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1 Introduction

The influence of aggregate demand on the economy is undisputed. Given the dependence

of the consumption function on current interest rates and future interest rates, it is worth

examining whether monetary policy affects aggregate consumption through different interest

rate policies. While many empirical studies have tried to estimate the effect of a change in

interest rates on savings and consumption,1 we do not know of any analytical results in frame-

works similar to ours that do not rely on closed form solutions2 or numerical methods. Our

goal in this paper is to analytically examine the effect of interest rate policies on savings and

consumption decisions. Even in a two period model with no uncertainty, consumption may

increase or decrease when interest rates increase. Both the income effect and the substitution

effect influence the agent’s consumption choice. The income effect increases consumption if

the agent has positive savings, since her savings are worth more with higher interest rates.

The substitution effect decreases the agent’s consumption since higher interest rates raise

the price of consumption. Thus, a necessary condition for an increase in consumption in

response to an increase in interest rates is that the substitution effect dominates the income

effect. We offer a condition on the agent’s utility function that ensures such domination in

Section 4.

In this paper we examine the effect of different interest rate polices on savings and

consumption decisions in a standard consumption-savings model with income uncertainty,

sometimes referred to as the ”savings problem” (see Ljungqvist and Sargent (2004) and

Chamberlain and Wilson (2000)) or the ”income fluctuation problem” (see Schechtman and

Escudero (1977)). The income fluctuation problem is fundamental in modern macroeco-

nomics.3 In an income fluctuation problem, the agent receives a state-dependent income in

each period. The states follow a stochastic process, so the agent’s income follows a stochastic

process as well. The agent solves an infinite horizon consumption-savings problem. That is,

the agent decides how much to save and how much to consume in each period. In contrast

to complete markets models (e.g., Arrow-Debru models) where the agent can insure herself

against any realization, the income fluctuation problem is an incomplete markets model. The

agent can transfer assets from one period to another only by investing in a risk-free bond and

either is not allowed to borrow or has some borrowing limit. Usually the interest rate in the

1For example Attanasio and Weber (1993), and Campbell and Mankiw (1989). Nabar (2011) finds that

savings and interest rates in China were actually negatively correlated. Recently, Di Maggio et al. (2014)

and references therein study the effect of interest rates on household consumption and savings decisions.
2For example, Weil (1993) finds a closed form solution to the consumption function showing that con-

sumption increases with higher interest rates if the income effect dominates the substitution effect.
3The income fluctuation problem is used to study many macroeconomic phenomena. For example, the

permanent income hypothesis (Bewley (1977)) wealth distribution (Benhabib et al. (2014) and Benhabib

et al. (2011)), asset pricing (Huggett (1993)), fiscal policy (Heathcote (2005)) and many more.
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income fluctuation problem is constant and is equal to or less than the discount factor (see

Chamberlain and Wilson (2000)). Our model adds a central bank to the standard income

fluctuation problem. In our model, a central bank decides on an interest rate policy. That

is, the central bank chooses an interest rate for each state of the economy. Given an interest

rate policy, the agent decides how much to consume and how much to save in each period.

This is in contrast to general equilibrium models (for example Aiyagari (1994)) where the

interest rate is determined in equilibrium and not by a central bank. The agent in our model

has rational expectations: she knows the central bank’s policy, the number of states, the

value of her income in each state, and the distribution governing the states’ dynamic.

This paper has two goals. First, to study the implications of a change in interest rate

policy on savings and consumption. The consensus in the field of economics is that savings

are positively correlated with the current interest rates. The economic logic is that the agent

will be more willing to postpone consumption to the future if she is paid more to do so. In

this paper we examine a more general question: how interest rate policies affect savings and

consumption. An agent’s savings are affected not only by the current interest rates, but

also by the interest rates in different states of the economy. Thus, if a central bank were to

announce that interest rates will be high in states with high incomes, it would influence the

agent’s optimal decision regarding how much to save in states with low incomes. Assume,

for instance, an interest rate policy in which for every state (every possible income the agent

can have) the interest rate is the same and is equal to zero. Denote this policy by ρ1. Assume

that the agent decides to save g px, s1, ρ1q dollars when the state is s1 and her wealth is x. It

seems natural that under a different interest rate policy ρ2, that also assigns an interest rate

of zero to state s1 but in which other states have higher interest rates, the agent’s optimal

decision will change in state s1. That is, g px, s1, ρ1q � g px, s1, ρ2q. The question we address

in this paper is what conditions on the agent’s preferences are sufficient to conclude that

g px, s, ρ1q ¤ g px, s, ρ2q for any state and wealth.

The second goal is to apply a comparative statics technique to dynamic economies. Com-

parative statics techniques help to determine whether an endogenous variable or a control

variable is monotone with respect to a certain parameter. We focus in this paper on deriving

comparative statics results that have a wide range of applications in a consumption-savings

problem. The technique employed in this paper can also be implemented in other macroe-

conomic models, specifically when a question is being asked about comparative statics in

dynamic programming models where the utility function is concave and the value function

is differentiable. In Hopenhayn and Prescott (1992) (HP) a technique to apply compara-

tive statics to dynamic economies is offered. HP’s approach employs lattice programming

techniques developed by Topkis (1978). Miao (2002) applies HP’s technique and derives

comparative statics results in a model similar to ours. We present HP’s approach in detail in

Section 7 and compare it to our approach. While HP’s approach does not require concavity
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or differentiability of the utility function, we show that if concavity and differentiability are

assumed our approach is stronger than HP’s approach in the following sense: if one can

derive a comparative statics result with HP’s approach, then one can derive this result with

our approach, and the opposite is not true. Acemoglu and Jensen (2015) (AJ) offer a com-

parative statics approach that focuses on a change in aggregate variables. AJ’s approach is

suited to large dynamic economies where there is a shock to aggregate variables that affects

the general equilibrium.

