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Abstract

We investigate a dynamic decision making problem with constraints. The

decision maker is free to take any action as long as the empirical frequency of the

actions played does not violate pre-specified constraints. In a case of violation

the decision maker is penalized. We introduce the constrained no-regret learning

model. In this model the set of alternative strategies, with which a dynamic

decision policy is compared, is the set of stationary mixed actions that satisfy

all the constraints. We show that there exists a strategy that satisfies the

following properties: (i) It guarantees that after an unavoidable deterministic

grace period, there are absolutely no violations; (ii) For an arbitrarily small

constant ε > 0, it achieves a convergence rate of T−
1−ε

2 which improves the

O(T−
1
3 ) convergence rate of Mannor et al. [23].
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1 Introduction

Dynamic decision making, also known as online learning or (external) no-regret learn-

ing, is one of the central topics studied in game theory, computer science, and machine

learning. The dynamic decision making model considers two players: a decision maker

(henceforth, DM) and an adversary. At each round, the DM chooses an action to play

while at the same time, the adversary chooses a state of nature. The combination of

both determines a payoff received by the DM. The DM can make decisions based on

the historical states of nature as well as on his own previous actions. The objective

of the DM is to have no-regret with respect to a set of alternatives. In other words,

when the DM will examine the strategy he employed by comparing his performance

to what he could achieve had he played certain alternative strategies instead, he will

have no regret for not playing the latter. This is a non-Bayesian model: the DM has

no prior probability distribution over the states of nature chosen by the adversary.

Rather, he would like to play a strategy immunized against having regret, no matter

how the adversary chooses the states.

We investigate a dynamic decision problem when the DM has exogenous con-

straints over the empirical frequency of actions actually played. The empirical fre-

quency of actions must be kept within a pre-specified set, and in a case of violation

the DM is penalized. It might be, for instance, that the DM is not allowed to play

a certain action more than 50% of the time. In such a case, whatever the DM tried

to achieve, he must do it without playing more than 50% of the time this action,

otherwise he would be subject to a penalty.

This constrained model is motivated by quite a few real world applications. One

motivation for this new model is the Universal Portfolio Management Problem (see

[19]). Here, a portfolio manager dynamically allocates fund across a set of assets (e.g.,

stocks, bonds and commodities). This manager’s objective is to perform at least as

good as the best fixed portfolio in hindsight. Let us assume that market data (e.g.,

price and trading volume) is updated N times per trading year and the maximum

number of assets that can be held in a portfolio is M . In principle, a portfolio manager

can adjust his allocation every time when new market data comes in. In practice,

however, he cannot do so due to trading constraints imposed by regulators or stock

exchanges. For instance, stock exchanges, e.g. Shanghai Stock Exchange1, require

that stocks cannot be purchased and sold out on the same day. Thus, a portfolio

1http://english.sse.com.cn/tradmembership/rules/c/3977570.pdf.
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manager can adjust his portfolio at most MK times per year, where K is the number

of trading days in a year. In other words, the constraint in this setting is that a

portfolio manager cannot adjust his portfolio more than MK
N

percent of time.

Another motivating example is the market making via online learning (see [1]). A

market maker is a trading agency that provides liquidity to a market by quoting both

the bid and asking prices of an asset simultaneousness. Due to the inventory risk or

information asymmetry risk [24], a market maker may be reluctant to provide quotes

at unfavorable market scenarios. Nevertheless, in order to ensure enough liquidity,

trading exchanges may impose constraints on the minimal number of quotes per day2

that a market maker must provide.

Beyond exploring a non-Bayesian dynamic decision making, the theory of no-regret

strategies is motivated by the connection is has to the study of economic equilibrium.

It is well known that in the context of strategic interaction, when players use strategies

that guarantee no (internal) regret, the empirical distributions of their joint plays

converge to the set of correlated equilibria (see [17]). This result tells us that the

statistics of the plays by non-Bayesian players converges to a solution concept where

players hold a prior (correlated) belief about other players’ actions.

In this study the objective of the DM is to minimize his regret. For this purpose

we introduce a model called constrained no-regret learning model, which generalizes

the standard no-regret approach. In this learning model, there are finitely many

linear constraints on the empirical frequency of actions actually played. A sequence

of actions is considered legal if its empirical frequency is within the limits imposed by

the constraints. At any time the sequence of actions played is not legal, the DM gets

a penalty.

In some real world scenarios, when rules or regulations are violated, penalties are

imposed on the DM. Motivated by such examples, we introduce a penalty function into

our model. As long as the sequence of actions played is legal, the penalty is naturally

assumed to be zero. However, if the sequence is illegal, a penalty is deducted from

the payoff to the DM. The penalty function could be very general. It could depend on

time, be constant or proportional to the level of violation; it could be even a nonlinear

function.

A study of a no-regret strategy in a dynamic decision problems with constraints

should focus on three important issues. The first is to introduce of a proper definition

2http://www.hkex.com.hk/Products/Listed-Derivatives/Market-Maker-Program/
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of the set of alternative strategies. This set of strategies is the set to which the DM

would eventually compare the performance of his own strategy. The second issue is

whether there exists a strategy that guarantees having no-regret. In other words, is

there a strategy that obeys all constraints and at the same time performs as well as

any alternative strategy? The third issue is the extent of the regret as the time goes

by. That is, how fast the gap between the DM’s actual performance and that of the

best among the alternative strategies, shrinks to zero?

