
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Journal of Mathematical Psychology 51 (2007) 14–28

Categorization generated by extended prototypes—An axiomatic
approach

Yaron Azrieli�, Ehud Lehrer

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel

Received 4 August 2005; received in revised form 27 August 2006

Available online 29 November 2006

Abstract

We suggest a model of categorization based on prototypes. A set of entities, identified with some finite dimensional Euclidian space, is

partitioned into a finite number of categories. Such a categorization is said to be generated by extended prototypes if there is a set of

distinguished entities, one for each category, such that the categorization is determined by proximity to these prototypical entities. The

prototypes are called extended since they are described by points in a higher dimensional space than the entities. Sufficient conditions for

a categorization to be generated by extended prototypes are provided. These conditions are also necessary if the prototypes are in general

position.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Categorization is an act by which we sort things out
(mentally). Some entities are members of a particular
category, others are not. For instance, anchovy, bull shark
and flying fish belong to the category ‘‘fish’’.

Categorization is one of the most fundamental tasks
human beings engage in. Whenever we use the word ‘‘dog’’
to refer to two different animals, we actually perform an
act of categorization. Categories are sets of entities to
which we react in an identical or a similar way. For
instance, we smile at all their members, or we call all their
members by the same name. Classifying the world around
us into categories is an efficient way to store and to access
quickly a great deal of information using minimal
resources. Indeed, if a creature belongs to the category
‘‘dog’’, we know that it probably has a tail, barks, and if
you annoy it, may bite.

The classical perspective of categorization is that items
are classified into their proper categories on the basis of
features. Every category is characterized by a list of

features. The entities belonging to a particular category
are those, and only those, having all the appropriate
features. For instance, mammals are creatures that (1) give
birth, and (2) suckle their young. Therefore, a cat belongs
to the category ‘‘mammal’’. On the other hand, sea perches
of the Pacific coast give birth to live young, but do not
suckle them and, thus, they are not considered mammals.
A famous line that perfectly reflects this theory is:

What kind of bird are you, if you cannot fly, said the
little bird to the duck. What kind of bird are you, if you
cannot swim, said the duck and dived (Sergei Prokofiev,
Peter and the Wolf).

Wittgenstein (1953) disagreed with this perspective. He
examined the category of ‘‘game’’ and claimed that there is
nothing common to board games, card games, ball games
and Olympic games.
The work of Rosch (see, Rosch & Lloyd, 1978)

challenged the classical theory. She demonstrated that
when people label an object, they rely less on abstract
definitions than on a comparison with what they regard as
the best representative of the category designated by that
word. In a series of experiments, Rosch and her colleagues
showed that people could not tell what features they rely
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on when performing the act of categorizing. Furthermore,
people regarded members of the same category differently:
some being considered more representative of a category
than others. This means that the membership of an entity
in a category is to a matter of degree. In particular, Rosch
found that people categorize more typical members faster
than less typical ones.

Rosch concluded that people do not perform a
categorization on the basis of features. They categorize
on the basis of proximity to a prototypical or ideal member
of a category. An anchovy is closer to the fish prototype
than a Pacific coast sea perch, but both are closer to it than
they are to the mammal prototype. Therefore, people refer
to them both as fish.

Following Rosch, a rich literature on prototypes has
developed and many experiments to check the validity of
the theory have been conducted. Tverski and Gati (1978)
showed asymmetry in similarity ratings between proto-
typical and non-prototypical members of a category. Rips
(1975) found that new information about prototypical
members of a category is more likely to be generalized to
the entire category than if the same information had been
provided about non-prototypical members. Other exam-
ples can be found in Lakoff (1987).

Nevertheless, there is firm opposition to the prototypes
theory. Osherson and Smith (1981), for instance, use fuzzy
logic tools to claim that the prototypes theory can lead to
ridiculous conclusions. Several alternative explanations to
the experimental findings had been suggested. Armstrong
et al. (1983) proposed a hybrid theory that combines the
classical theory of categories with a theory of identification
procedures which explains the prototypical effects.

Whether people categorize on the basis of proximity to
prototypes or not is still subject to debate. The main task of
this paper is to find conditions which characterize those
categorizations that are generated by prototypes. Such
conditions may be useful in experimental examinations of
the validity of the prototype model.

To formulate the notion of categorization we use a
geometric model of partitions of a finite dimensional
Euclidian space. The set of entities to be categorized is
identified with Rd , where d 2 N ðdX2Þ is the number of
attributes used in describing an entity. Every entity is
defined by the intensity of each attribute, which is a real
number. For instance, different people may be described by
different intensity levels of the attributes ‘‘speaks Swahili’’,
‘‘likes red wine’’ and ‘‘dresses elegantly’’. A categorization
(with respect to a given finite set of categories) is a partition
of the set of entities (Rd) into pairwise disjoint sets, one for
each category.1

We study a special kind of such categorizations—those
that are generated by extended prototypes. An extended
prototype is a distinguished member of a category. The
term ‘‘extended prototypes’’ is used to emphasize that these

members are described by d þ 1 attributes, and not by d

attributes like the rest of the entities. Formally, an
extended prototype is a point in Rdþ1 (and not in Rd ).
We say that a categorization is generated by extended
prototypes if the closest extended prototype to a member of
a certain category is the designated prototype of that
category.2 Thus, categorizations of this form are easy to
describe: every entity is assigned to the category that
corresponds to its closest extended prototype.
The representation of a categorization as a partition of a

geometrical structure is thoroughly discussed in Garden-
fors (2000). There, a categorization is an assignment of
points in a ‘‘conceptual space’’3 to a set of categories.
Gardenfors (2000, pp. 138–141) studies categorizations
generated by extended prototypes (though he calls them
‘‘generalized Voronoi categorizations’’4). The extra dimen-
sion of the prototypes might be used, for instance, to
control the size of the various categories. This allows, in
turn, to take into account the variability within categories:
more diverse categories (such as ‘‘duck’’) will cover a larger
area than less diverse ones (such as ‘‘ostrich’’).5

In order to find necessary and sufficient conditions for a
categorization to be generated by extended prototypes, we
consider the categorization of the same individual in
various situations. If L is the (finite) set of all relevant
categories then the primitive of our model is a collection of
categorizations, one for each subset A � L. That is, the
categorizer is asked to perform his categorization when
only the categories in A are available, for every A � L. The
resulting family of partitions is called a categorization

system.
We introduce four axioms of categorization systems,

namely, Hierarchical Consistency, Convexity, Non-redun-

dancy and Variety. Our main result states that if a
categorization system satisfies these four axioms then it is
generated by extended prototypes. Moreover, every cate-
gorization system which is generated by extended proto-
types satisfies Hierarchical Consistency and Convexity. The
other two axioms are not necessary, but they are both
satisfied when the extended prototypes are in general
position. The exact definition of the term ‘‘general
position’’ appears in Section 2.3, and we comment further
on this issue in Section 3.4.
As shown in Section 6.2, the four axioms do not

guarantee that a categorization system is generated by
non-extended prototypes (these are prototypes described
by only d attributes). Thus, an additional attribute is
necessary. What characterizes categorization systems that
are generated by non-extended prototypes is yet to be
discovered.

ARTICLE IN PRESS

1For technical reasons, we will assume particular restrictions on the

structure of the partitions.

2Example 1 in Section 2.3 illustrates this definition.
3From a mathematical point of view, a ‘‘conceptual space’’ is a metric

space.
4The geometrical object called Voronoi diagram is discussed in Section

5.3.
5See Section 3.1 for more on this issue.

Y. Azrieli, E. Lehrer / Journal of Mathematical Psychology 51 (2007) 14–28 15



Aut
ho

r's
   

pe
rs

on
al

   
co

py

The paper is organized as follows. Section 2 describes the
model, the axioms and the main result. In Section 3 we
elaborate on several aspects of the model and the result.
Section 4 describes how the main result can be applied to
experimental psychology and to the theory of decision
making. Section 5 surveys related literature and Section 6
provides several concrete examples of categorization
systems. We conclude in Section 7 where the proof of the
main result is presented.

2. The model and the main result

2.1. Categorization system

Any entity is characterized by the intensity of d

attributes. Thus, an entity is represented by a vector in
Rd . An open partition of Rd is a finite collection of non-
empty, pairwise disjoint open sets, say, A1;A2; . . . ;An such
that6 clð

Sn
i¼1 AiÞ ¼ Rd .

Consider a set of categories L ¼ f1; 2; . . . ; ‘g. An agent is
asked to classify the set of entities. When a subset A � L is
considered, the agent divides the set of entities among the
categories of A. That is, for any A � L (with jAjX2), there
is an open partition of Rd , denoted by PA, that consists of
jAj sets, one for each category in A. Such a system of
partitions is called a categorization system and is a
primitive of our model. Formally,

Definition 1. 1. A categorization system is a collection of
open partitions PA ¼ fPAðiÞgi2A of Rd , one associated with
each A � L with jAjX2.

2. When x 2 PAðiÞ we say that x is categorized as i when

A is considered.

2.2. Axioms

This subsection describes four axioms of categoriz-
ation systems. The first two properties seem to be natural
from a behavioral point of view. The other two are of a
technical nature and their aim is to prevent degenerate
cases.

