, 
subject to the noisy evaluation  V + N . Evidently, the decision to accept an 
 element hinges on the sign of the utility function, thus the DM would accept any 

3 Credit auctions are auctions where payments are not immediate, as in long-term infrastructure and real estate 
projects. See Parlane (2003), Board (2007), and Lagziel (2019), among many others.
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 positive-probability set  A  of valuations if  E [u(V  )  𝟏  {V+N∈ A 0  }   ]  ≥ 0  for every subset   
A 0   ⊆ A . Note that all definitions and statements hold almost surely, i.e., hold up to 
a zero-measure deviation.

A strategy  σ  is a threshold (cutoff) strategy if the acceptance of some values with 
positive probability implies that higher valuations are not rejected with a positive 
probability. Formally, a strategy  σ  is a threshold strategy if for every  t , the condition  
Pr (s ≤ t : σ(s) = 1) > 0  implies that  Pr (s > t : σ (s) = 0) = 0 . Define   σ u    to 
be the optimal strategy given  u , where the notion of optimality is taken in the usual 
sense that  u( σ u   ) ≥ u(σ)  for every strategy  σ .

We can now address the question of optimal threshold strategies and,  
specifically, to characterize the conditions ensuring that such strategies are  
optimal. For that purpose, the following notations are needed. For every  A ⊆ ℝ  , 
let   V| A    be the conditional distribution of  V  given  V + N ∈ A . Denote first-order 
( second-order) stochastic-dominance by   ⪰ I    (respectively,   ⪰ II   ). The following 
 theorem provides a characterization for optimal threshold strategies, based on the 
stochastic dominance of  V  conditional on different feasible valuations.

THEOREM 2: The optimal strategy   σ u    is a threshold strategy for every 
 increasing (increasing and concave) utility function  u  if and only if for every 
two  positive-probability sets  A, B ⊆ ℝ  such that  a > b  for every  a ∈ A   
and  b ∈ B  , it holds that   V| A    ⪰ I    V| B    (respectively,   V| A    ⪰ II    V| B    ).

PROOF: 
We prove the first part of the theorem, and the second part follows similarly by 

taking an increasing and concave utility function. For every two sets  A, B ⊆ ℝ , 
denote  A > B  if  a > b  for every  a ∈ A  and for every  b ∈ B .

For the first part we use a proof by contradiction. Assume that for every two sets  
A > B  of positive probability we have that   V| A    ⪰ I    V| B   , and that there exists an 
increasing utility function  u  such that   σ u    is not a threshold strategy. Namely, there 
exists   t 0    such that  Pr (s ≤  t 0   : σ(s) = 1) > 0  and  Pr (s >  t 0   : σ(s) = 0) > 0  . 
Let  A = {s >  t 0   : σ(s) = 0}  and  B = {s ≤  t 0   : σ(s) = 1} . The sets  A  and  
B  are of positive probability and, by definition,  A > B . FOSD implies that  
 E[ u(V ) | V + N ∈ A] ≥ E[u(V ) | V + N ∈ B] . However,  σ (A) = 0  and  σ(B ) = 1  

suggest that  E [u(V )  𝟏  {V+N∈B}   ]  ≥ 0 > E [u(V )  𝟏  {V+N∈A}   ]  , which contradicts the pre-
vious inequality.

For the converse, assume there exist sets  A > B  of positive probability such 
that   V| A    ⋡ I    V| B   . Thus, there exists an increasing utility function  u  such that  
 E[u(V )| V + N ∈ B ] > E[u(V ) | V + N ∈ A] . Consider an auxiliary utility 
 function   u ̃   = u − c  where  E[  u ̃   (V ) | V + N ∈ B] > 0 > E[  u ̃   (V ) | V + N ∈ A] , 
which implies that  E [ u ̃   (V )  𝟏  {V+N∈B}   ]  > 0 > E [ u ̃   (V )  𝟏  {V+N∈A}   ]  . Hence,   σ  u ̃     (A) = 0  

and   σ  u ̃     (B) = 1 , up to a zero-measure deviation. Therefore,   σ  u ̃      is not a threshold 
strategy. ∎

Let us explain Theorem 2 in simple terms. Consider any two sets of evaluations  
A  and  B  both of positive probability such that  A  is (point-wise) above  B . Assuming 
that   V| A    stochastically dominates   V| B   , then threshold strategies are  optimal since 
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a non-negative expected payoff at the lower values leads to a non-negative 
expected payoff at higher ones. As it turns out, the other direction holds just as  
well: once stochastic dominance fails, one can easily construct a  relevant 
utility function which does not obey the threshold-strategy optimality  
criteria.

Before we elaborate on the applicable aspects of Theorem 2, we relate it to 
the results given in Section II. In particular, note that the necessary condition for  
optimal threshold strategies given in Theorem 2 disallows screening biases to 
emerge. That is, if a screening bias exists, then there exist sets  A > B  of positive 
probability such that  E [ V| B  ]  > E [ V| A  ]  . The last condition is weaker than MLRP  
(as discussed in Section IIA), since monotonicity is required only in terms of 
expected values rather than in terms of the ratio of distributions.

The combination of Theorems 1 and 2 raises the question of optimal  threshold 
strategies that still allow screening biases to emerge. The answer to this  question is 
based on the chosen utility function. Since a screening bias contradicts the  condition 
given in Theorem 2, one can construct a utility function such that threshold  
strategies are suboptimal. This, however, does not imply that threshold strategies 
should never be used since, for some utility functions, threshold strategies are indeed 
optimal (for example, for any positive function).