The rest of the paper is organized as follows. Section 2 presents the income fluctuation

problem. We add a central bank to the income fluctuation problem and discuss some basic

results in dynamic programming models that we use in the following sections. Section 3

discusses the agent’s optimal consumption strategy and the differentiability of the value

function. We present our main comparative statics theorem which shows how to determine

whether the endogenous variables (consumption and savings) are monotone with respect to

a change in some parameter. To be more precise, let ¤ be a partial order and I a poset. For

a level of cash-on-hand x, a state s and a parameter e P I denote the optimal savings policy

by gpx, s, eq. We are interested in the following question: is it true that e2 ¥ e1 implies

g px, s, e2q ¥ g px, s, e1q for all px, sq? In section 3.3 we introduce a simple condition that

ensures that the answer to the last question is positive.

Our main theorem deals with the effect of interest rate policies on consumption and sav-

ings decisions. In section 4 we prove that if the consumption policy function is concave in the

agent’s cash-on-hand and the substitution effect dominates the income effect then an interest

rate policy with higher interest rates increases the agent’s savings. Many other factors affect

savings decisions. In section 5 we show that an increase in the agent’s permanent income

increases her consumption. In section 6.1 we show that a higher discount factor increases

the agent’s savings. In sections 6.2 and 6.3 we compare the influence on savings decisions of

different transition matrices that govern the states’ dynamic. In section 7 we will compare

our comparative statics approach to the approach of Hopenhayn and Prescott (1992). In

section 8 we provide some final remarks.

2 The model: a dynamic consumption-savings prob-

lem

We consider a discrete time dynamic consumption-savings model. Let S � ts1, . . . , snu be a

finite set of possible states of the economy. At any time t � 1, 2, 3, . . . a state st is realized

and the agent gets an income that depends on this state. Let y : S Ñ R� be the labor

income function: y psiq indicates the agent’s income in state si. For the sake of simplicity,
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we assume that the states are ordered in accordance with the corresponding incomes:

(1) y ps1q   y ps2q   . . .   y psnq .

The evolution of the states follows a Markov chain with transition probabilities P � pPijq.

The probability of moving from state si to state sj is denoted by Pij.

The central bank determines the interest rate policy. That is, the central bank assigns

an interest rate to each state of the economy.

Definition 1. (i) An interest rate policy is a function that assigns an interest rate to each

state. That is, ρ : S Ñ r1, Ks.

(ii) We say that an interest rate policy ρ is Keynesian if ρ psq is increasing in s. That is,

ρpsiq ¥ ρpsjq whenever i ¡ j.

Note that the interest rate policy takes values in the interval r1, Ks, where 1 is the lowest

real interest rate and K is the highest. We do not allow negative interest rates. A Keynesian

interest rate policy is expansionary when the agent has a low income and is tight when

the agent’s income is high. Thus, a Keynesian interest rate policy encourages the agent to

consume when her income is low and discourages consumption when her income is high.

We now consider the agent’s consumption-savings decision problem. Suppose that the

agent’s initial savings is a0. In each period t � 1, 2, . . . the agent receives an income4 y ps ptqq

that depends on the state of the economy. The rate of return on her savings at time t,

ρ psptqq, is determined by the central bank’s interest rate policy ρ as well as by the state of

the economy sptq.

Denote the agent’s cash-on-hand at time t � 1 by xp1q � ρ ps p1qq a0 � y ps p1qq. Suppose

that at time t the agent’s cash-on-hand is xptq. Based on sptq and xptq, the agent decides

how much to consume at time t, which we denote by cptq, and thereby how much to save

for future consumption. Thus, her cash-on-hand at time t � 1 when spt � 1q is the realized

state is

xpt� 1q � ρpspt� 1qq pxptq � cptqq � ypspt� 1qq.

We assume for now that the agent cannot borrow and thus, xptq ¥ cptqin every period. We

denote by C pxq � r0, xs the interval from which the agent may choose her consumption

level.

At each time t, the agent gets to know a pair consisting of the cash-on-hand and the

realized state: zptq :� pxptq, sptqq, and when deciding on the consumption and savings levels

at that time, the agent may condition her decision on the entire history zt :� pzp1q, . . . , zptqq.

For notational simplicity, denote X � r0,8q and Z � X � S.

4Note the distinction between sptq which is the realized state at time t, and si which is the i-th state as

ordered in Eq. (1).
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Definition 2. (i) A consumption strategy is a function π that assigns to every finite his-

tory zt � pzp1q, . . . , zptqq in Zt :� Z � . . .� Zlooooomooooon
t times

an action πpztq in Cpxpkqq, where zptq �

pxptq, sptqq.

(ii) A stationary consumption strategy is a consumption strategy that depends only on the last

pair of cash-on-hand and state: πpzp1q, . . . , zptqq � π pzptqq for every pzp1q, . . . , zptqq P Zt.