Convexity: For every A � L and for each i 2 A, PAðiÞ is a
convex set.

Convexity states that if two entities y and y0 are
categorized as i when A is considered, then so is any
convex combination of y and y0.

Hierarchical Consistency: For every A � L with jAjX3,
and for each i 2 A, PAðiÞ ¼

T
BD! A;i2BPBðiÞ.

Hierarchical Consistency states that the entities categor-
ized as i when A is considered are those entities categorized
as i when B is considered for every BD! A. In Lemma 1 we
prove that if a categorization system satisfies Hierarchical

Consistency then all the partitions fPAgA�L are uniquely
determined by the partitions when only pairs of categories
are considered.

Non-Redundancy: For every three categories fi; j; kg 2 L,
Pfi;jgðiÞD/ Pfi;kgðiÞ.

Non-Redundancy states that there is always an entity
categorized as i, when the two categories i; j are considered,
but categorized as k when i; k are considered.

Variety: For every four distinct categories fi; j; k;mg 2 L,

clðPfi;j;kgðiÞÞ \ clðPfi;j;kgðjÞÞ \ clðPfi;j;kgðkÞÞ

aclðPfm;j;kgðmÞÞ \ clðPfm;j;kgðjÞÞ \ clðPfm;j;kgðkÞÞ.

The set clðPfi;j;kgðiÞÞ \ clðPfi;j;kgðjÞÞ \ clðPfi;j;kgðkÞÞ consists of
all entities that belong to (the closure of) the three
categories fi; j; kg. Variety states that this set and the set
of entities which are in the (closure of the) three categories
fm; j; kg are not the same.

2.3. Axiomatization

Definition 2. A categorization system fPAgA�L is generated

by extended prototypes, if there are ‘ points x1;x2; . . . ;x‘ in
Rdþ1, such that for any A � L and any i 2 A, PAðiÞ ¼ fy 2

Rd : diðyÞodjðyÞ for every j 2 A; jaig, where diðyÞ ¼

kðy; 0Þ � xik
2 (i ¼ 1; . . . ; ‘) and ðy; 0Þ is the vector in Rdþ1

whose first d coordinates coincide with y and the last
coincides with 0.

When a categorization system is generated by extended
prototypes every category i has an extended prototype, xi 2

Rdþ1 (i.e., an entity characterized by d þ 1 attributes).
When the subset A � L of categories is considered, the
open partition PA of Rd is determined by the distance
functions dj ; j 2 A. That is, an entity y 2 Rd is in the set
PAðiÞ if, and only if, the (Euclidean) distance diðyÞ between
ðy; 0Þ and the extended prototype xi is strictly smaller than
the distance djðyÞ between ðy; 0Þ and the extended prototype
xj, for every j 2 A other than i. The following example
illustrates Definition 2.

Example 1. Let L ¼ f1; 2; 3g be the set of categories, and
assume that d ¼ 2. Let the three extended prototypes be
x1 ¼ ð0; 0; 0Þ; x2 ¼ ð2; 0; 0Þ and x3 ¼ ð0; 2; 1Þ. Thus, the
intensity in the extra attribute of the first two prototypes
is equal to zero, while it is equal to one for the third
prototype. Consider the categorization system generated
by these prototypes. When the set of categories considered
is A ¼ f1; 2g the induced partition is PAð1Þ ¼ fðy1; y2Þ 2

R2; y1o1g and PAð2Þ ¼ fðy1; y2Þ 2 R2; y141g. When A ¼

f1; 3g is considered we get7 PAð1Þ ¼ fðy1; y2Þ 2 R
2; y2o1:25g

and PAð3Þ ¼ fðy1; y2Þ 2 R2; y241:25g. Similarly, for A ¼

f2; 3g a simple computation gives PAð2Þ ¼ fðy1; y2Þ 2 R
2;

y2oy1 þ 0:25g and PAð3Þ ¼ fðy1; y2Þ 2 R2; y24y1 þ 0:25g.
When all three categories are considered the partition is
PLð1Þ ¼ fðy1; y2Þ 2 R2; y1o1; y2o1:25g, PLð2Þ ¼ fðy1; y2Þ 2

R2; y141; y2oy1 þ 0:25g, and PLð3Þ ¼ fðy1; y2Þ 2 R2; y24
1:25; y24y1 þ 0:25g.

ARTICLE IN PRESS

6clðBÞ denotes the closure of B.

7Indeed, assume that y ¼ ðy1; y2Þ 2 R2 is closer to the extended

prototype x1 than to x3. This means that y2
1 þ y22 þ 02oy21þ

ðy2 � 2Þ2 þ 12, or equivalently y2o1:25.
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For the sake of exercise, assume that, instead of x3, the
extended prototype of the third category would have been
x03 ¼ ð0; 2; 0Þ. In this case, the partition when all 3
categories are considered would become PLð1Þ ¼
fðy1; y2Þ 2 R2; y1o1; y2o1g, PLð2Þ ¼ fðy1; y2Þ 2 R2; y141;
y2oy1g, and PLð3Þ ¼ fðy1; y2Þ 2 R

2; y241; y24y1g. This
illustrates the fact that as the intensity of the additional
dimension of a prototype increases, the corresponding
category contracts.

As we show in Section 6.2, the additional dimension is
crucial for our main result. Its meaning is discussed in
Section 3.1. Since we measure distance between extended
prototypes (which are points in Rdþ1) and entities (which
only have d coordinates), we need to embed Rd in Rdþ1.
From a technical point of view, it is convenient to identify
the set of entities Rd with the set of vectors in Rdþ1 whose
last coordinate is 0. However, one can replace 0 with any
other real number without affecting the results.

Before stating the main result we need one more
definition.

Definition 3. Let x1;x2; . . . ;x‘ in Rdþ1 be a set of extended
prototypes. Denote by x0i (i ¼ 1; . . . ; ‘) the orthogonal
projection of xi on the set of entities.8 We say that
x1;x2; . . . ;x‘ are in general position if the following two
conditions hold:

(i) x0i;x
0
j ;x
0
k are not collinear for every three extended

prototypes xi; xj and xk.
(ii) For every four extended prototypes xi;xj ;xk and xm the

dimension of the set of entities fy 2 Rd : diðyÞ ¼ djðyÞ ¼

dkðyÞ ¼ dmðyÞg is at most d � 3.

Informally speaking, the extended prototypes are in
general position if no ‘‘unlikely coincidences’’ happen in
their configuration. In Section 3.4 we elaborate further on
this issue, and explain the interrelations between the
axioms of Non-Redundancy and Variety and sets of
extended prototypes which are in general position.

We use the four axioms described in the previous
subsection in order to axiomatize the categorization
systems that are generated by extended prototypes. Our
main result is:

Theorem 1.

1. If fPAgA�L is a categorization system generated by

extended prototypes, then it satisfies Convexity and

Hierarchical Consistency. If the extended prototypes

are in general position then Non-Redundancy and

Variety are also satisfied.
2. If a categorization system fPAgA�L satisfies Convexity,

Hierarchical Consistency, Non-Redundancy and Vari-
ety, then it is generated by extended prototypes.

3. Discussion

3.1. Extended and non-extended prototypes

Every entity in our model is described by the intensity of
d attributes, while the prototype of each category has an
additional attribute. We propose two possible cognitive
interpretations for the extra dimension. The first is based
on the fact that a categorizer may not have an entire
description of the object he categorizes. This may happen,
for instance, when the categorization is done in a matter of
an instant and under risk. In such circumstances,
the attributes available to the categorizer might provide
merely a partial picture of an entity. A complete descrip-
tion of an entity requires more attributes, unobserved by
the categorizer.
While obtaining just a partial description of the observed

entity, the categorizer may have in his mind a more
comprehensive description of prototypes. This description
may include the intensity of more than the d attributes
observed. According to this interpretation, the additional
dimension is a completion of the information that the
categorizer has on the prototypes, but not on the entities to
be categorized.
Such an interpretation immediately raises another

question. If the categorizer has a finer description of the
prototypes than of the entities then why is only one
additional attribute sufficient? It might be that the
description of the prototypes contains many attributes
which are unavailable for the entities. The answer to this
question is that, from a mathematical point of view, it does

not matter whether the prototypes have one or many

additional attributes. That is, any categorization system
which is generated by extended prototypes having d þ n

attributes (for some n 2 N) is also generated by extended
prototypes having d þ 1 attributes. Thus, considering only
one additional dimension does not restrict the generality of
our result. The proof of this statement is simple and is,
therefore, omitted.
The second interpretation is adopted from Gardenfors

(2000, pp. 138–140). The idea is that the additional
attribute of a prototype reflects the size of the category it
represents. He writes:

A drawback of the standard Voronoi tessellation is that
it is only the prototype that determines the partitioning
of the conceptual space. It is quite clear that for many
natural categorizing systems, however, some concepts
correspond to ‘‘larger’’ regions than others. For
example, the concept ‘‘duck’’ covers a much larger
variety of birds than ‘‘ostrich’’. . . The question then
arises whether there is some way of generalizing the
Voronoi tessellation that can account for varying sizes
of concepts in a categorization. . .

As a solution of this problem Gardenfors (2000) suggests
to add to each prototype an extra dimension which
corresponds to the size of the category it represents.