In the standard no-regret learning model the choice of alternative strategies is a

set of all stationary pure actions, where a pure action is constantly played all the

time. This set of alternatives would be inappropriate in a constrained model. The

reason is that employing one of these strategies would necessarily violate one or a

few of the constraints. In the constrained model, the set of alternative strategies is

defined to be the set of all stationary strategies that satisfy all the constraints. These

stationary strategies are typically mixed, rather than pure.

Given the set of alternative strategies, we define the constrained regret that cor-

responds to a sequence of actions and states. It is defined along the spirit of the

classical regret: the gap between the actual average payoff obtained (after penalties

deducted) and the best payoff that achievable by constantly playing one of the al-

ternative strategies. A strategy in the dynamic model is constrained no-regret if, no

matter what the penalty function is, its regret diminishes to zero as time goes by.

Our main result shows that such a strategy exists. In order to obtain no-regret inde-

pendently of the penalty actually imposed, we design a strategy that guarantees that

after a fixed grace period, absolutely no violation of any constraint occurs.

In the proof of the main result, we consider first an auxiliary dynamic problem. In

this model the decision maker has a reduced set of pure actions: only those (mixed)

actions in the original problem that obey the constraints. Suppose, for instance,

that there is only one constraint dictating that the frequency of playing a particular

action cannot exceed twenty percent of the time. In this case, the set of actions in the

auxiliary model is the set of mixed actions in which the probability of playing that

action is less than, or equal, to 0.2. Employing Blackwell’s Approachability Theorem,

we construct a no-regret strategy τ in the auxiliary problem, where the decision maker

may use all actions available without any limit.

The strategy τ is then adjusted to fit the dynamic problem with constraints. This

adjustment is done as follows. The time line is divided into intervals, the length of each

depends on the total lengths of its predecessors. Each interval is further divided into
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three sub-intervals. In the first sub-interval, we ignore regret considerations and pay

attention only to the constraint: we play a deterministic legal sequence of actions.

In the second sub-interval, we follow τ as long as we run no risk of violating any

constraint. In case there is a chance that we violate a constraint, we start playing the

deterministic legal sequence again in the third sub-interval. This scheme is played

repeatedly over and over in a carefully designed way so as to avoid any violation

and at the same time minimize regret. In particular, we show that the probability of

approaching a violation zone is slim, and therefore the probability to continue playing

τ without any interruption and thereby guarantee no-regret, is high. This way we

obtain a constrained no-regret strategy. In all, our constrained no-regret strategy has

the following nice properties: (i) It guarantees that after an unavoidable deterministic

grace period, there are absolutely no violations; (ii) For an arbitrarily small constant

ε > 0, it achieves a convergence rate of T−
1−ε

2 which improves the O(T−
1
3 ) convergence

rate of Mannor et al. [23].

1.1 Related literature

No-regret strategies has introduced by Hanan [16]. Fudenburg et al. [13], Cesa-

Bianchi et al. [5], Blum et al. [4], Dean et al. [11] as well as Perchet [25] have

comprehensive discussions about no-regret learning and games. One well known dy-

namic decision strategy is the multiplicative weights (MW) strategy [2]. By the

Blackwell’s Approachability Theorem [3], one can show the MW strategy to a be

no-regret one. No-regret strategy is closely related to the subject of equilibrium com-

putation. For instance, Hart and Mas-Colell [18] showed that when all players employ

(external) no-regret strategies, the statistics of play get infinitely close to the set of

correlated equilibria (see also Foster and Vohra [10]). Freund et al. [12] show that

the multiplicative weights strategy can solve a bimatrix zero-sum game efficiently.

Variants of the no-regret learning/approachability model are extensively investi-

gated. Fudenburg et al. [14] studied the conditionally consistent strategy. Dekel

et al. studied the bandit learning model with adaptive adversary [7] as well as a

model with a switching cost [8]. Cesa-Bianchi et al. [6] looked into the problem of

regret minimization with partial monitoring. Lehrer et al. studied no-regret learn-

ing/approachability with delayed information [20], with bounded computational ca-

pacity [21] and with bounded memory [22]. Wu et al. [27] investigated a multi-arm

bandit problem requiring that the payoff of decision maker is above a fixed baseline,
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uniformly over time.

The most relevant paper to our work is by Mannor et al. [23]. They investigated

the no-regret learning with sample path constraints. They show that it is still possible

to achieve no-regret given constraints on the empirical frequencies of actions played.

In their model, no penalty3 imposed when violation occurs and the constraints need to

be satisfied only at the end of time, i.e., asymptotically. In the presence of a penalty,

as introduced in our model, the regret of their strategy could be infinitely large.

In contrast, our constrained no-regret strategy guarantees that after an unavoidable

fixed grace period, all the constraints are satisfied. Furthermore, the convergence

rate of the strategy in Mannor et al. [23] is in the order of T−
1
3 . It is an open

question to settle the rate of convergence when sample path constraints are imposed

[23]. Fournier et al. [15] studied an approachability model with constraints on payoffs

of Player 1 instead of constraints on empirical frequencies.

No-regret learning strategies have a various applications in practice, such as in

the area of investments [1, 19, 26] and in asset pricing [9].