B. Applications

The Peter Principle.—The Peter Principle was initially coined by Peter 
and Hull (1969) and later studied in a theoretical framework by Lazear (2004) in 
the  context of consecutive screening. Lazear showed that regression to the mean 
prompts an upward bias once a threshold strategy is used. This bias explains 
 numerous  phenomena, ranging from failed managerial promotions to  unsuccessful 
movie sequels. The threshold strategies in Lazear’s model ensure that accepted 
elements have a temporal advantage over rejected ones due to the realized noise. 
However, such strategies are potentially suboptimal, whereas the implementation of 
optimal non-threshold policies can completely eliminate the mentioned bias. Let us 
consider a concrete example to explain this phenomenon.

Take a uniformly distributed impact variable  V ∼ U (− 0.5, 0.5) , and a  
symmetric binary noise variable  N = ± 0.5 . For simplicity, assume that  
 u( x) = x  . Fix a threshold strategy  σ =  1 [ 0, 1]    which screens out every  negative 
 valuation. This strategy would produce the same uniform distribution as the 
 original one, i.e.,   V | [0, 1]   ∼ U  (− 0.5, 0.5)  . As Lazear points out, the expected noise 
of every accepted (rejected) element is positive (negative, respectively), so the 
upward bias is evident. Formally, the computation shows that

  E [ N | σ (v + N ) = 1] = 0.5 < − 0.5 = E[ N | σ (v + N )] = 0. 

However, this analysis follows a threshold strategy that is clearly suboptimal.
Consider the strategy  σ =  1 [−0.5,0]∪[0.5,1]    which accepts elements of noisy 

 valuation between  [− 0.5, 0]  and  [ 0.5, 1] . This strategy yields an expected noise  
 E[ N | σ (V + N ) = 1] = 0  and a positive expected value  E [V  1 {σ (V+N)=1}  ]  = 1/8  . 



355LAGZIEL AND LEHRER: A BIAS OF SCREENINGVOL. 1 NO. 3

In other words, a non-threshold strategy produces positive expected value 
with no  expected bias. It is important to note that the latter strategy is indeed  
optimal, and  strictly dominates any threshold strategy. The same  
non-monotonicity holds for other limited noises such as  N = ± n   
where  n > 0.25 . This simple  example  illustrates how suboptimal thresh-
old  strategies generate a bias that optimal non-threshold policies can  
overcome.

Affirmative Action.—Affirmative action advocates the promotion of educa-
tion and employment for discriminated individuals of certain groups. These 
policies are aimed at leveling the playing field, i.e., maintaining equal opportu-
nities. To illustrate this notion in our model, consider a continuous impact vari-
able  V  which denotes the true valuation of individuals in a certain position, 
and a finitely supported  N  which depends on various irrelevant characteristics. 
In our formulation, affirmative action is manifested through different screen-
ing criteria among heterogeneous individuals, namely the screening is based 
on a non-threshold strategy, while the absence of affirmative action suggests a  
threshold strategy.

To exemplify this idea, consider the previous example where  V ∼ U(− 0.5, 0.5)  
and  N = ± 1 / 3  with equal probabilities. A straightforward computation 
shows  that the optimal screening strategy is  σ =  1 [0, 1/6]∪[1/3, 5/6]    and not a  
threshold  strategy. The   [0, 1/6]  -acceptance condition targets negative noise 
 realizations, while the   [1/3, 5/6]  -condition targets positive ones. This optimal 
 strategy specifically targets  individuals with different noise realizations, illustrat-
ing the positive economics of affirmative action which go beyond the normative 
ones. Claim 3 generalizes this example.

CLAIM 3: If  V  is continuous and  N  has finite support, there exists   
positive-probability sets  A > B  such that   V | A    ⋡ I    V | B   .

PROOF: 
Fix  V  and  N  as stated such that  supp(N ) = { n 1   <  n 2   < ⋯ <  n k   } .  

If   n k   +   V 
¯

   ≥  V 
–
  +  n k−1   , then   V | [ n k  +  V 

¯
  ,  n k  + V  

–
   ]   ∼ V  which does not domi-

nate   V |  [ V  
–
  + n k−1  −ε, V  

–
  + n k−1  ]    , for a sufficiently small  ε > 0 . Therefore, consider  

 δ =  n k   −  n k−1   <  V 
–
  −   V 

¯
   , and fix  ϵ = δ / 2 . Denote    V 

–
  k−1   =  V 

–
  +  n k−1   , and define 

the intervals  A =  (  V 
–
  k−1  ,   V 

–
  k−1   + ϵ)   and  B =  (  V 

–
  k−1   − ϵ,   V 

–
  k−1  )  . By definition  

A > B , but  supp  ( V | A  )  =  ( V 
–
  − δ,  V 

–
  − ε)   while  supp  ( V | B  )  = ( V 

–
  − δ − ε,  V 

–
  − δ )  

∪ ( V 
–
  − ε,  V 

–
  ) . Hence,  Pr (V >  V 

–
  − ε | B ) > 0 = Pr (V >  V 

–
  − ε | A)  and the 

claim follows. ∎

Note that the proof carries some resemblance to Lemma 1 in the sense that the 
strategies’ discontinuity is imminent at top valuations.
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IV. In Conclusion

This paper deals with two screening-related problems: the first concerns the 
adverse effect of stricter screening and the second focuses on the actual screening 
method. In the first part of the paper we establish the existence and robustness of 
screening biases, and in the second part we characterize optimal threshold  strategies. 
We combine the two problems and results by showing that screening biases exist as 
long as the necessary and sufficient condition for optimal threshold strategies fails. 
Thus, although the two parts deal with slightly different goals, they lead to similar 
conditions overall.
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