ARTICLE IN PRESS

8x0i is the vector which equal to xi in its first d coordinates and its last

coordinate is equal to 0.
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Different values attached to this dimension would induce
different partitions. This extra dimension controls the size
of the various categories. For instance, the ‘‘duck’’
category can be designed to be relatively large while that
corresponding to ‘‘ostrich,’’ relatively small.

By adding an extra dimension, prototypes become
extended prototypes. Gardenfors (2000, p. 39) suggests
that, when the prototypes are learned from a set of
exemplars, the size of a category might be defined by a
function of the standard deviation of this set. We comment
further on this interpretation in Section 4.1.

An interesting question is what characterizes those
categorization systems that are generated by (non-ex-
tended) prototypes. By non-extended prototype we mean
an entity in Rd and not in Rdþ1. We say that a
categorization system is generated by (non-extended)
prototypes if it is generated by extended prototypes, and
in addition, the extended prototypes can be chosen such
that the last coordinate in all of them is 0. Obviously, this is
a subset of the categorization systems that are generated by
extended prototypes. We do not know what additional
axioms are needed in order to get a representation by (non-
extended) prototypes, and we leave this question open.

3.2. Measuring similarity

Even when there is a prototypical representative for each
category, in order to determine the category attribution,
one should specify the meaning of closeness. What does it
mean that a bat is more similar to a cow than to a hoopoe?
The metric by which closeness is measured determines the
partition into different categories.

The psychology literature shows (see Gardenfors, 2000,
pp. 24–26 for a short review) that the Euclidean metric,
which is the one used in this paper, is most suitable when
the various dimensions (attributes) are integral. Integral
dimensions, as opposed to separable dimensions, are
interdependent and have the property that we assign values
to all of them simultaneously. For instance, it is commonly
accepted (Gardenfors, 2000, pp. 9–12) that a human
being’s representation of color can be described by three
dimensions: hue, chromaticness and brightness. When we
see a certain color, we simultaneously assign values to all
three dimensions. These three dimensions are, therefore,
integral.

Upon fixing a metric by which the distance between
entities is measured, it is natural to define similarity
between entities by a monotonic decreasing function of
the distance. That is, for every two entities x; y 2 Rd , the
similarity between x and y is sðx; yÞ ¼ f ðkx� ykÞ, where
f : ½0;1Þ ! R is monotonically decreasing. Usually, f is
taken to be some exponentially decaying function. It
should be noted that the choice of f cannot affect
the induced partition (as long as f is monotonically
decreasing).

With the same set of prototypes, different metrics would
induce different partitions. It would be interesting to find

conditions that axiomatize categorization systems that are
generated by prototypes (or extended prototypes), using
other metrics than the Euclidean. In this regard, we note
that the fact that categories are convex sets (Part 1 of
Theorem 1) is quite unique to the Euclidian metric. Other
metrics typically induce non-convex categories. For in-
stance, the city-block9 metric induces star-shaped10

(but not necessarily convex) categories (see Boots et al.,
1992, p. 187).

3.3. The hierarchical consistency axiom

We demonstrate the role of Hierarchical Consistency

with the aid of a simple example. Suppose that an
individual has in mind prototypes of Spanish, French and
Italian. Thus, according to her categorization, a member of
the ‘‘French’’ category would be closer to, or better match,
the French prototype than the other two. If asked which of
two categories an entity belongs to, say, Spanish or French,
a member of the ‘‘French’’ category would be closer to the
French prototype than to the Spanish one. However, a
member of the French category, when only French and
Spanish are considered, may be categorized as Italian, if
only French and Italian are considered, or when all three
are considered.
When the categorization is based on prototypes (or

extended prototypes), those people who are categorized as
French, rather than Spanish or Italian, are precisely those
who were categorized as French when examined separately
versus Spanish or Italian. More generally, this means that
if a categorization system is generated by extended
prototypes then it must satisfy Hierarchical Consistency.
See also Section 4.1 for an explanation of how this axiom
can be tested and Section 4.2 for its relation to the
Independence of Irrelevant Alternatives axiom (IIA).

3.4. Non-Redundancy, Variety and degenerate prototypes

As shown in Section 6.3, Convexity and Hierarchical

Consistency alone do not guarantee that a categorization
system is generated by extended prototypes. The cause of
this insufficiency rises from the degenerate structure that
some categorization systems which satisfy Convexity and
Hierarchical Consistency have. The purpose of the axioms
of Non-Redundancy and Variety is to exclude such
degenerate cases.
Even if a categorization system is generated by extended

prototypes, it can still have anomalistic structure. This
happens when the prototypes are not in general position.
The precise meaning of the term general position is not
fully standard and depends on the context in which it is
used. The key property of general position configurations is

ARTICLE IN PRESS

9According to the city-block metric, the distance between x; y 2 Rd isPd
i¼1jxi � yij: This metric is known also as ‘1.
10A set D in a linear space is star-shaped if there is a point p 2 D such

that the line segment between p and any other point of D lies within D.
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that they lie arbitrarily close to any given configuration.
This property is satisfied by our definition of general
position. To be precise, assume that a set of extended
prototypes fx1; . . . ;x‘g � Rdþ1 is given. We claim that, for
every �40, there is a set of extended prototypes
fy1; . . . ; y‘g � Rdþ1 such that kxi � yiko� for i ¼

1; 2; . . . ; ‘ and fy1; . . . ; y‘g is in general position according
to our definition.

To see that this is indeed so, one should look at the
examples in Sections 6.4 and 6.5. There, the two typical
cases where the prototypes are not in general position are
shown. Since the dimension of the set of entities in these
examples is 2 it is easy to see what can go wrong. In Section
6.4, the three prototypes are on the same line, while in
Section 6.5 the 4 prototypes are on the same sphere with
center at the point ð1; 1Þ. It is clear in these cases that by
arbitrary small perturbations of the given prototypes one
can obtain prototypes in general position.

A formal proof of the above claim involves standard
geometrical arguments. We choose not to go into more
details. The reader is referred to Matous̆ek (2002, pp. 3–5),
where the concept of general position is discussed in greater
detail.

In summary, categorization systems which does not
satisfy the axioms of Non-Redundancy and Variety, and
sets of extended prototypes which are not in general
position are the two sides of the same coin. When a
categorization system is generated by extended prototypes,
Non-Redundancy and Variety will be satisfied if and only if
the generating prototypes are in general position. Since sets
of prototypes which are not in general position are ‘‘rare’’,
this means that ‘‘most’’ of the categorization systems which
are generated by extended prototypes satisfy Non-Redun-

dancy and Variety.

3.5. Context-dependent prototypes

There is evidence in the psychology literature (see e.g.,
Labov, 1973) that the process of categorization is context-
dependent. That is, people categorize differently the same
set of entities when the categorization is done in different
circumstances. If the categorization is based on similarity
to prototypical cases, then it might be that the cause for
such a phenomenon is that the prototypes are context

dependent.
Our model assumes that the prototype of a category is

not influenced by the set of categories considered. That is,
if xi is the prototype of a category i when the set of
categories considered is A (i 2 A), then it is also the
prototype of i when the set of categories considered is B

(BaA; i 2 B).
Consider the following example: A school has basketball

and volleyball teams. A student is included in the basket-
ball team if he is closer to some prototypical basketball
player than to a prototype of a volleyball player, and vice
versa. If the same school had to classify the students into

basketball and soccer teams, the prototypical players
would probably be different.
For instance, the speed of the prototypical basketball

player in the first categorization (basketball vs. volleyball)
would be higher than in the second (basketball vs. soccer),
because speed is important in basketball and in soccer, and
less so in volleyball. On the other hand, height would be a
significant attribute of the prototypical basketball player in
the second categorization, because height is an advanta-
geous attribute in both basketball and in volleyball, and
less so in soccer.
This phenomenon can result in a violation of the

Hierarchical Consistency axiom. Indeed, it may happen
that a student is assigned to the basketball team when only
basketball and volleyball are considered, but when all three
sports are considered, he is assigned to the volleyball team.
Thus, if one tries to check the validity of the prototypes
theory through our axioms then context-related effects
must be removed.

3.6. Prototypical sets

Our main result axiomatizes categorization systems
generated by extended prototypes. Every category is
represented by one prototype. However, there may be
cases where categories are defined by a closeness relation to
one of a few typical representatives of a category. For
instance, the category ‘‘French’’ may be defined by a
proximity to either Charles de Gaulle, Brigitte Bardot or
Gerard Depardieu. In such a case the category is generated
by a set of prototypes rather than by one. Formally:

Definition 4. An open partition P ¼ ðPðiÞÞi2L is generated

by finite sets of prototypes, if there are ‘ finite sets
B1;B2; . . . ;B‘ in Rd , such that for any i 2 L, PðiÞ ¼ fy 2

Rd : f iðyÞof jðyÞ for every j 2 L; jaig, where f iðyÞ ¼

minz2Bi
ky� zk2 (i ¼ 1; . . . ; ‘).