1.2 The structure of the paper

Section 2 introduces the general dynamic model with linear constraints on the fre-

quency of the actions played and the notion of constrained no-regret strategy with

respect to a set of constraints. We illustrate the possibility of obtaining a constrained

no-regret strategy with a simple example. This example contains only one constraint:

a requirement that a particular pure action would not be played more than a certain

fraction of the time.

Section 3 provides a short review of the Blackwell’s Approachability Theorem,

which is the tool to get a no-regret strategy in the auxiliary model discussed above.

In Section 4, we formally prove the existence of a constrained no-regret strategy. We

conclude the paper in Section 5 by discussing related issues, including the convergence

rate of the constrained no-regret dynamics.

3The “penalty” in Mannor et al. [23] is independent of sample path and constraints. It is more

like a cost incurred when an action is played. In contrast, our penalty function depends the sequence

of actions played and constraints, i.e. is non zero only when an illegal history of actions occurs.
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2 The Model

2.1 A dynamic decision problem

Models of dynamic decision making, and more specifically, those related to online

learning and no-regret learning, are central topics studied in game theory, operations

research and machine learning. Consider a restricted dynamic decision making model

with only two players: a decision maker (DM) and an adversary. At each round t,

the DM chooses an action to play, while the adversary chooses a state of nature.

The combination of both determines the payoff (or utility) received by the DM. The

DM can make decisions based on the entire history of his own actions as well as

on previously realized states. The objective of the DM is to achieve no-regret (with

respect to a set of alternatives) that does not depend on the specific strategy employed

by the adversary.

Definition 1. A dynamic decision problem is given by

• Two players: one is a decision maker (DM) while the other is an adversary;

• A finite set, A, of the DM actions;

• A finite set, B, from which the adversary chooses a state;

• A payoff function, f : A×B → [0, 1].

A strategy of the decision maker is a function4 σ : ∪∞t=0(A × B)t → ∆(A). That

is, a strategy σ assigns a mixed action to every finite history. A strategy σ, along

with a sequence
−→
b = (b1, b2, ...) ∈ BN, induces a probability distribution µ

σ,
−→
b

over

(A×B)N, with the σ-field generated by the finite histories. We sometimes refer to a

strategy as an on-line algorithm. Fix a sequence
−→
b = (b1, b2, ...) ∈ BN. The regret of

a sequence of actions (a1, ..., aT ) is defined as,

R(a1, ..., aT ;
−→
b ) :=

1

T

( T∑
t=1

f(at, bt)−max
a∈A

T∑
t=1

f(a, bt)
)
.

R(a1, ..., aT ;
−→
b ) is the difference between the actual (average) performance and what

the DM could achieve by playing constantly the best mixed action against the em-

pirical distribution of the states.

4For as finite set C, we denote by ∆(C) the set of probability distributions over C.
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Definition 2. A strategy (or an online algorithm) σ is no-regret if for every sequence
−→
b = (b1, b2, ...)

lim inf
T→∞

E(R(a1, ..., aT ;
−→
b )) ≥ 0, (1)

where the expectation is w.r.t. µ
σ,
−→
b

.

Eq. (1) means that the actual performance up to time T , 1
T

T∑
t=1

f(at, bt), is asymp-

totically as good as the payoff achievable by any fixed action a ∈ A.

2.1.1 Constrained No-Regret

Let L be a natural number, C be a L×|A| matrix and w ∈ RL. Define,5 ∆(C,w) :=

{p ∈ ∆(A); Cp ≤ w}. We assume that the interior of ∆(C,w) is non-empty. Let

ext(C,w) be the set of the extreme points of ∆(C,w). The set ext(C,w) is finite.

For a sequence (a1, ..., aT ) ∈ AT we denote by aT its empirical frequency. In

particular, aT ∈ ∆(A).

Definition 3. Let (a1, ..., aT ) ∈ AT . We say that (a1, ..., aT ) is (C,w)-legal if CaT ≤
w.

The sequence (a1, ..., aT ) is defined to be (C,w)-legal if the empirical frequency of

(a1, ..., aT ) meets all the constraints imposed by C and w. When (a1, ..., aT ) is (C,w)-

legal we sometimes say that aT is legal or a legal point in ∆(C,w).

Let F be a penalty function defined over histories of actions (a1, ..., aT ). For a

legal history (a1, ..., aT ), F (a1, ..., aT ) = 0; otherwise, F could be an arbitrary real

function. In particular, F could be unbounded. For instance, it might be increasing

with T , implying that the penalties inflicted become increasing tough. A natural

penalty function might take the form of a positive constant plus a term which is

proportional to the size of violation. Fix a sequence
−→
b = (b1, b2, ...) ∈ BN. The

(C,w)-regret of a sequence of actions (a1, ..., aT ) is defined as,

R(C,w, F )(a1, ..., aT ;
−→
b ) := min

p∈∆(C,w)

1

T

( T∑
t=1

(
f(at, bt)−f(p, bt)−F (a1, ..., at)

))
(2)

, where f(p, bt) =
∑
a∈A

paf(a, bt) and pa is the probability to play action a.

5We abuse the notation and use vectors both as rows and columns.
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The inequality R(C,w, F )(a1, ..., aT ;
−→
b ) ≥ 0 means that the actual performance

up to time T is as good as that of any p ∈ ∆(C,w), even if when violations of the

constraints are penalized.