Note that a consumption strategy induces a savings strategy that assigns to every finite

history zk a savings level x pkq�π pz p1q , . . . , z pkqq in Cpx pkqq. Furthermore, a consumption

strategy π induces a stochastic process over the extended set of states in Z, as follows. The

initial state is determined by the agent’s initial cash-on-hand x p1q and the initial state s p1q.

Let zp1q � pxp1q, sp1qq. Suppose that the history of cash-on-hand and state pairs up to time

t � 1 is pzp1q, .., zpt� 1qq. Then, the probability of the next cash-on-hand and state pair

being pxptq, sptqq is given by,

Ppzptqq � pπpz p1q , . . . , z pt� 1qq and sptq � sj|z p1q , . . . , zpt� 1qq � Pij,

where z pt� 1q � px pt� 1q , siq. That is, the evolution of the cash-on-hand and state pairs is

dictated both by the Markov chain that governs the states’ evolution and by the consumption

strategy.

The agent’s utility from consumption in each period is given by a bounded utility

function u : r0,8q Ñ r0,M s. We assume that u is strictly increasing, strictly concave,

continuously differentiable and that u1 p0q � 8. The agent’s utility derived from the se-

quence c p1q , c p2q , . . . of consumption is the present discounted value
°8
t�1 β

t�1u pc ptqq,

where β P p0, 1q is the agent’s discount rate. When the agent follows a consumption strat-

egy π, and the initial state is px, sq her expected present discounted value is

Vπpx, sq � Eπ

�
8̧

t�1

βt�1u pπpz p1q , . . . , z ptqq

�
,

where Eπp�q is the expectation operator with respect to the probability measure determined

by the transition probabilities P and the consumption strategy π. Denote

V px, sq � sup
π
Vπpx, sq.

That is, V px, sq is the maximal expected utility that the agent can have when the initial

cash-on-hand and state pair is px, sq. We call V : Z Ñ R the value function and a strategy

π attaining it optimal.

We denote by b the savings of the agent. For every px, siq P Z and b P Cpxq define the

following function:

(2) hpx, b, si, V q � upx� bq � β
ņ

j�1

PijV pρ psjq b� y psjq , sjq.

5



When the initial cash-on-hand and state pair is px, siq and the agent decides to consume

x� b and to save b, her present utility is upx� bq. If in the next period the realized state is

sj then the next period’s cash-on-hand is ρ psjq b� y psjq. If the agent employs the optimal

savings strategy, her present discounted value utility is βV pρ psjq b� y psjq , sjq. However, sj
is realized with probability Pij and therefore when saving b, the expected present discounted

value of all future utilities is β
n°
j�1

PijV pρ psjq b � y psjq , sjq, which is the second summand

on the RHS of Eq. (2).

The agent’s goal is to find the optimal possible division between savings b and consump-

tion c, provided that the continuation value is given by V . That is, to find maxbPCpxq hpx, b, si, V q.

Bellman’s equality connects the functions V and h, as stated in the following well known

proposition. For the proofs of parts (i), (ii) and (iii) see Blackwell (1965). For the proof of

part (iv) see Stokey and Lucas (1989).

Proposition 1. (i) The value function V : Z Ñ R satisfies the Bellman equation,

(3) V px, siq � max
bPCpxq

hpx, b, si, V q.

(ii) The Bellman equation has a unique solution. That is, if V : Z Ñ R satisfies the Bellman

equation, then V pzq � V pzq for every z P Z.

(iii) There is a unique optimal stationary strategy.

(iv) If u is continuous, strictly concave and strictly increasing, then V is continuous, strictly

concave and strictly increasing in x.

The function hpx, b, si, V q is the sum of two functions. One is strictly concave in b,

upx � bq, and the other is a summation of βV ’s, all are, by Proposition 1, concave in their

first argument. Thus, h itself is strictly concave in b.

3 Preliminaries

3.1 Optimal savings and consumption stationary strategy

Let z � px, sq P Z. Define gpx, sq to be the savings level of the next period that attains the

maximum of hpx, b, s, V q. That is,

(4) g px, sq � argmax
bPCpxq

h px, b, s, V q .

As a strictly concave function, h has a unique maximum, denoted as gpx, sq. The

“argmax” function defined in Eq. (4) is called the savings policy function. The choice

gpx, sq is the best savings level in C pxq that the agent has in a period where the state

6



is s and her cash-on-hand is x. Note that the savings policy function induces an optimal

consumption policy function σpx, sq by the equation σpx, sq � x � gpx, sq. σpx, sq is the

best consumption level in C pxq that the agent has in a period where the state is s and her

cash-on-hand is x.

Let B pZq be the space of all bounded real valued functions defined on Z. Define the

operator T : B pZq Ñ B pZq by

TV px, siq � max
bPCpxq

hpx, b, si, V q.

A standard argument5 shows that there is a unique function V P B pZq such that TV � V .

Furthermore, for every f1 P B pZq if we define fn � Tfn�1 for every n � 2, . . . then fn Ñ V .

Assume that V is the fixed point of T . The following lemma helps to prove properties of the

value function.

Lemma 1. Let ∅ � D � B pZq. Suppose that D satisfies the following properties:

(1) If f P D then Tf P D.

(2) D is closed. If fn P D for every n and fn Ñ f then f P D.

Then V P D.

Proof. Let f P D and define fn � T nf . By (1) we have fn P D, and by the Banach

theorem fn Ñ V . From (2) V P D, which proves the lemma.