When the open partition is generated by finite sets of
prototypes the resulting cells of the partition may not be
convex sets. Thus, the convexity axiom may be violated if
the categorizer has in mind several prototypes for each
category. This might be the case if the prototypes are
learned from a set of exemplars, as illustrated in the
following example.
A board of managers examines a few candidates. It may

have a few prototypical examples of what constitutes a
good CEO and some others that are prototypical examples
of a bad CEO. These prototypes may have been collected
from the list of the firm’s ex-CEOs, judged according to
their performance. Candidates are sorted according to their
resemblance to one of the prototypical individuals. It may
happen that two individuals categorized as potentially
good CEOs resemble different prototypes: one resembles a
former CEO in her assertiveness and the other resembles
another former CEO in his business creativity. A combina-
tion of these two may resemble a former bad CEO. In other
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words, the category of potentially good CEOs is not
necessarily convex.

It is clear that an open partition that is generated by
finite sets of prototypes consists of categories which are
finite unions of convex sets. Further investigation of this
subject is beyond the scope of this paper.

3.7. Other domains of entities

In this discussion we restricted our attention to the case
where the set of entities is a finite dimensional Euclidian
space. That is, an entity is defined by its intensity in any
attribute, and the intensity is not bounded in both
directions. However, there are cases where other domains
of entities seem more appropriate.

One example for such a case is when the intensity of one
or a few dimensions is bounded. It is reasonable, for
instance, that the attribute that stands for the age of a
person would be bounded. In other words, the age
dimension should be described by a finite interval rather
than by an infinite line. Another example is when a certain
attribute is discrete. For instance, if a relevant dimension is
the number of legs that each entity has, then the possible
values are only integers.

Most of our results still hold if the domain of entities Rd is
replaced by some other convex subset of a finite dimensional
Euclidian space.11 Specifically, the second part of Theorem 1
is not affected by such a change of domain. In addition,
Convexity and Hierarchical Consistency will be satisfied
whenever the categorization system is generated by extended
prototypes. However, in some domains, the fact that the
prototypes are in general position does not insure that Non-

Redundancy and Variety will be satisfied.

3.8. Unassigned entities

If fPAðiÞgi2A is an open partition of Rd then the unionS
i2A PAðiÞ does not cover the entire space. Indeed, the

boundary of any one of these disjoint open sets is not
contained in their union. Thus, there are entities which
remain unassigned in the categorization process. This is
also reflected in Definition 2, where an entity y 2 Rd which
is equidistant from two extended prototypes xi and xj is not
included in Pfi;jgðiÞ nor in Pfi;jgðjÞ. However, we believe that
this issue is of minor significance because the set of
unassigned entities is very ‘‘small’’. By this we mean that
both, the Lebesgue measure of this set is 0, and that it is
nowhere dense (its closure has an empty interior).

4. Applications

4.1. Experimental psychology

The purpose of this subsection is to illustrate how
Theorem 1 can be applied to check the validity of the

prototypes theory in general, and of the geometric model
described here specifically. We emphasize that there is
already a rich literature describing experimental study of
issues related to prototypes-based categorization (Rosch &
Lloyd, 1978 is one of the earliest). Moreover, Gardenfors
and Holmqvist (1994, see also Gardenfors, 2000, pp.
142–150) conducted experiments in order to compare
various geometric models of categorization. One of these
models is the same as the one discussed in this paper.
However, we claim that Theorem 1 may put such
experiments in a new light.
A fundamental problem facing a researcher who wants

to compare different theories of categorization is that
people cannot tell what make them categorize one way or
another. Thus, conclusions must be drawn based on the
observable data alone, which is typically, just the
categorization itself. In particular, one cannot expect that
individuals who participate in an experiment would be able
to tell whether or not their categorization was based on
proximity to a set of prototypes.12

The approach that guided the experiments performed by
Gardenfors and Holmqvist (1994) was based on the
assumption that individuals use the set of exemplars of a
category in a special way to create the prototype of that
category. Specifically, they assumed that the prototype of a
category is the average of the exemplars of that category.
Based on this assumption, they check the predictions of the
extended prototypes model13 in a task of categorizing shell
shapes.
But what if prototypes are generated in another way, and

not specifically by averaging exemplars? For instance, it
might be that exemplars recently encountered have a
stronger effect than those encountered previously. Further,
it might be that the standard deviation of the set of
exemplars is not the appropriate assignment for the extra
attribute of the prototype. Thus, it may be that the
predictions of the model are inaccurate, not because the
extended prototypes model fails, but rather because the
parameters have been wrongly selected.
The axioms presented in Section 2.2 do not refer to any

specific set of prototypes. Therefore, Theorem 1 can be
used in order to determine whether the model of extended
prototypes is accurate with some set of prototypes. The
experiment should be designed in a way that allows us to
check whether the axioms are satisfied. Obviously, the
main interest is in the Convexity and Hierarchical

Consistency axioms.
Checking whether Hierarchical Consistency is satisfied

seems to be a rather simple matter. Consider, for instance,
the experiment of categorizing shell shapes, as in Garden-
fors and Holmqvist (1994). After the learning stage of the
various categories (say, categories A–C) is over, individuals
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12Though, individuals may be able to tell which members of a certain

category are more prototypical than others (see Rosch & Lloyd, 1978).
13The intensity of the extra attribute was taken to be the standard

deviation of the exemplars of the category (see also Section 3.1).
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should be asked to categorize shells when only pairs of
categories are allowed. That is, the shapes tested should
first be partitioned into the categories A and B, among A
and C, and among B and C (the same set of shells should be
used in each partition). Then, the same set of shells should
be categorized when all three categories are permitted.
Hierarchical Consistency is satisfied if, and only if, the
shells which were categorized as A (B, C) in the final stage
are exactly those that were categorized as A (B, C) in the
two relevant categorizations of the first stage.

Checking Convexity, on the other hand, is trickier.
Checking whether the categorization of a subject satisfies
this axiom requires knowledge of the representation of
every instance as a point in the entities space. However,
there are domains in which the representation of entities is
known.14 In such domains Convexity can be examined by
asking subjects to categorize an instance located between 2
other instances that were identically categorized.

4.2. Decision theory

Although our main interest is in the cognitive process of
categorization, Theorem 1 can also be applied to the theory
of decision making. Let D be a decision problem
characterized by ‘ attributes. For instance, an individual
needs to make a decision whether to take an umbrella or
not. The relevant attributes in this case may be the outside
temperature, the color of the sky, the time he plans to stay
outside and so on. The decision maker may have two
prototypical decision problems in mind, one in which he
should take an umbrella and another in which he should
not. The decision is taken according to which of the two
prototypes is closer to the current situation. If this is the
case we say that the decision process is prototype-oriented.

Categorization of decision problems may be done
according to the actions taken. That is, all problems that
share the same best response are lumped together. The
decision process should not be consciously prototype-
oriented, but it might seem that way. In fact, this is a case
where the categorization can be clearly seen by an outside
observer. Our axiomatization, therefore, can be used to
determine whether the categorization is based on proximity
to prototypical decision problems.

In the context of decision making, the Hierarchical

Consistency axiom is closely related to the IIA axiom. If
A ¼ fa1; . . . ; a‘g is the set of all actions available to the
decision maker (categories) then (almost) any decision
problem (entity) induces a choice function over A.
Restricting attention to the choice function induced by a
given entity, one can see that Hierarchical Consistency

implies that this choice function satisfy IIA. The converse
is also true. That is, if the choice function over actions
induced by every decision problem satisfies IIA then the
categorization of decision problems according to their best
response satisfies Hierarchical Consistency.

We would also like to relate our model to the theory of
decision making with uncertainty. Suppose that a decision
problem is defined by a distribution over the state space, O.
As before, A stands for the (finite) action set. Suppose that
the utility function u specifies the utility the decision maker
derives from taking the action a when the distribution over
states is P. That is, u : DðOÞ � A! R, where DðOÞ is the set
of distributions over O. In other words, uðP; aÞ is the utility
derived from taking the action a when a state is drawn
from O according to the distribution P.
In this setup, decision problems are merely distributions

over the state space, O. Thus, the (convex) set of entities is
DðOÞ. Consider a categorization of distributions in DðOÞ
according to their best response. P is classified to the
category corresponding to a if a is the best response to P

(i.e., uðP; aÞ4uðP; bÞ for any b 2 Anfag). If for any P;P0 2
O and a 2 ð0; 1Þ, u satisfies

uðP; aÞXuðP; bÞ and uðP0; aÞXuðP0; bÞ imply

uðaPþ ð1� aÞP0; aÞXuðaPþ ð1� aÞP0; bÞ;

then this categorization satisfies Convexity. In particular, if
u is defined according to the expected utility, then the best-
response categorization satisfies Convexity.
As a last remark, we note that the entire discussion in

this subsection is restricted to decision problems with
finitely many available actions. This is because our model
assumes that the set of categories in a categorization system
is finite. A generalization of our results to infinite action
sets is left for future research.