Definition 4. A strategy σ is no-regret with respect to (C,w) if for every penalty

function F and every sequence
−→
b = (b1, b2, ...),

lim inf
T→∞

E(R(C,w, F )(a1, ..., aT ;
−→
b )) ≥ 0, (3)

where the expectation is w.r.t. µ
σ,
−→
b

.

In the degenerate case with C = 0 and w = 0, a strategy which is no-regret

with respect to (C,w) is known as an external no-regret strategy. By definition,

a strategy σ is no-regret with respect to (C,w) if it guarantees that the regret is

non-negative for any penalty function F . This definition is rather restrictive and

therefore induces some nice properties of σ. For instance, when F is bounded away

from zero on every illegal sequence (i.e., there is δ > 0 such that F (a1, ..., aT ) > δ

for every illegal history (a1, ..., aT )), it implies that the frequency of violations should

diminish with time. Furthermore, when F is unbounded (e.g., when a repetitive

violation may result in increasing penalties), then Eq. (3) implies that there must be

only finitely many violations. Otherwise, if there are infinite number of violations, a

penalty function such as F (a1, ..., aT ) = T 2 would imply that the regret approaches

minus infinity. Therefore, a constrained no-regret strategy has a strong property:

there is a deterministic time T0 such that for all T ≥ T0, (a1, ..., aT ) is (C,w)-legal

with probability 1. In other words, absolutely no violations occur after T0. We call

T0 the grace period.

We deal with a non-Bayesian model. The DM does not have a prior belief about

the evolution of states. This is the reason why the DM’s objective is not to maximize

future payoffs. Rather, the DM’s objective is to minimize regret, taking into account

the penalty imposed in a case of violation. The DM compares between his actual

performance and an imaginary one had he used an alternative strategy. We show

that there is a strategy that if followed, avoids having regret.

2.2 An Illustrative example

Assume that the decision maker has two actions: A = {L,R}. The payoffs received

when he plays L and R are, regardless of the strategy of the adversary, 0 and 1,
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respectively. Suppose we have only one constraint: the action R cannot be played

more than a half of the time. It is obvious that there is no legal strategy that can

guarantee the decision maker an average payoff of more than 1
2
. However, if the

decision maker could play the action R without any constraint, which is illegal, the

average payoff would be 1. The previous notations adapted to this case would be the

following: C = (0, 1), w = 1
2
, ∆(C,w) = {(p1, p2) ∈ ∆(A); 〈C, (p1, p2)〉 ≤ w} =

{(p1, p2) ∈ ∆(A); p2 ≤ 1
2
}. The set of extreme points is ext(C,w) = {(1, 0), (1

2
, 1

2
)}.

Imagine a situation where the decision maker has only two pure actions: L and
1
2
L⊕ 1

2
R (which corresponds to the mixed action (1

2
, 1

2
) in the original decision prob-

lem). Suppose that the payoff corresponding to the latter strategy is its respective

expected payoff, 1
2
. A classical result [5] guarantees that there is an external no-regret

algorithm. The strategy in this case plays stationarily the action 1
2
L ⊕ 1

2
R. This is

what we call the baseline strategy τ .

However, when a strategy analogous to τ is played in the original set-up, the pure

action 1
2
L⊕ 1

2
R is replaced by a mixed strategy that plays R and T with probability

1
2

each. In this case, it might occur with positive probability that R is played with

a frequency that exceeds 50% in which case the constraint is violated. In order to

handle this violation, we design a new strategy σ as following: (1) The action L is

played in an initial time segment of length
√
T ; (2) from time

√
T + 1 and on, a

strategy analogous to τ is played as long as there is no violation; (3) if taking one

more step may lead to a violation, action R is not being played anymore. Instead,

action L is played with probability 1.

It is clear that the total payoff related to strategy σ could be lower than that

related to strategy τ . We argue that the average payoffs when playing τ or σ are

close to each other. The reason is that the probability of violation is small. The

probabilistic argument is given in Lemma 2 below.

3 Vector-payoff games and approachability

The time horizon of the game is {1, 2, ..., T}. At each time step, the decision maker

will choose an action at from an action set A = {1, 2, ..., N}, while the adversary

will choose an action bt from a set B = {1, 2, ...,M}. A vector-valued function

g : A×B → Rm is the vector-valued payoff function. Suppose that the realized pair

of actions at time t is (at, bt), then the payoff is g(at, bt).
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Definition 5. We say that the set S ⊆ Rm is approachable by player 1 (or simply,

approachable) if he has a strategy such that regardless of the strategy of the adversary,

lim
T→∞

E[d(
1

T

T∑
t=1

g(at, bt), S)] = 0,

where d(u, S) = infv∈S ‖u− s‖.

The set S is called the target set. For a convex set to be approachable, we have

the following characterization.

Theorem 1. [5] Let S be closed and convex. Then, S is approachable if for every

x 6∈ S there is a mixed action π such that for every b ∈ B,

〈x− qS(x), g(π, b)− qS(x)〉 ≤ 0, (4)

where qS(x) = arg minv∈S ‖x− v‖ is the closest point in S to x. Moreover, there is a

strategy that guarantees that6

E[d(
1

T

T∑
t=1

g(at, bt), S)] = O(
1√
T

). (5)

4 Existence of a constrained no-regret strategy

Our main theorem is the following.