3.2 Differentiability of the value function

In order to characterize the optimal consumption policy, it is often important to establish

the differentiability of the value function. We use the differentiability of the value function

in order to prove comparative statics results. Fix the interest rate policy ρ and the labor

income function y. The Envelope Theorem (see Benveniste and Scheinkman (1979)) implies

that the value function is differentiable. For each state s P S define

V 1px, sq :�
BV px, sq

Bx
.

Denote by u1 the derivative of u. In addition, the Envelope Theorem states that for every

px, sq P Z,

V 1 px, sq ¥ u1 pσ px, sqq ,

5Define the sup norm of a function f P B pZq by }f}� supt|f pzq | : z P Zu. This induces the metric

dpf, gq � }f � g}. The space pB pZq , dq is a complete metric space. It can be shown that T is a contraction

mapping, i.e., d pTf, Tgq   βd pf, gq for 0   β   1. Note that every contraction mapping is continuous, i.e.,

if fn Ñ f then Tfn Ñ Tf . The Banach fixed point theorem states that if T : B pZq Ñ B pZq is a contraction

mapping then T has a unique fixed point.
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with equality if σ px, sq ¡ 0. The last equation is called the envelope condition.

Berge’s maximum theorem (see Aliprantis and Border (2006) theorem 17.31) implies

that σ px, sq is continuous in x. Thus, V 1 is continuous as the composition of continuous

functions. Let h1px, b, si, V q be the derivative of h with respect to b. If the savings at px, siq

is an interior point (i.e., g px, siq P p0, xq), then the savings policy function must satisfy the

first order condition h1 px, g px, siq , si, V q � 0. That is,

�u1 px� g px, siqq � β
ņ

j�1

Pijρ psjqV
1 pρ psjq g px, siq � y psjq , sjq � 0.

3.3 General comparative statics theorem

Let pI,¤q be a poset: I is a set and ¤ is a binary relation over I that is reflexive, an-

tisymmetric and transitive.6 The set I will serve as a set of parameters that affect the

consumption-savings problem faced by the agent. In the applications below the parameter

e will play several roles, such as the interest rate policy ρ, the discount factor β, the labor

income function y and the distribution governing the states dynamic P .

Throughout the discussion we assume that the parameter e does not change the interval

from which the agent chooses her level of consumption, i.e., for all e P I, C pxq � Cpx, eq �

r0, xs. We slightly abuse the notations and allow an additional argument in the functions

defined above. For instance, the value function of the parameterized consumption-savings

problem V P BpZ � Iq is denoted by

V px, s, eq � max
bPCpxq

hpx, b, s, e, V q.

Likewise, the savings policy function is denoted by gpx, s, eq, the consumption policy function

by σpx, s, eq and hpx, b, s, e, V q is the h function associated with the consumption-savings

problem with parameter e, as defined above in Eq. (2).

We are interested in the question whether for every e1, e2 P I such that e2 is greater

than e1 (i.e., e2 ¥ e1) the savings related to e2, g px, s, e2q are greater than or equal to those

related to e1 (i.e., g px, s, e1q) for all px, sq P Z.

We introduce a condition that ensures that the answer to the last question is affirmative.

Definition 3. Consider a parameterized consumption-savings problem.7 We say that h

has the complementation-preserving (CP) property if for every differentiable function f P

BpZ � Iq, f 1px, s, eq increasing in e implies that h1px, b, s, e, fpx, s, eqq is increasing in e for

all px, sq P Z, and b P C pxq.

6Formally, ¤ is a partial order that for every e, e1e2 P I satisfies (i) e ¤ e; (ii) e ¤ e1 and e1 ¤ e imply

e � e1; and (iii) e ¤ e1 and e1 ¤ e2 imply e ¤ e2.
7We omit the reference to the poset pI,¤q, the set of parameters.
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The CP property means that if f has increasing differences8 in px, eq, i.e., the cash-on-

hand x and the parameter e are complementary; then h has increasing differences in pb, eq,

i.e., the savings b and the parameter e are also complementary. The next theorem states that

if h has the CP property, then the savings are increasing in the parameter e, i.e., gpx, s, eq

is increasing in e for all px, sq P Z. As we shall see in Sections 4-6 it is often easy to verify

that h satisfies the CP property.

Theorem 1. Assume that h has the CP property. Then, for every px, sq P Z, gpx, s, eq is

increasing and σpx, s, eq is decreasing in e.

Theorem 1 states that comparative statics results in consumption-savings dynamic mod-

els can be obtained by checking a simple property. Given a poset I, when the fact that

V 1px, s, eq is increasing in e for all px, sq P Z implies that h1px, b, s, e, V px, s, eqq is increasing

in e for all px, sq P Z and b P C pxq, one can conclude that gpx, s, eq is increasing in e for

all px, sq P Z. Similarly, when the fact that V 1px, s, eq is decreasing in e for all px, sq P Z

implies that h1px, b, s, e, V px, s, eqq is decreasing in e for all px, sq P Z and b P C pxq, one can

conclude that gpx, s, eq is decreasing in e for all px, sq P Z.

The proof uses the following lemma, whose proof, like all other proofs, except for that of

Theorem 1, are deferred to the Appendix.

Lemma 2. Let z : R ÑR and f : R Ñ R be strictly concave, continuously differentiable

functions. Let φ ¡ 0. Denote xf � argmaxxPr0,φs f pxq and xz � argmaxxPr0,φs z pxq.

(i) Assume xz P p0, φq. Then f 1 pxzq ¥ z1 pxzq if and only if xf ¥ xz.