5. Related literature

5.1. Economics

An extensive amount of effort has been invested in
finding alternatives to the classical expected utility theory.
This is due to cumulative evidence that the predictions of
this theory are not always consistent with the actual
decisions being made by individuals. Some alternative
theories are strongly inspired by psychological concepts,
and categorization has an important role in many of them.
Fryer and Jackson (2003) use a model of categorization

to explain discrimination against minorities. They claim
that discrimination against minorities in employment is a
result of a cognitive process whereby majority groups are
better sorted on the basis of qualifications than minority
groups.
Mullainathan (2002) suggests an alternative to Bayesian

updating of probabilities based on the idea of coarse
categories. He claims that people tend to consider similar
(but not equal) cases as the same (i.e., belonging to the
same category). Based on category estimates people obtain
biased probabilities. Furthermore, upon observing new
data, beliefs about the actual state of the world are not
updated in a continuous manner, as in the Bayesian case.
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Gilboa and Schmeidler (2001) developed a case-based
decision theory based on past experience. The action
chosen when a new decision problem is encountered is the
one that performed best in past problems, which are
weighted according to their similarity to the decision
problem under consideration.

In view of the case-based decision theory, prototype-
oriented decision making, as described in Section 4.2, may
be considered as follows: All past experience is encapsu-
lated in some prototypical cases. That is, the decision
maker replaces the set of past decision problems by a
relatively small set of prototypical decision problems.
When a new decision problem is encountered, the action
taken is the best response to the closest prototypical case
(and not to the decision problem actually encountered).

5.2. Scoring rules and linear representation of orders

It turns out that our results are also related to some
papers on scoring rules by Smith (1973), Young (1975) and
Myerson (1995), and to the literature dealing with linear
representation of orders (see, Gilboa & Schmeidler, 2001
and Ashkenazi & Lehrer, 2002).15 While the model,
interpretation of the results and the proofs in this paper
significantly differ from those mentioned, there are some
surprising similarities.

A society needs to choose from a number of alternatives.
Each individual in the society submits a ballot which
reflects his opinion on the matter. A voting rule is a
correspondence between the set of possible collections of
ballots and the set of alternatives, which assigns the set of
winning alternatives to every list of ballots submitted.

A voting rule is induced by a scoring rule if for every
alternative i and for every possible ballot b there exists a
real number xði; bÞ, such that the winning alternatives are
exactly those that maximize

P
b xði; bÞyðbÞ, where yðbÞ is the

number of individuals who submitted the ballot b. Defining
y (xi) to be the vector with coordinates yðbÞ (xði; bÞ), the
above sum is the scalar product hxi; yi. Smith (1973),
Young (1975) and Myerson (1995) provide various
axiomatizations that characterize voting rules that are
induced by scoring rules.

Gilboa and Schmeidler (2001) and Ashkenazi and Lehrer
(2002) deal with a model where each point y in a subset of
an Euclidean space induces a total order over a set of
alternatives, L. They axiomatically derive the existence of a
linear representation. That is, vectors xi, i 2 L, that induce
the order in the sense that an alternative i is preferred over
alternative j, with respect to the order induced by y, if and
only if hxi; yi4hxj ; yi.

A categorization system clearly induces a binary relation
�y over categories for (almost) every entity y: i�yj if, when
fi; jg is considered, y is categorized as i. It turns out
that when a categorization system satisfies Hierarchical

Consistency this binary relation is a total order (see also
Section 4.2).
Furthermore, when the categorization is generated by

extended prototypes this total order has a linear represen-
tation. Indeed, let fxigi2L � Rdþ1 be the set of prototypes.
An entity y 2 Rd is categorized as i if kðy; 0Þ �
xik

2okðy; 0Þ � xjk
2 for every j 2 Lnfig. Denote by x̂i the

vector in Rdþ1 which coincides with xi on the first d

coordinates and whose last coordinate equals �kxik
2

2
. Note

that kðy; 0Þ � xik
2okðy; 0Þ � xjk

2 if and only if
hðy; 1Þ; x̂ii4hðy; 1Þ; x̂ji. Therefore, the order (over cate-
gories) induced by y is the one induced by ðy; 1Þ and the
linear representation of fx̂igi2L.
The differences between our axiomatization and those

mentioned above are due to the differences in the models
and the motivations. The primitive in Smith (1973) and in
Gilboa and Schmeidler (2001) is a total order over the set
of alternatives (categories) induced by any profile (entity).
Young (1975) and Myerson (1995) assume that for every
profile there is a subset of winning alternatives. The
approach in our paper resembles the later since the model
only indicates the category that an entity belongs to.
The axiomatizations of Gilboa and Schmeidler (2001)

and Ashkenazi and Lehrer (2002) resort to the anti-
symmetric orders over alternatives induced by entities. In
contrast, our axiomatization, specifically Non-Redundancy

and Variety, makes use of the equivalence relations
between categories which can be expressed in terms of
the primitives of the model.

5.3. Voronoi diagrams

Partitions of the space that are generated by a set of
center points are well known as Voronoi diagrams or
Dirichlet tessellations. This concept is fundamental to
computational geometry (see Preparata & Shamos, 1985)
and has applications in almost every field of science. To
appreciate the variety of topics where this idea is used, see
Boots et al. (1992).
In its simplest form, a Voronoi diagram is a partition of

some Euclidean space into a finite number of sets. Given
the set of center points (generators), every point in the
space is assigned to its closest generator (in terms of the
Euclidean distance). However, there are many different
generalizations of this concept. One such generalization
considers generators that are not necessarily points. These
generators may be subsets of the space such as lines, arcs
and circles. Other examples use metrics other than the
Euclidean metric.
In this paper we use a generalization of the Voronoi

diagram known as the power diagram (Aurenhammer,
1987) or sectional Dirichlet tessellation (Ash & Bolker,
1986). Every generator xi has a ‘‘weight’’ wi (this is the
intensity of the prototype xi along the additional dimen-
sion), and the distance between some point y and xi is
diðyÞ ¼ ky� xik

2 þ w2
i . This distance has a strong connec-

tion to Laguerre geometry and therefore the resulting
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diagram is also referred to as a Laguerre diagram (Imai
et al., 1985).

A relatively small amount of the literature is dedicated to
the problem of characterizing and recognizing Voronoi
diagrams. Ash and Bolker (1985) give a geometrical
characterization of those partitions of the plane which
are Voronoi diagrams. For algorithms that check whether
or not a given partition is a Voronoi diagram the reader is
referred to Evans and Jones (1987) and to Heath and Kasif
(1993).

6. Examples

6.1. Categorization which is not generated by extended

prototypes

Let the set of entities be R2 and consider a set of three
categories L ¼ fi; j; kg. Assume that the partitions, when
only pairs of categories are considered, are as follows (we
write only one of the cells in each partition; the other one is
the interior of the complementary set):

Pfi;jgðiÞ ¼ fðy1; y2Þ 2 R2; y1o1g;

Pfi;kgðiÞ ¼ fðy1; y2Þ 2 R
2; y2o1g;

Pfj;kgðjÞ ¼ fðy1; y2Þ 2 R2; y2o2� y1g:

By part (1) of Theorem 1, if a categorization system is
generated by prototypes then it must satisfy Hierarchical

Consistency. Thus, when all three categories are considered,
the entities categorized as, say i, are those that are
categorized as i when both fi; jg and fi; kg are considered.
It follows that when L is considered:

PLðiÞ ¼ fðy1; y2Þ 2 R2; y1o1; y2o1g;

PLðjÞ ¼ fðy1; y2Þ 2 R2; y141; y2o2� y1g;

PLðkÞ ¼ fðy1; y2Þ 2 R
2; y241; y242� y1g:

However, the resulting PL is not an open partition of R2,
since the closure of the union of these three sets is not R2

(see Fig. 1).

6.2. The additional attribute

Consider the following partitions when pairs of cate-
gories are considered (L ¼ fi; j; k;mg and the set of entities
is R2):

Pfi;jgðiÞ ¼ fðy1; y2Þ 2 R2; 2y244� y1g;

Pfi;kgðiÞ ¼ fðy1; y2Þ 2 R
2; y241g;

Pfi;mgðiÞ ¼ fðy1; y2Þ 2 R2; 2y24y1 � 1g;

Pfj;kgðjÞ ¼ fðy1; y2Þ 2 R2; 2y24y1g;

Pfj;mgðjÞ ¼ fðy1; y2Þ 2 R2; 2y1o5g;

Pfk;mgðkÞ ¼ fðy1; y2Þ 2 R
2; 2y2o5� y1g:

When more than two categories are considered the
partitions are determined by Hierarchical Consistency.
One may verify that for any subset A of L the resulting

PA is indeed an open partition of R2. Moreover, this
categorization system satisfies the four axioms of Section
2.2. Therefore, by the second part of Theorem 1, this
categorization system is generated by extended prototypes.
However, this categorization system is not generated by

non-extended prototypes. That is, if we restrict ourselves to
the original two attributes without allowing for an
additional attribute, this categorization system is not
generated by prototypes. The reason is that the sum of
the angles aþ b (see Fig. 2) is less than p. It is shown in
Ash and Bolker (1985, Corollary 10) that this cannot be the
case when the partition is a Voronoi diagram. The reader is
referred to Ash and Bolker (1985) for a proof of this point,
as well as to a thorough discussion of the geometry of
Voronoi diagrams in the plane.