Theorem 2. For every ε > 0 there is a strategy σ such that lim
T→∞

Eσ(R(C,w, F )) ≥ 0,

and the regret is bounded below by −O(T−
1−ε

2 ).

Lemma 1. Denote A′ = ext(C,w). There is a no-regret strategy τ with respect to

(C,w) when Player 1 can use only actions (pure or mixed) in A′. Moreover, for every
−→
b ,7

E(R(C,w, F )(a′1, ..., a
′
T ;
−→
b )) ≥ −O(

1√
T

). (6)

6O( 1√
T

) means that there is a constant c > 0 such that the LHS is bound from above by by

c 1√
T

. In general O(x) means that the term under consideration is bounded from above by a linear

function of x.
7To avoid any ambiguity, (a′1, ...,a

′
T ) are the histories realized pure actions in (A′)T .
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Proof. For the sake of simplicity, we enumerate ext(C,w) = {p1, ...,pK}. We de-

fine a vector-valued game and use the approachability method as follows. Let S =

{(x1, ..., xK); ∀k, xk ≤ 0} be the target set. For every π = (π1, ..., πK) ∈ ∆(A′) and

b ∈ B, define f(π, b) to be the expected value of f when player 1 mixes (over A′) ac-

cording to π. For π ∈ ∆(A′) and b ∈ B, we define a vector-payoff g(π, b) in Rext(C,w).

The k-th coordinate of this vector is gk(π, b) := f(π, b)− f(pk, b).

Fix x 6∈ S and define,

π :=
x− qS(x)

‖x− qS(x)‖1

Since x 6∈ S, π is a probability distribution over A′, namely in ∆(A′). It is easy to

see, therefore, that π · qS(x) = 0. For any pure strategy b ∈ B of the adversary we

have,

〈x− qS(x),g(π, b)− qS(x)〉 = 〈x− qS(x),g(π, b)〉 = ‖x− qS(x)‖1〈π,g(π, b)〉

= ‖x− qS(x)‖1

K∑
k=1

πk · (
K∑
h=1

πh[f(ph, b)− f(pk, b)]) = 0.

Thus, by Theorem 1, we obtain that S is approachable. That is, there is a strategy τ

of player 1 such that for every sequence b1, b1, ... in BN and for every pk ∈ ∆(C,w),

lim inf
T→∞

E[
1

T
[
T∑
t=1

f(a′t, bt)−
T∑
t=1

f(pk, bt)] ≥ 0, (7)

where the expectation is taken w.r.t the probability induced by τ . Note again that

a′t ∈ A′ is the realized action in A′ at time t. This inequality is equivalent to Eq. (3).

The rate of convergence, namely Eq. (6), is implied by Eq. (5).

We denote by τt the history-dependent mixed action in ∆(C,w) to be played at

time t. Note that the history here is a sequence of actions in ext(C,w) (which are

typically mixed actions in ∆(A)). Since τt ∈ ∆(C,w), it induces a mixed action over

A. Thus, when using τ an action at in A is actually realized at time t. We abuse the

notation and refer to τt as a history dependent mixed action over A, namely in ∆(A).

For any t we have E[f(a′t, bt)] = E[f(at, bt)]. Thus, Eq. (7) is translated to

lim inf
T→∞

E[
1

T
[
T∑
t=1

f(at, bt)−
T∑
t=1

f(pk, bt)] ≥ 0. (8)
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Recall that the matrix C has L rows, each representing one linear constraint. Fix

` ∈ {1, ..., L} and let C` be the `-th row of C and w` be the `-th coordinate of w.

Assume w.l.o.g. that ‖C`‖1 < 1.

Consider time t and let 1lat ∈ R|A| be the indicator of the action at played at time

t. Define X0 = 0, Y t
` = C`1lat and X t

` = Y t
` − E[Y t

` |Ft−1], where Ft−1 is the algebra

generated by histories of length t− 1.

Remark 1. (i) The sequence
∑T

i=0X
i
`, T = 0, 1, 2, ..., is a martingale.

(ii) |
∑t

i=0X
i
` −

∑t−1
i=0 X

i
`| = |X t

` | ≤ 1.

(iii) The strategy τ used only mixed actions in ext(C,w). Therefore, E[Y t
` |Ft−1] ≤ w`.

Lemma 2. Let 1lat be generated by the strategy τ . Fix ε > 0 and D > 0. Then, ∀`

P

(
T∑
t=1

(C`1lat − w`) > DT
1+ε

2

)
≤ exp

(
−T εD2

2

)
. (9)

Lemma 2 states that while employing strategy τ the probability to exceed con-

straint ` by more than DT
1+ε

2 is small: it is bounded from above by exp
(
−T εD2

2

)
.

The proofs of the lemmas appearing from here on can be found in the Appendix.

Concerning the probability to violate at least one among the L constraints, we

have the following corollary according to the union bound.

Corollary 1. Fix ε > 0 and D > 0. Then,

P

(
T∑
t=1

(1lat ·C` − w`) > DT
1+ε

2 ,∀` = 1, 2, ..., L

)
≤ L exp

(
−T εD2

2

)
. (10)

We are now ready to prove Theorem 2.