(ii) If for all x P r0, φs we have f 1 pxq ¥ z1pxq, then xf ¥ xz. Furthermore, if xz P p0, φq and

f 1 pxq ¡ z1 pxq for all x P r0, φs, then xf ¡ xz.
9

Proof of Theorem 1. Assume that fpx, s, eq P B pZ � Iq is concave in the first argument

and that the derivative of f is increasing in e (i.e., e2 ¥ e1 implies f 1px, s, e2q ¥ f 1 px, s, e1q

for all px, sq P Z). The constant function f � 0, for instance, satisfies these conditions.

Let e2 ¥ e1, px, sq P Z and b P Cpxq. A standard argument shows that Tf is strictly

concave and bounded. The envelope theorem implies that Tf is differentiable. We now show

that pTfq1 is increasing in e. Define gf px, s, eq � argmaxbPCpxq hpx, b, s, e, fq. Since h has the

CP property we have

h1 px, b, s, e2, f px, s, e2qq ¥ h1 px, b, s, e1, f px, s, e1qq .

8Let I be a poset and let O � X � I. Let f be a real valued function defined on O. f is said to have

increasing differences in px, eq if for all e2 ¥ e1, fpx, e2q � fpx, e1q is increasing in x. Thus, if Bfpx, eq{Bx

is increasing in e then f has increasing differences in px, eq.
9The condition f 1 pxq ¥ z1 pxq is equivalent to the single crossing property in Milgrom and Shannon

(1994): for all x2 ¥ x1, z px2q � z px1q ¥ 0 implies f px2q � f px1q ¥ 0.
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Lemma 2(ii) implies that gf px, s, e2q ¥ gf px, s, e1q. Since for all e P I we have Cpx, eq �

Cpxq � r0, xs, gf px, s, e2q ¥ gf px, s, e1q implies that σf px, s, e1q � x � gf px, s, e1q ¥ x �

gf px, s, e2q � σf px, s, e2q. The assumption u1 p0q � 8 implies that σf px, s, e2q ¡ 0. From

the envelope condition and the concavity of u we obtain

(5) pTfq1px, s, e2q � u1pσf px, s, e2qq ¥ u1pσf px, s, e1qq � pTfq1px, s, e1q.

That is, pTfq1 is increasing in e.

Define the sequence fn � T nf , n � 1, 2, . . .. Then fn is strictly concave and f 1n is

increasing in e for each n. From the Banach Theorem10 fn converges uniformly to V . The

envelope theorem implies that V is differentiable. Since pTfnq
1 � u1 pσfnq for each n and11

σfn Ñ σ we have pTfnq
1 Ñ V 1. Thus, V 1 px, s, eq is increasing in e. From the same argument

as in Eq. (5), σ px, s, eq is decreasing in e and gpx, s, eq is increasing in e for all px, sq P Z.

4 Comparing interest rate policies

Milgrom and Shannon (1994) develop a technique to derive comparative statics results with-

out using the implicit function theorem or any differentiability assumptions. This technique

is called monotone comparative statics.12 In Topkis (1978), the properties of super-modular

functions are studied and conditions for determining whether the argmax correspondence

is monotone with respect to a parameter are established. In Hopenhayn and Prescott

(1992) this technique is applied also to dynamic economies. For a survey of the use of super-

modularity to derive comparative statics results in economics, see Amir (2005). These papers

employ lattice programming in order to derive comparative statics results. We, in contrast,

use the concavity and differentiability of the objective function h and obtain comparative

statics results in dynamic economies in a simple manner. We elaborate on this subject in

Section 7. In this section we present the comparative statics result regarding the effect of

interest rate policies on consumption and savings. Let ρ1,ρ2 be two interest rate policies. We

order the set of interest rate policies with the usual product order, i.e., we write ρ2 ¥ ρ1 if

ρ2 psq ¥ ρ1 psq for each state s P S. Let σpx, s, ρq be the optimal consumption policy function

when the interest rate policy is ρ.

The following definition relates to a comment we made in the introduction regarding the

fact that the substitution effect must dominate the income effect in order for an increase in

interest rates to result in an increase in consumption.

10See Theorem 3.48 in Aliprantis and Border (2006).
11See Theorem 3.8 in Stokey and Lucas (1989).
12See also Athey (2002), Quah (2007) and Quah and Strulovici (2009).
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Definition 4. Let W � p0, ws. We say that the utility function exhibits substitution effect

domination (SED) over W , if cu1 pcq is increasing on W .13

The SED is strongly related to the notion of relative risk aversion (RRA).14 Indeed, when

u is twice continuously differentiable, u exhibiting SED over W is equivalent to the RRA

being less than one on W .The main theorem, Theorem 2, states that if the utility function

exhibits SED over W and the consumption policy function is concave in the cash-on-hand,

then ρ2 ¥ ρ1 implies σ px, s, ρ1q ¥ σ px, s, ρ2q for all px, sq P W � S.

In order to provide a motivation for the condition that cu1 pcq is increasing, we show that

this condition is equivalent to an increasing differences condition on the utility function that

implies that wealth and interest rates are complementary.