6.3. Convexity and Hierarchical Consistency are insufficient

Consider a categorization system where (L ¼ fi; j; kg and
the set of entities is R2):

Pfi;jgðiÞ ¼ fðy1; y2Þ 2 R2; y1o1g;

Pfi;kgðiÞ ¼ fðy1; y2Þ 2 R2; y1o1g;

Pfj;kgðjÞ ¼ fðy1; y2Þ 2 R
2; y24y1g:

Assuming that the categorization system satisfies Hier-

archical Consistency, the partition when the three cate-
gories are considered should be

PLðiÞ ¼ fðy1; y2Þ 2 R
2; y1o1g;

PLðjÞ ¼ fðy1; y2Þ 2 R2; y141; y24y1g;

PLðkÞ ¼ fðy1; y2Þ 2 R2; y141; y2oy1g:

ARTICLE IN PRESS
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It is clear that this categorization system satisfies Convexity

and Hierarchical Consistency. However, Non-Redundancy

is not satisfied since Pfi;jgðiÞ � Pfi;kgðiÞ.
This categorization system is not generated by extended

prototypes. Suppose, on the contrary, that xi ¼ ðx
1
i ;x

2
i ;x

3
i Þ,

xj ¼ ðx
1
j ;x

2
j ;x

3
j Þ and xk ¼ ðx

1
k;x

2
k; x

3
kÞ are the extended

prototypes of the categories i; j and k, respectively. Then,
the lines ðx1

i ; x
2
i Þ � ðx

1
j ;x

2
j Þ and ðx

1
i ;x

2
i Þ � ðx

1
k;x

2
kÞ are per-

pendicular to the line y1 ¼ 1 (which is the border between
PLðiÞ and PLðjÞ and the border between PLðiÞ and PLðkÞ).
However, the line ðx1

j ; x
2
j Þ � ðx

1
k; x

2
kÞ is perpendicular to the

line y1 ¼ y2, which contradicts the previous conditions (see
Fig. 3).

6.4. Non-Redundancy is not necessary

Let L ¼ fi; j; kg and d ¼ 2. Consider the categorization
system generated by the extended prototypes xi ¼ ð0; 0; 0Þ,
xj ¼ ð2; 0; 0Þ and xk ¼ ð4; 0; 0Þ. We claim that, although it is
generated by extended prototypes, this categorization
system does not satisfy Non-Redundancy. Indeed,

Pfi;jgðiÞ ¼ fðy1; y2Þ 2 R2; y1o1g;

Pfi;kgðiÞ ¼ fðy1; y2Þ 2 R
2; y1o2g:

So Pfi;jgðiÞ � Pfi;kgðiÞ. Notice that the reason for the failure
of Non-Redundancy is that the three points xi;xj and xk are
on the same line, which means that they are not in general
position.

6.5. Variety is not necessary

Let L ¼ fi; j; k;mg and d ¼ 2. Consider the categoriza-
tion system generated by the extended prototypes
xi ¼ ð0; 0; 0Þ, xj ¼ ð2; 0; 0Þ, xk ¼ ð0; 2; 0Þ and xm ¼ ð2; 2; 0Þ.
We will show that this categorization system does not
satisfy Variety.

When the triplet A ¼ fi; j; kg is considered the induced
partition is

PAðiÞ ¼ fðy1; y2Þ 2 R2; y1o1; y2o1g;

PAðjÞ ¼ fðy1; y2Þ 2 R2; y141; y2oy1g;

PAðkÞ ¼ fðy1; y2Þ 2 R2; y241; y24y1g:

When B ¼ fj; k;mg is considered the induced partition is

PBðjÞ ¼ fðy1; y2Þ 2 R2; y2o1; y2oy1g;

PBðkÞ ¼ fðy1; y2Þ 2 R2; y1o1; y24y1g;

PBðmÞ ¼ fðy1; y2Þ 2 R2; y141; y241g:

It is straightforward to check that clðPAðiÞÞ \ clðPAðjÞÞ \

clðPAðkÞÞ ¼ ð1; 1Þ and clðPBðmÞÞ \ clðPBðjÞÞ \ clðPBðkÞÞ ¼

ð1; 1Þ. Thus, Variety is not a necessary condition for a
categorization system to be generated by extended proto-
types. Like in the previous example, the prototypes are not
in general position since the point ð1; 1Þ is in equal distance
(of

ffiffiffi
2
p

) from all of them.

7. Proof of Theorem 1

7.1. Preliminary lemmas

Lemma 1. Let fPAgA�L be a categorization system. Then

fPAgA�L satisfies Hierarchical Consistency if and only if

for every A � LðjAjX2Þ and for each i 2 A;PAðiÞ ¼T
j2AnfigPfi;jgðiÞ.

Proof. Assume that for every A � LðjAjX2Þ and for each
i 2 A;PAðiÞ ¼

T
j2AnfigPfi;jgðiÞ. We show that the categoriza-

tion system satisfies Hierarchical Consistency. Let A � L be
such that jAj ¼ 3. Then for each i 2 A,

PAðiÞ ¼
\

j2Anfig

Pfi;jgðiÞ ¼
\

B;i2BD! A

PBðiÞ.

The proof proceeds by induction. Assume that A consists
of more than three elements, and that the assertion holds

ARTICLE IN PRESS
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for any BD! A. Then, for any i 2 A;
\

B;i2BD! A

PBðiÞ ¼
\

B;i2BD! A

\

j2Bnfig

Pfi;jgðiÞ

¼
\

j2Anfig

Pfi;jgðiÞ ¼ PAðiÞ,

as desired.
As for the inverse direction, assume that fPAgA�L

satisfies Hierarchical Consistency. We show that PAðiÞ ¼T
j2AnfigPfi;jgðiÞ for any A � LðjAjX2Þ and i 2 A. The proof

is by induction on jAj. The statement is obviously true for
jAj ¼ 2. Assume that it is true for all A � L with jAjpk,
and let Â be a subset of L containing k þ 1 elements. Fix
i 2 Â. Then
\

j2Ânfig

Pfi;jgðiÞ ¼
\

B;i2BD! Â

\

j2Bnfig

Pfi;jgðiÞ.

By the induction hypothesis, the right-hand side is equal toT
B;i2BD! ÂPBðiÞ: Therefore,

T
j2ÂnfigPfi;jgðiÞ ¼

T
B;i2BD! ÂPBðiÞ;

as required. &

Lemma 1 asserts that Hierarchical Consistency is
equivalent to the following seemingly weaker condition:
for every A � L and for each i 2 A, PAðiÞ is the set of
entities categorized as i when all the pairs i; j (j 2 Anfig) are
considered.

A hyperplane H in Rd is a set of the type fy 2 Rd ; hv; yi ¼
cg; where v is a non-zero vector in Rd , hv; yi is the inner
product of v and y, and c is a constant. We denote Hþ ¼

fy 2 Rd ; hv; yi4cg and H� ¼ fy 2 Rd ; hv; yiocg. We say
that a hyperplane Hi;j separates Pfi;jgðiÞ from Pfi;jgðjÞ if
Pfi;jgðiÞ ¼ H�i;j and Pfi;jgðjÞ ¼ Hþi;j.

Lemma 2. Let fPAgA�L be a categorization system which

satisfies Convexity and let i; j be two categories in L. Then,
there exists a hyperplane Hi;j that separates Pfi;jgðiÞ from

Pfi;jgðjÞ.

Proof. Follows from the fact that Pfi;jgðiÞ and Pfi;jgðjÞare
open, non-empty disjoint convex sets such that the closure
of their union is the entire Rd . &

The hyperplane Hi;j consists of all those entities that are
in the boundary of both Pfi;jgðiÞ and Pfi;jgðjÞ. These are the
entities that are categorized neither as i nor as j, when the
pair of categories i; j is considered.

We say that two hyperplanes H1 and H2 are parallel if
there are two constants c1 and c2 and one vector v such that
Hi ¼ fy 2 Rd ; hv; yi ¼ cig; i ¼ 1; 2:

In case H1 and H2 are not parallel, there are two
independent vectors v1 and v2 such that Hi ¼ fy 2

Rd ; hvi; yi ¼ cig; i ¼ 1; 2: Thus, H1 \H2 ¼ fy 2 Rd ; hvi; yi ¼
ci; i ¼ 1; 2g: This means that when H1 and H2 are not
parallel, H1 \H2 is an affine subspace of dimension d � 2.

Lemma 3. Non-Redundancy implies that for any three

distinct categories i; j; k the hyperplanes Hi;j and Hi;k are not

parallel.

Proof. If Hi;j and Hi;k are parallel for some three
categories i; j; k then there is a vector v and constants
c1; c2 such that Hi;j ¼ fy 2 R

d ; hv; yi ¼ c1g and Hi;k ¼

fy 2 Rd ; hv; yi ¼ c2g. Assume without loss of generality
that c1Xc2. By Lemma 2, Pfi;jgðiÞ ¼ Hþi;j ¼ fy 2 Rd ;
hv; yi4c1g � fy 2 Rd ; hv; yi4c2g ¼ Hþi;k ¼ Pfi;kgðiÞ and this
contradicts Non-Redundancy. &

Lemma 4. Non-Redundancy and Hierarchical Consistency
imply that ;aPfj;kgðkÞ \ Pfi;kgðiÞ � Pfi;jgðiÞ for any three

distinct categories i; j; k.