4.1 The main idea of our proof

The main idea of our proof can be illustrated by Figure 1. Fix an interior point of

∆(C,w), m. We define a strict subset of ∆(C,w) that contains m whose boundary

is called the critical boundary. The time line is divided into intervals, the length of

each depends on the total lengths of its predecessors. Each interval is further divided

into three sub-intervals (a sub-interval is referred to as a block as well). During the

first sub-interval, a sequence of actions that mimics the mixed strategy corresponding

to m is played repeatedly. During the second one, a standard no-regret strategy is

12



 

Figure 1: The legal set and the critical boundary

played as the empirical frequency does not hit the critical boundary. If it does hit,

m will be played again in the third sub-interval.

The strategy thus designed has two desirable properties: (i) After the first sub-

interval of the first interval is over, there is absolutely no constraints violations. In

other words, penalty might be inflicted only during the first sub-interval of the first

interval, meaning only finitely many times. Therefore, the average penalty paid di-

minishes with time. (ii) Since the length of the first sub-interval of each interval is

relatively small and the probability of hitting the critical boundary is small as well,

the regret is close to 0.

4.2 The proof of Theorem 2

Fix a small ε. Strategy σ is defined as follows. In order to construct strategy σ,

we divide the time horizon [1,∞) into intervals and define the strategy separately

in each interval. We will use the following notations. Let x[t1,t2] be the empirical

13



frequency of the actions played between times t1 and t2 (inclusive) and xt := x[1,t].

For every x ∈ ∆(A) define d(x) = min`=1,...,L(w` − C`x). Clearly, d(x) ≥ 0 if and

only if x ∈ ∆(C,w) with strict inequality when x is in the interior of ∆(C,w). Note

that d is concave over ∆(C,w). That is,

d (αx + (1− α)y) ≥ αd(x) + (1− α)d(y) ∀x,y ∈ ∆(C,w) and α ∈ (0, 1). (11)

Let m = (m1

M
, ...,

m|A|
M

) be a rational vector in the interior of ∆(C,w), where

mi ∈ N,∀i and M ∈ N. Note that since m is in the interior of ∆(C,w), d(m) > 0.

The first interval:

The first interval is [0, H ·M ], where H is a large enough natural number to be deter-

mined later. The interval is further divided up to three blocks as illustrated in Figure

2. In the first block,8 [1,MH
1+ε

2 ], a sequence (a1, ..., aM) ∈ AM whose frequency

Figure 2: The structure of the first interval

coincides with m is repeatedly played for H
1+ε

2 times. The purpose of this block is

to bring xt to the interior of ∆(C,w). This provides enough room for the following

strategy to play without violating any constraint. Thus, T0 ≤MH
1+ε

2 .

The size of the second block is not deterministic. It depends on the realization of

the following strategy. We denote yt = x[MH
1+ε

2 +1,t] the empirical frequency of actions

during the second block up-to the t-th period. In the second block the decision maker

follows strategy τ (derived from Lemma 1 above), as long as for every ` = 1, ..., L,

t(C`y
t −w`) ≤

d(m)

2
MH

1+ε
2 . (12)

. If Eq. is not violated, τ is played up to the end of the interval.

In the case where during the second block, while playing τ , Eq. (13) is violated, the

third block starts. Here, the strategy plays a deterministic sequence of actions in a way

8Here and in the sequel, when we refer to a number which is not an integer, as period/time, such

as MH
1+ε
2 , we mean the largest integer smaller than that number.
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that guarantees no violation of constraints. Specifically, the sequence (a1, ..., aM) ∈
AM whose frequency coincides with m is repeatedly played until the end of the first

interval.

t(C`y
t −w`) ≤

d(m)

2
MH

1+ε
2 . (13)

Otherwise, the sequence (a1, ..., aM) is played repeatedly again to the end of the

interval. We first show the following lemma.

Lemma 3. If at time t Eq. (13) is satisfied for every ` = 1, ..., L, then all the

constraints are kept at time t.

We show next that the probability of getting a violation of Eq. (13) at time t is

small. Specifically,

Lemma 4. There is a constant c > 0 such that the probability of violating Eq. (13)

at any time during the second block up to time M · H is bounded from above by

M ·H · L exp

(
−(cMH

1+ε
2 )ε(

d(m)
2
M

1−ε
2 )2

2

)
.

Note that the bound in Lemma 4 goes to zero as H goes to infinity.

We claim that during the third block no violation occurs with respect to any of

the constraints. Formally,

Lemma 5. For every time t′′ during the third block, d(xt
′′
) > 0.

At the end of the first interval, the strategy guarantees that (a) ∀t ∈ [MH
1+ε

2 ,MH],

d(xt) > 0; and (b) the regret during the HM periods of the first interval is bounded

below by

−MH
1+ε

2

HM
−

(
1−M ·H · L exp

(
−(cMH

1+ε
2 )ε(d(m)

2
M

1−ε
2 )2

2

))
O

(
(MH)

1
2

HM

)

− M ·H · L exp

(
−(cMH

1+ε
2 )ε(d(m)

2
M

1−ε
2 )2

2

)
O (1)

= −O

(
MH

1+ε
2

MH

)
,

where the first term bounds the total regret in the first block. Let T = HM . Note

that M is a constant, hence the regret is bounded by −O(T−
1−ε

2 ).
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In the next, we proceed to the second, the third, up to the Nth block recursively.

The length of each interval increases exponentially as illustrated in Figure 3. It is not

hard to see that the convergences rate will be kept and the key is to make sure the

empirical frequency is legal.