Suppose that an agent lives for one period and has an indirect utility from an amount of

wealth a P W and an interest rate r P r1, Ks. This agent who lives for one period consumes

all her wealth, her consumption is given by ra and her indirect utility function is given by

u praq. When the interest rate rises it is not clear whether the marginal contribution of wealth

to the agent’s indirect utility is positive. Let a2 ¥ a1, r2 ¥ r1. With a higher interest rate,

the marginal contribution is higher in terms of consumption, i.e., r2a2 � r2a1 ¥ r1a2 � r1a1.

The question is what the marginal utility would then be.

Since the marginal utility from consumption is strictly decreasing, the difference in the

LHS of the last inequality could, in principle, be smaller than the difference in the RHS in

terms of utility: u pr2a2q � u pr2a1q ¤ u pr1a2q � u pr1a1q. The condition that u exhibit SED

over W implies that the marginal contribution of wealth to the utility is increasing with the

interest rate. In other words, u pr2a2q � u pr2a1q ¥ u pr1a2q � u pr1a1q, which is the property

known as increasing differences in pr, aq.

To see the equivalence between increasing differences in pr, aq and the SED property, fix

a1, a2 P W such that a2 ¥ a1. Define the marginal contribution of wealth to the utility to

be m prq :� u pra2q � u pra1q. Note that m prq is increasing in r if and only if a2u
1 pra2q ¥

a1u
1 pra1q, which in turn is true if and only if c2u

1 pc2q ¥ c1u
1 pc1q. Thus, the function u praq

has increasing differences in pr, aq on r1, Ks �W if and only if u exhibits SED over W .

As noted in the introduction, even in a two period consumption-savings model, it could

be the case that savings decrease when the interest rate increases. This happens when the

income effect dominates the substitution effect. The following example shows, however, that

when u exhibits SED over W , the substitution effect dominates the income effect.

13We restrict the condition cu1pcq to be increasing on W � p0, ws because of technical reasons. w ¡ 0 is

a real number that can be as large as we want. The reason for this restriction is that we assume that u is

bounded in order to use the contraction mapping theorem. However, for every bounded utility function it

cannot be the case that cu1 pcq is increasing on the domain r0,8q.
14The measure of RRA is defined as Rpcq � � cu2pcq

u1pcq .
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Example 1. Consider an agent who lives for two periods. Let φ ¡ 0. The agent has

x P p0, φq dollars at the start of the first period and she receives an income of y psjq with

probability θj in the second period. The agent decides how much to consume in each period.

If the agent consumes 0 ¤ c ¤ x in the first period and her income in the second period is

y psjq then the agent’s consumption in the second period is rpx� cq� y psjq, where r P r1, Ks

is the interest rate on the agent’s savings x � c. The agent chooses 0 ¤ c ¤ x to maximize

her expected utility

U px, c, rq :� u pcq �
ņ

j�1

θjuprpx� cq � y psjqq.

When the interest rate increases the income and substitution effects have their impact on

the agent’s consumption choice. The substitution effect dominates the income effect if the

agent’s consumption σ px, rq is decreasing in r. We show that if u exhibits SED over W :�

r0.Kφ� y psnqs, then σ px, rq is decreasing in r for all x P p0, φq. Note that u exhibiting SED

over W together with the fact that u1 is decreasing imply that for all x P p0, φq and each s P S

the function ru1prx� y psqq is increasing in r on r1, Ks. Let r2 ¥ r1, we have

U 1 px, c, r2q � u1 pcq �
ņ

j�1

θjr2u
1 pr2px� cq � y psjqq

¤ u1 pcq �
ņ

j�1

θjr1u
1 pr1 px� cq � y psjqq � U 1px, c, r1q.

Lemma 2 implies that σ px, r1q ¥ σ px, r2q for all x P p0, φq. Therefore, if the utility function

exhibits SED then the substitution effect dominates the income effect.

Given an interest rate policy ρ we say that the consumption function is concave if for

each state s P S, σ px, s, ρq is concave in x on p0,8q. Zeldes (1989) and Deaton (1991)

have noted in numerical studies that when the agent’s labor income function is uncertain,

the consumption function is concave in the cash-on-hand. Carroll and Kimball (1996) prove

concavity of the consumption function analytically for the key class of hyperbolic absolute

risk aversion (HARA)15 utility functions. Jensen (2015) offers a simpler proof of Carroll

and Kimball’s concavity result and generalizes the result to a framework similar to ours,

with borrowing constraints and a Markov earnings process. Concavity of the consumption

function is also consistent with empirical evidence. Mian et al. (2013) provide detailed

empirical evidence that the consumption function is concave in the cash-on-hand and show

empirically that the average marginal propensity to consume (MPC) decreases with the

cash-on-hand. They show that the average MPC for households living in ZIP codes with

15Recall that a utility function is in the class of HARA utility functions if its absolute risk aversion A pcq

is hyperbolic. That is, Apcq :� �u2pcq
u1pcq �

1
ac�b for c ¡ �b

a .

12



an average annual income of less than 35,000 dollars is three times as large as the MPC for

households living in ZIP codes with an average annual income of more than 200,000 dollars.

Jappelli and Pistaferri (2014) also find that households with low cash-on-hand exhibit a

higher MPC than households with high cash-on-hand.

Theorem 2. Let φ ¡ 0. Assume that u exhibits SED on W :� p0, Kφ � y psnqs and that

the consumption policy function is concave in x. Then ρ2 ¥ ρ1 implies that σ px, s, ρ1q ¥

σ px, s, ρ2q for all x P p0, φs and s P S.