Proof. We start by showing that Pfj;kgðkÞ \ Pfi;kgðiÞa;.
Indeed, if Pfj;kgðkÞ \ Pfi;kgðiÞ ¼ ;, then Pfj;kgðkÞ � Pfi;kgðkÞ

which contradicts Non-Redundancy.
Next, if Pfj;kgðkÞ \ Pfi;kgðiÞD/ Pfi;jgðiÞ; then B ¼ Pfj;kgðkÞ \

Pfi;kgðiÞ \ Pfi;jgðjÞa;: B is an open set.
By Hierarchical Consistency, Pfi;j;kgðiÞ ¼ Pfi;kgðiÞ\

Pfi;jgðiÞ � Pfi;jgðiÞand B � Pfi;jgðjÞ. Thus, B \ Pfi;j;kgðiÞ ¼ ;:
For similar reasons, B \ Pfi;j;kgðjÞ ¼ B \ Pfi;j;kgðkÞ ¼ ;:
Therefore, B \ ½Pfi;j;kgðjÞ [ Pfi;j;kgðjÞ [ Pfi;j;kgðjÞ� ¼ ;: How-
ever, since Pfi;j;kgðiÞ [ PijkðjÞ [ PijkðkÞ is the union of an
open partition, the intersection of this union with any open
set is not empty. This is a contradiction and the lemma is
proven. &

The next lemma expresses the main geometric property
of categorizations which satisfy Hierarchical Consistency.
This property is later used to prove Theorem 1.

Lemma 5. Let fPAgA�L be a categorization system which

satisfies Convexity, Hierarchical Consistency and Non-
Redundancy. For any three distinct categories i; j and k

Hi;j \Hi;k ¼ Hi;j \Hj;k ¼ Hj;k \Hi;k.

Proof. It is sufficient to prove that Hi;j \Hi;k � Hi;j \Hj;k.
Obviously, Hi;j \Hi;k � Hi;j. Thus, it remains to show that
Hi;j \Hi;k � Hj;k.
Denote S ¼ Pfi;kgðiÞ \ Pfi;jgðjÞ, T ¼ Pfi;jgðiÞ \ Pfi;kgðkÞ. By

Lemma 4, S and T are both non-empty sets. Moreover,
S � Pfj;kgðjÞ and T � Pfj;kgðkÞ. It follows that Hj;k separates
S from T.
Next, notice that S and T are the non-empty inter-

section of two convex sets. It follows that (see Rocka-
fellar, 1970, Theorem 6.5, p. 47) clðSÞ ¼ clðPfi;kgðiÞÞ \ cl
ðPfi;jgðjÞÞ and clðTÞ ¼ clðPfi;jgðiÞÞ \ clðPfi;kgðkÞÞ. Thus, clðSÞ \
clðTÞ ¼ clðPfi;jgðiÞÞ \ clðPfi;jgðjÞÞ \ clðPfi;kgðiÞÞ \ clðPfi;kgðkÞÞ
¼ Hi;j \Hi;k.
Lemma 3 implies that Hi;j \Hi;k is an affine space of

dimension d � 2. Since, Hj;k is a hyperplane, it follows that
Hj;k must contain Hi;j \Hi;k which proves the lemma. &

Notation 1. The hyperplane Hi;j is defined by the vector si;j

and the constant ci;j . That is, Hi;j ¼ fy 2 Rd ; hsi;j ; yi ¼ ci;jg:
Without loss of generality we may assume that

Pfi;jgðjÞ � Hþi;j. We denote si;j ¼ �sj;i and ci;j ¼ �cj;i.

Corollary 1. Convexity, Hierarchical Consistency and Non-

Redundancy imply that si;j ; si;k and sk;j are linearly dependent

for every three distinct categories i; j; k.
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Proof. Let Di;j;k ¼ Hi;j \Hi;k \Hj;k. By Lemma 5,
Di;j;k ¼ Hi;j \Hi;k. By Lemma 3, Hi;j \Hi;k is an affine
subspace of dimension d � 2. Thus, si;j ; si;k and sk;j are
linearly dependent. &

Corollary 2. Convexity, Hierarchical Consistency and Non-

Redundancy imply that for any three distinct categories i; j; k
there exists y 2 Rd such that hy; si;ji4ci;j and hy; sj;ki4cj;k.
Moreover, for every such y; hy; si;ki4ci;k.

Proof. By Lemma 4, the set Pfi;jgðjÞ \ Pfj;kgðkÞ is not empty,
so there exists some y 2 Rd which satisfies the above
inequalities. Every such y is by Lemma 4 in Pfi;kgðkÞ, so
hy; si;ki4ci;k. &

Notation 2. Let t and s be two vectors in Rd . Denote the ray

that starts at t and continues in the direction of s by Rðt; sÞ.
Formally,

Rðt; sÞ ¼ ftþ as; a40g.

Lemma 6. Let i; j and k be three distinct categories and ti

and tj be two points in Rd , such that tj � ti ¼ gsij , where

g40. Then, assuming Convexity, Hierarchical Consistency

and Non-Redundancy, the rays Rðti; sikÞ and Rðtj ; sjkÞ

intersect.

Proof. By Corollary 1, si;j ; si;k and sk;j are linearly
dependent. Lemma 3 implies that no two are linearly
dependent. Thus, there are two non-zero constants a
and b such that si;k ¼ asi;j þ bsj;k. Recall that Di;j;k ¼

Hi;j \Hi;k \Hj;k and let z 2 Di;j;k. Then, ci;k ¼ hz; si;ki ¼

hz; asi;j þ bsj;ki ¼ aci;j þ bcj;k.
We prove that both a and b are positive. We prove first

that it cannot be the case that both are negative. If, on the
other hand, both are negative, then consider y 2 Rd such
that hy; si;ji4ci;j and hy; sj;ki4cj;k (such y exists by
Corollary 2).Then, hy; si;ki ¼ hy; asi;j þ bsj;ki ¼ ahy; si;jiþ

bhy; sj;kioaci;j þ bcj;k ¼ ci;k. However, by Corollary 2,
hy; si;ki4ci;k, which is a contradiction. This proves that
both a and b cannot be negative.

It remains to show that it cannot be the case that either a
or b is negative. Assume, on the contrary, that a is negative
and b is positive. Consider y 2 Rd such that hy; sj;ki4cj;k

and hy; sk;ii4ck;i (again, such y exists by Corollary 2).
Then, hy;�asi;ji ¼ hy;bsj;k � si;ki ¼ hy; bsj;kþ sk;ii4bcj;kþ

ck;i ¼ �aci;j. Thus, hy; si;ji4ci;j . However, by Corollary
2,hy; si;jioci;j, which is a contradiction. Similarly, it is
impossible that a is positive and b is negative. We conclude
that si;k ¼ asi;j þ bsj;k, where both a and b are positive.
Thus, si;k ¼

a
g ðtj � tiÞ þ bsj;k and therefore, ti þ

g
a si;k ¼

tj þ
gb
a sj;k. Since the left side is in Rðti; sikÞ and the right

side is in Rðtj ; sjkÞ, the rays Rðti; sikÞ and Rðtj ; sjkÞ intersect at
this point, and the proof is complete. &

7.2. Proof of part (1) of Theorem 1

We prove first that if fPAgA�L is generated by extended
prototypes then it satisfies Convexity and Hierarchical

Consistency. Let fx1; . . . ; x‘g � Rdþ1 be the set of extended

prototypes. First, by the definition of a categorization
system generated by extended prototypes, we have for
every A � L and for each i 2 A

PAðiÞ ¼
\

j2A; jai

fy 2 Rd : diðyÞodjðyÞg ¼
\

j2A; jai

Pfi;jgðiÞ.

Thus, by Lemma 1 the categorization system satisfies
Hierarchical Consistency.
Second, let i; j be two different categories in L. The set of

entities which are equidistant from these two prototypes is
the set Hi;j ¼ fy 2 Rd ; diðyÞ ¼ djðyÞg. An elementary calcu-
lation shows that this set can be rewritten as
fy 2 Rd ; hy; x0j � x0ii ¼

1
2
ðw2

j � w2
i þ kx

0
jk

2 � kx0ik
2Þg, where

xi ¼ ðx
0
i;wiÞ; i ¼ 1; . . . ; ‘. Therefore, Hi;j is the hyperplane

perpendicular to x0j � x0i which passes through the point
kx0jk

2�kx0ik
2þw2

j �w2
i

2kx0
j
�x0

i
k2

ðx0j � x0iÞ. It follows that Pfi;jgðiÞ,which is the

set of entities closer to xi than to xj, is an open half space.
In particular, it is convex. PAðiÞ is the intersection of the
sets Pfi;jgðiÞ (j 2 Anfig) and therefore is a convex set, which
proves Convexity.
We now show that if the extended prototypes are in

general position then Non-Redundancy and Variety are also
satisfied. Indeed, if Non-Redundancy is violated then there
are 3 categories i; j; k such that Pfi;jgðiÞ � Pfi;kgðiÞ. This
means that the intersection of the sets fy 2 Rd ; diðyÞodjðyÞg

and fy 2 Rd ; diðyÞ4dkðyÞg is empty. As shown in the
previous paragraph each of these sets is an open half
space. Two half spaces can be disjoint only if the two
vectors defining them are dependent. It follows that x0k �

x0i ¼ aðx0j � x0iÞ for some constant a 2 R. This means that
x0i; x

0
j and x0k are on the same line, a contradiction to the

assumption of general position.
To see that Variety is satisfied, fix some four categories

i; j; k;m. Since the categorization system is generated by
extended prototypes, and by what we already proved,
Hierarchical Consistency, Convexity and Non-Redundancy

are satisfied. Thus, by the auxiliary lemmata (which does
not use Variety), each of the sets Di;j;k ¼ Hi;j \Hi;k \Hj;k

and Dm;j;k ¼ Hm;j \Hm;k \Hj;k are of dimension d � 2. If
Variety is not satisfied then Di;j;k ¼ Dm;j;k so the intersec-
tion Di;j;k \Dm;j;k is also of dimension d � 2. However, this
last intersection is exactly the set of entities
fy 2 Rd : diðyÞ ¼ djðyÞ ¼ dkðyÞ ¼ dmðyÞg. This violates the
assumption of general position.