Figure 3: The structure of consecutive intervals

The N-th interval: Let tN−1 = M
N−1∑
n=0

Hn and the N -th interval be [tN−1 + 1, tN ].

Thus, the length of the N -th interval is MHN . The first block is [tN−1 + 1, tN−1 +

MH
N(1+ε)

2 ]. In this block a sequence (a1, ..., aM) ∈ AM whose frequency coincides

with m is repeatedly played for H
N(1+ε)

2 times. Following a similar argument to the

one used for analyzing the third block of the last interval, we may conclude that

d(xt) > 0 for every t ∈ [tN−1 + 1, tN−1 +MH
N(1+ε)

2 ].

The second block of the N -th interval follows strategy τ , as if the time starts just

after the first block. It will stop at the the smallest time t in the second block where

t(C`y
t −w`) >

d(m)

2
MH

N(1+ε)
2 (14)

for at least one ` = 1, ..., L, where yt = x[tN−1+MH
N(1+ε)

2 +1,t]. If such a violation

happens, the third block starts. In the third block the sequence (a1, ..., aM) ∈ AM

whose frequency coincides with m is repeatedly played until the end of the N-th

interval. Following the same argument as the (N-1)-th interval, we have ∀t ∈ [tN−1 +

1, tN ], d(x[tN−1+1,t]) > 0. We further get

d(xt) ≥ tN−1

t
d(xtN−1) +

t− tN−1

t
d(x[tN−1+1,t]) > 0.

Thus, no violation occurs in any period belonging to the N -th interval.

Next, we address the scope of the regret. We claim:

Lemma 6. The regret at any time t during the N-th block is bounded below by

−O
(
t−

1−ε
2

)
.

This lemma completes the proof.
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5 Conclusions and Open Problems

5.1 Contributions

The contribution of the paper is threefold. (i) We introduce a constrained no-regret

model with penalties over violations. Our penalty function is general and reflects

quite a few real world applications; (ii) Our constrained no-regret strategy can guar-

antee that after an unavoidable fixed (not random) grace period there are absolutely

no violations; (iii) For an arbitrarily small constant ε > 0, our strategy achieves a

convergence rate of T−
1−ε

2 which significantly improves the O(T−
1
3 ) convergence rate

of Mannor et al. [23].

Note that the key difference between our model and that of Mannor et al. [23]

is that the constraints in their model only needs to be satisfied at the end of time,

i.e., asymptotically. It implies those constraints could be violated in infinite number

of times. In other words, at any time there is a possibility that the constraints

get violated. In contrast, our model requires that after an unavoidable fixed grace

period, all constraints are strictly satisfied. Thus, any action sequence generated by

our constrained no-regret strategy in particular satisfies the constraints related to

their model. Therefore, the set of strategies concerning our model is more restricted

than that of Mannor et al. [23]. A no-regret strategy in our setting is interesting in

its own right.

In our model the set of constraints are linear. This implies that the set of legal

empirical frequency of a history of actions forms a polygon. The same proof technique

can be used to prove similar results for any convex set of legal empirical frequencies,

as long as this set has a non-empty interior.

In this paper we choose the set of alternative strategies to be the set of stationary

mixed actions that satisfy finitely many linear constraints. It is important to note

that our proof technique could be applied to any countable set of alternative choices,9

as long as the inequality in Eq. (4) could be satisfied.

5.2 Open Problems

There are some problems that are worth further investigating.

Improvement of the regret bound The constant ε appears in the bound T−
1−ε

2

9The vector-payoff g(π, b) can be with a countable dimension – see Lehrer (2002).
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bound. A removal of ε from this bound would make our constrained regret match

the regret in the standard no-regret learning model.

Other choices of the set of alternative strategies In this paper the constraints

imposed on the empirical frequency of actions played are linear. This makes the set

ext(C,w) convex. If ext(C,w) is non-convex, what could be plausible alternative

sets and constrained regret functions? Can one still be able to design a no-regret

strategy?
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6 Appendix

Proof of Lemma 2.

P

(
T∑
t=1

(C`1lat − w`) > DT
1+ε

2

)
≤ P

(
T∑
t=1

(
Y t
` − E[Y t

` |Ft−1]
)
> DT

1+ε
2

)

= P

(
T∑
t=1

X t
` > DT

1+ε
2

)
≤ exp

(
−(DT

1+ε
2 )2

2T

)
= exp

(
−T εD2

2

)
.

The first inequality is by Remark 1(iii). The last inequality is by Remark 1(i)-(ii)

that allow the use of Azuma inequality.

Proof of Lemma 3. Note that for every ` = 1, ..., L,

t(C`y
t −w`) ≤

d(m)

2
(MH)

1+ε
2 ≤ (w` −C`m)

2
MH

1+ε
2 . (15)

Recall that t is the t-th period counted from the start of the second block and is

therefore the t+MH
1+ε

2 period from the beginning. Note that,

tyt =
MH

1+ε
2 +t∑

r=MH
1+ε

2 +1

1lar .
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Eq. (15) implies for every ` = 1, ..., L,

MH
1+ε

2 +t∑
r=1

(C`1lar −w`) = (C`m−w`)MH
1+ε

2 + t(C`y
t −w`) ≤ (16)

(C`m−w`)MH
1+ε

2 +
w` −C`m

2
MH

1+ε
2 =

C`m−w`

2
MH

1+ε
2 < 0.