Let α ¥ 0. A utility function is in the CRRA class if u pcq � c1�α{p1 � αq for α � 1

and u pcq � lnpcq if α � 1. It is known that the substitution effect dominates the income

effect if the RRA is not greater than one,16 i.e., α ¤ 1. If upcq is in the CRRA class then

the consumption policy function is concave in the cash-on-hand.17 From the above, we can

conclude the next corollary.

Corollary 1. Let α P p0, 1s. Assume that on W , u pcq � c1�α{p1 � αq when α � 1 and

u pcq � lnpcq when α � 1. Then, ρ2 ¥ ρ1 implies σ px, s, ρ1q ¥ σ px, s, ρ2q for all px, sq P

W � S.

The major implications of Theorem 2 relate to Keynesian policies, i.e., interest rate

policies that assign higher interest rates to states with higher incomes and lower ones to

states with lower incomes. These policies are Keynesian in the sense that when the economy

is in a high-income state, the interest rate is high while in a low-income state the interest

rate is low. Keynesian policies can be induced by a Taylor rule or by other monetary

policy rules. Theorem 2 states that if the central bank changes its policy and assigns higher

interest rates to high-income states, the agent’s savings will increase also in low-income

states. More precisely, consider two different Keynesian interest rate policies ρ1, ρ2 such

that ρ1psiq � ρ2 psiq for i ¤ k and ρ1 psiq ¤ ρ2 psiq for i ¡ k for some 1   k   n. Both

policies are identical except that in the second policy ρ2 the interest rates are higher in the

high-income states. Theorem 2 implies that the agent’s savings are higher under the interest

rate policy ρ2 than under the interest rate policy ρ1 in all states, including those states in

which both policies agree.

From a monetary policy perspective consider a central bank that chooses an interest rate

policy in order to increase consumption to fight a recession. The central bank considers

two interest rate policies ρ1, ρ2 with a zero interest rate for the low-income states of the

economy ρ1psiq � ρ2 psiq � 1 for i ¤ k. In effect, the central bank considers the interest

rates of the high-income states of the economy. Will an interest rate policy that assigns

lower interest rates to high-income states of the economy be more effective (in the sense that

16Thus, u exhibits SED if α ¤ 1.
17Recall that if a utility function is in the CRRA class it also belongs to the class of HARA utility functions.
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it will increase consumption in the low-income states of the economy) than an interest rate

policy that assigns higher interest rates to high-income states of the economy? Theorem

2 provides conditions under which the answer is affirmative. Diamond and Rajan (2012)

study, in a different model from ours, the effects of policy interventions that alter interest

rates on banks’ optimal decisions. They find that the central bank’s willingness to intervene

when liquidity needs are high by pushing down interest rates encourages banks to make

commitments that increase the need for intervention.

We end this section with the case in which the agent has negative cash-on-hand. Assume

that x0   0 is some borrowing limit. For a discussion on borrowing limits see Aiyagari

(1994). Suppose that the agent with a cash-on-hand of x chooses her savings level from the

set rx0, xs. In particular she may choose to save a negative amount. It is clear that when

the agent has a negative cash-on-hand, an increase in interest rates has a negative income

effect. In this case the income effect and the substitution effect decrease consumption when

the interest rate is higher, making the next proposition intuitive.

Proposition 2. Let x be such that x0 ¤ x ¤ 0 (i.e., x is non-positive). Then, ρ2 ¥ ρ1
implies that σ px, s, ρ1q ¥ σ px, s, ρ2q for all s P S.

5 Comparing labor income functions

Let y1, y2 be two labor income functions. We order labor income functions in a natural

way: y2 ¥ y1 if y2 psq ¥ y1 psq for each state s P S. In this section we examine the

impact on consumption of increasing the underlying labor income function. We first show

that for two labor income functions y1, y2, if y2 ¥ y1 then the agent consumes more under

y2 than under y1 in each state of the economy and at every cash-on-hand level. That is,

σ px, s, y2q ¥ σ px, s, y1q for every px, sq P Z. This result is related to the permanent income

hypothesis (Friedman (1957)) which claims that an agent’s consumption is determined by

the agent’s expected future income. We say that P ¡ 0 if the probability to move from any

state si to any other one, sj, is positive (i.e., Pij ¡ 0 for every ij). If y2 ¥ y1, y1 � y2 and

P ¡ 0, then the agent’s present discounted value of expected future income under the labor

income function y2 is strictly higher than under the labor income function y1. Thus, the

permanent income hypothesis would predict that the agent’s consumption is higher in each

state and at every cash-on-hand level. We show that it is indeed the case. This result is

consistent with empirical evidence, as noted in Jappelli and Pistaferri (2010). We formulate

these statements in the following theorem.

Theorem 3. Fix the interest rate policy ρ. Let y1 � y2 be two labor income functions such

that y2 ¥ y1. Then,
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(i) σ px, s, y2q ¥ σ px, s, y1q for all px, sq P Z.

(ii) If P ¡ 0 then inequality (i) is strict for px, sq P Z that satisfies σ px, s, y1q P p0, xq.

Consider two agents that are identical except for their income function: they have the

same amount of cash-on-hand and the same utility function, but one has an income function

y1 and the other y2. Assume that y2 ¥ y1. We measure the utility inequality among the two

agents by considering the relative values of their expected present discounted utility. Define,

r px, sq :� V px,s,y1q
V px,s,y2q

. The smaller r px, sq is, the larger the relative utility inequality. The next

proposition shows that the utility inequality is getting smaller as the level of cash-on-hand

is getting higher.