7.3. Proof of part (2) of Theorem 1

The proof of this part is divided into two propositions.

Proposition 1. If a categorization system fPAgA�L satisfies

Convexity, Hierarchical Consistency, Non-Redundancy

and Variety, then there are ‘ points x01; . . . ;x
0
‘ 2 R

d such

that:

1. x0i � x0j is perpendicular to the hyperplane Hi;j , for every

i; j 2 L, and
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2. hx0j � x0i; sijiX0 for every i; j 2 L. That is, the direction

from x0i to x0j is the same as the direction from Pfi;jgðiÞ to

Pfi;jgðjÞ (we call such points ‘‘well oriented’’).

Proof. The proof is constructive. We select ‘ points
x01; . . . ;x

0
‘, sequentially. We show that after x01; . . . ; x

0
k�1

have been selected, it is possible to find x0k such that x0k � x0j
is perpendicular to Hj;k for every j ¼ 1; . . . ; k � 1.

Let x01 be an arbitrary point in Rd . Define x02 ¼ x01 þ s12.
Since s12 is perpendicular to H1;2, so is x02 � x01. Lemma 6
ensures that the rays Rðx01; s13Þ and Rðx02; s23Þ intersect. The
third point, x03, is placed at the intersection of these rays.

Now comes the key argument of the proof. Similar to x03,
we place x04 at the intersection point of the rays Rðx02; s24Þ
and Rðx03; s34Þ, whose existence is guaranteed by Lemma 6.
In particular, x04 � x02 is perpendicular to H2;4 and therefore
toD1;2;4 and x04 � x03 is perpendicular to H3;4 and
therefore to D1;3;4. We show now that x01 � x04 is
perpendicular to H1;4, and moreover, that x01 and x04 are
well oriented.

The hyperplane H1;4 contains both D1;2;4 and D1;3;4.
Variety implies that D1;2;4 and D1;3;4 are not equal.
Furthermore, the dimensions of D1;2;4 and D1;3;4 are
d � 2. Therefore, in order to show that x01 � x04 is
perpendicular to H1;4 it is sufficient to show that x01 � x04
is perpendicular to any vector of the type y� y0, where
y; y0 2 D1;2;4 [D1;3;4. Let y; y0 2 D1;2;4. By construction,
since y; y0 2 H1;2, hx01 � x02; y� y0i ¼ 0. Similarly,
hx02 � x04; y� y0i ¼ 0. Summing up these equations, we
obtain that hx01 � x04; y� y0i ¼ 0. For similar reasons, if
y; y0 2 D1;3;4, then hx

0
1 � x04; y� y0i ¼ 0.

It remains to show that if y 2 D1;2;4 and y0 2 D1;3;4;
hx01 � x04; y� y0i ¼ 0. Let z 2 D1;2;3 and w 2 D2;3;4. Since
both z and y are in H1;2,

hz� y;x01 � x02i ¼ 0. (1)

Similarly,

hz� y0;x01 � x03i ¼ 0, (2)

hw� y; x02 � x04i ¼ 0 (3)

and

hw� y0; x03 � x04i ¼ 0. (4)

By summing up Eqs. (1) and (3) and subtracting Eqs. (2)
and (4) we obtain,

hy� y0;x01 � x04i ¼ hw� z;x02 � x03i. (5)

Since w and z are in H2;3, w� z is perpendicular to x02 � x03.
Thus, (5) implies that x01 � x04 is perpendicular to H1;4.

It remains to show that every pair of x01; . . . ;x
0
4 is well

oriented. By construction, every pair of x01;x
0
2;x
0
3 is well

oriented. Furthermore, by the choice of x04, both hx02 �
x04; s24i and hx

0
3 � x04; s34i are positive. We therefore only

need to show that x01 and x04 are well oriented.
Consider the triplet x01;x

0
2;x
0
4. By construction, x04 is on

the line perpendicular to H2;4 which passes through x02. By
what we showed earlier, x04 is also on the line perpendicular

to H1;4 which passes through x01.It means that x04 is
the intersection point of these two lines. However, by
Lemma 6, the rays Rðx01; s14Þ and Rðx02; s24Þ intersect, so x04
is the intersection point of these rays. It follows that x01 and
x04 are well oriented.
The procedure is then continued. After x01; . . . ;x

0
k�1 have

been fixed, we place x0k at the intersection of the
rays Rðx0k�2; sk�2;kÞ and Rðx0k�1; sk�1;kÞ. For every
jok � 2, we use the same argument as before (this
time with the categories j; k � 2; k � 1; k), to show that
x0k � x0j is perpendicular to Hj;k and that x0j ;x

0
k are well

oriented. &

Proposition 2. Let fx01; . . . ;x
0
‘g � Rd be points that satisfy

Proposition 1. There are numbers w1; . . . ;wl , such that

Pfi;jgðiÞ ¼ fy 2 Rd ; diðyÞodjðyÞg for every i; j 2 L, where

diðyÞ ¼ kðy; 0Þ � ðx0i;wiÞk
2.

Proof. As mentioned before, for extended prototypes xi ¼

ðx0i;wiÞ and xj ¼ ðx
0
j ;wjÞ the set of points in Rd which are

equidistant from xi and xj, is the hyperplane

Ti;j ¼ fy 2 R
d ; diðyÞ ¼ djðyÞg

¼ fy 2 Rd ; hy; x0j � x0ii ¼
1
2
ðw2

j � w2
i þ kx

0
jk

2 � kx0ik
2Þg.

Ti;j is an hyperplane perpendicular to x0j � x0i. When wj

grows to infinity, Ti;j moves in one direction, while, when
wi grows to infinity, Ti;j moves in the other direction. It
follows that every hyperplane perpendicular to x0j � x0i can
be written with appropriate wi and wj.
We sequentially choose the numbers w1; . . . ;w‘ and show

that they satisfy the proposition. Let x01;x
0
2; . . . ;x

0
‘ be the

prototypes found in Proposition 1. Choose w1 and w2 such
that T1;2 ¼ H1;2 (recall that H1;2 is the hyperplane
separating Pf1;2gð1Þ and Pf1;2gð2Þ). Since x01;x

0
2 are well

oriented, the set of points closer to x01 is exactly Pf1;2gð1Þ
and the set of points closer to x02 is Pf1;2gð2Þ.
Next, choose w3 such that T2;3 ¼ H2;3. We need to show

that w3 is consistent with w1. That is, T1;3 ¼ H1;3. T1;3 is
perpendicular to x01 � x03 by definition, while H1;3 has the
same property by Proposition 1. Moreover, for every
y 2 T1;2 \ T2;3 we have d1ðyÞ ¼ d2ðyÞ and d2ðyÞ ¼ d3ðyÞ.
Thus, d1ðyÞ ¼ d3ðyÞ. It means that T1;3 is the unique
hyperplane perpendicular to x01 � x03 which contains
T1;2 \ T2;3 ¼ H1;2 \H2;3. Lemma 5 states that H1;3 also
contains H1;2 \H2;3. Therefore, T1;3 coincides with H1;3.
Assume that w1; . . . ;wk have already been found. We

choose wkþ1 such that Tk;kþ1 ¼ Hk;kþ1. For every j ¼

1; 2; . . . ; k � 1 we have Tj;k ¼ Hj;k and Tk;kþ1 ¼ Hk;kþ1, so
similarly to the argument in the case of the first three
categories, Tj;kþ1 ¼ Hj;kþ1. &

Conclusion of the proof: We have shown that if a
categorization system satisfies Convexity, Hierarchical Con-

sistency, Non-Redundancy and Variety then it is possible
to find points x1 ¼ ðx

0
1;w1Þ; . . . ;x‘ ¼ ðx0‘;w‘Þ in Rdþ1

such that for every two categories i; j 2 L, Pfi;jgðiÞ ¼

fy 2 Rd ; kðy; 0Þ � xik
2okðy; 0Þ � xjk

2g. By Lemma 1, for
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any A � L and any i 2 A,

PAðiÞ ¼
\

j2Anfig

Pfi;jgðiÞ ¼
\

j2Anfig

fy 2 Rd ; kðy; 0Þ � xik
2

okðy; 0Þ � xjk
2g

¼ fy 2 Rd ; kðy; 0Þ � xik
2okðy; 0Þ � xjk

2

for every j 2 A; jaig.

Thus, the categorization system is generated by extended
prototypes.
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