In other words,

d(xt
′
)≥d(m)

2

MH
1+ε

2

t′
> 0, (17)

where t′ = MH
1+ε

2 + t. This shows that all constraints are indeed kept at time t′.

Proof of Lemma 4. In order to violate Eq. (13),
∑MH

1+ε
2 +t

r=MH
1+ε

2 +1
(C`1lar −w`) needs to

be strictly greater than d(m)
2
MH

1+ε
2 . By Lemma 2, recalling that t ≤MH,

P

(
t∑

r=1

(1lar ·C` − w`) >
d(m)

2
MH

1+ε
2 ,∀` = 1, 2, ..., L

)
≤ (18)

P

(
t∑

r=1

(1lar ·C` − w`) >
d(m)

2
M

1−ε
2 t

1+ε
2 , ∀` = 1, 2, ..., L

)
≤ L exp

(
−tε(d(m)

2
M

1−ε
2 )2

2

)
.

Denote

c :=

{
d(m)

max`,x∈∆(A) 2(C`x−w`)
, if max`,x∈∆(A) 2(C`x−w`) > 0

1 otherwise.

Note that during the first cMH
1+ε

2 rounds of the second block it is impossible to

violate Eq. (13). We therefore obtain from Eq. (18) and the union bound, that the

probability of violating Eq. (13) (and therefore stopping playing τ) at any time during

the second block is bounded above by

MH∑
t=cMH

1+ε
2

L exp

(
−tε(d(m)

2
M

1−ε
2 )2

2

)
≤M ·H · L exp

(
−(cMH

1+ε
2 )ε(d(m)

2
M

1−ε
2 )2

2

)
,

which goes to zero with H.

Proof of Lemma 5. Suppose that the deterministic sequence (a1, ..., aM) has been

played repeatedly until stopped for s periods. That is, t′′ = t′ + s (as in Eq. (17), t′

is the first time τ has been stopped). Due to Eq. (11),

d(xt
′′
) ≥ t′

t′ + s
d(xt′) +

s

t′ + s
d(x[t′+1,t′+s]).
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When s is a multiple of M (meaning that a few cycles of playing (a1, ..., aM) have

been completed), d(x[t′+1,t′+s]) = d(m). Due to Eq. (17) and d(xt
′
)<d(m)

2
MH

1+ε
2

t′
<

d(m), we have d(xt
′′
) > d(xt′). In other words, d(xt

′′
) cannot get lower than d(xt′) >

0.

When s is not a multiple of M , t′′ is in the middle of the cycle. In this case,

d(xt
′′
) ≥ t′

t′+s
d(xt′) − s

t′+s
c1, where c1 = maxx∈∆(A) |d(x)| ≥ 0, and s < M . Thus,

again due to Eq. (17), if H is chosen to be much larger than c1, we have

d(xt
′′
) >

t′

t′ + s
d(xt′)− s

t′ + s
c1 ≥

t′

t′ + s

d(m)

2

MH
1+ε

2

t′
− s

t′ + s
c1.

If d(m)
2
MH

1+ε
2 > Mc1 (i.e., H is large enough), we have d(xt

′′
) > 0, which completes

the proof.

Proof of Lemma 6. Note that H is a constant, the number of periods preceding the

N -th interval is MH + MH2 + ... + MHN−1 = Ω(MHN−1) = Ω(HN±c) for any

constant c > 0. We can therefore state the following.

(a) The regret up to the end of the N -th interval is

E(R(C,w)(a′1, ..., a
′
T ;
−→
b )) ≥ −O(MH

1+ε
2 ) + ...+O(MH

N(1+ε)
2 )

M(H +H2 + ...+HN)
= −O

(
H

N(1+ε)
2

HN

)
,

(19)

where T = MHN . The regret bound is therefore, −O(T
1+ε

2

T
) = −O(T−

1−ε
2 ).

(b) For any t in the first block of theN -th interval, i.e., t ∈ [tN−1+1, tN−1+MH
N(1+ε)

2 ],

the regret is bounded by

E(R(C,w)(a′1, ..., a
′
t;
−→
b )) ≥ −

(
O((HN−1)

1+ε
2 )

t
+O(

t− tN−1

t
)

)
(20)

≥ −
(
O((HN)

1+ε
2 ) +O(H

N(1+ε)
2 )

t

)
= −O

(
t

1+ε
2

t

)
, (21)

where the term −O( t−tN−1

t
) is the bound on total regret during the first block. The

inequality is due to the fact that t− tN−1 ≤MH
N(1+ε)

2 and t = O(HN).

(c) For any time t in the second and third block of the N -th interval, i.e., t ∈
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[tN−1 +MH
N(1+ε)

2 + 1, tN ], the regret up to time t is bounded by

E(R(C,w)(a′1, ..., a
′
t;
−→
b )) (22)

≥ −
(
O((HN−1)

1+ε
2 )

t
+
MH

N(1+ε)
2

t
+
O((t− (tN−1 +MH

N(1+ε)
2 ))

1+ε
2 )

t

)
(23)

≥ −
(
O(H

N(1+ε)
2 ) +O(t

1+ε
2 )

t

)
≥ −O

(
t

1+ε
2

t

)
, (24)

which follows from the fact that t = O(HN). Thus, the regret bound holds not only

at the end of each interval, but also in all times.
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