Proposition 3. Let y2 ¥ y1. Then, the expected utility inequality r px, sq is decreasing in x

for each state s P S.

6 Other applications

In this section we apply Theorem 1 in order to derive additional comparative statics results.

6.1 Comparison between different discount factors

Miao (2002) proves that higher discounting leads to higher savings. Miao’s proof relies on

lattice programming arguments. We present here a simpler proof. We parameterize the

consumption-savings problem with a parameter β, that stands for the discount factor. Let

I � p0, 1q be the set of possible discount factors, endowed with natural order: β2 ¥ β1 if β1
is lower than β2.

Theorem 4. Let β2 ¥ β1 be two discount factors, then g px, s, β2q ¥ g px, s, β1q for all

px, sq P Z. Furthermore, if g px, s, β1q P p0, xq and β2 ¡ β1, then g px, s, β2q ¡ g px, s, β1q.

6.2 Comparison between different transition probabilities

Throughout this section we assume that the interest rate policy is constant across states,

i.e., ρ psq � r for all states s P S. Let I be the set of all n � n transition matrices. We

endow this set with a partial order ¥ defined as follows. For P,Q P I, we say that P ¥ Q if

for every i the distribution pPijqj stochastically dominates pQijqj in the sense that for every

increasing and bounded function f : S Ñ R,

ņ

j�1

Pijf psjq ¥
ņ

j�1

Qijf psjq .
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We show that the consumption policy function is increasing in the state of the economy

when the probabilities are inertial. We use this result to show that for two transition matrices

P,Q if P stochastically dominates Q, then the agent consumes more under the transition

matrix P than under the transition matrix Q for every cash-on-hand level and each state of

the economy. This result can be interpreted in two ways. First, the transition matrix can be

thought of as the agent’s subjective beliefs about her future income. The fact that P ¥ Q

means the agent with beliefs P is more optimistic about her future income than the one

with beliefs Q. As a result, the former consumes more. The second interpretation is that the

economy might undergo a technological improvement and thereby move from a transition

matrix Q to the “better” transition matrix P .

We say that V 1 is decreasing in s for all x P X if V 1 px, siq ¤ V 1 px, skq for all i ¡ k and

x P X. As V px, sq is the agent’s maximal expected utility when the state is s and the cash-

on-hand is x, V 1 px, sq decreasing in s means that the marginal contribution of cash-on-hand

to the maximal expected utility decreases with the state of the economy. Thus, if V 1 px, sq

is decreasing in s then the marginal contribution of cash-on-hand is higher when the agent

has a lower income. This property seems intuitive if moving to higher income states is more

likely from a high income state than from a low income state. Lemma 3 shows that this is

indeed the case.

Definition 5. The transition probabilities are inertial if for every `, the sum
n°
j�`

Pij is

nondecreasing in i.

When the transition matrix is inertial, moving to higher-income states is more likely

from a high income state than from a low income state. Equivalently, if i ¡ k, then the

distribution pPijqj stochastically dominates pPkjqj (i.e., for every increasing and bounded

function f : S Ñ R,
n°
j�1

Pijf psjq ¥
n°
j�1

Pkjf psjq).

Lemma 3. Assume that the transition probabilities are inertial and ρ psq � r for all states

s P S. Then, V 1 px, sq is decreasing in s for all x P X and the consumption policy σ px, sq is

increasing in s for each x P X.

Theorem 5. Assume that the transition probabilities P are inertial and ρ psq � r for all

states s P S. If P ¥ Q, then σ px, s, P q ¥ σ px, s,Qq for all px, sq P Z.

6.3 Prudence and precautionary savings

Precautionary savings are the savings that the agent sets aside in response to uncertainty

regarding future income. An agent is prudent if the marginal utility u1 is convex, i.e., if

u3 ¥ 0.18 The condition u3 ¥ 0 implies that the absolute risk aversion �u2pcq
u1pcq

is decreasing.

18See Kimball (1990) for a measure of the agent’s prudence.
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In this section we show that prudence implies precautionary savings when the earnings

process is i.i.d.

Schechtman (1976) shows that if the earnings process y is i.i.d. with some distribution

θ, i.e., Pij � θj for all i, and u1 is convex, then the agent saves more when he has the

deterministic income that coincides with the average income Eθ pyq, then when he has the

uncertain income y.

Definition 6. (Rotschild and Stiglitz (1970)). We say that a distribution θ is riskier than θ1

if θ1 second order stochastically dominates θ. That is, for all concave, increasing and bounded

functions f we have
ņ

j�1

θ1jf pxjq ¥
ņ

j�1

θjf pxjq .

The intuition behind this definition is that θ is riskier than θ1 if every risk averter (i.e.,

an agent whose utility function is concave, increasing and bounded) would prefer θ1 to θ.

Miller (1976) and Huggett (2004) show that for each level of cash-on-hand the agent’s savings

increase if θ is riskier than θ1. We provide here a simple proof that relies on Theorem 1. Let

I be the set of all distributions on S. We endow I with a partial order. For two distributions

θ, θ1 P S we write θ ¥ θ1 if θ is riskier than θ1.

Theorem 6. Assume that Pij � θj for all si P S and that the interest rate is r. In this case

the savings policy function does not depend on the state s. Let θ and θ1 be two distributions.

Assume that θ ¥ θ1 and that u1 is convex. Then, for all x P X, g px, θq ¥ g px, θ1q.

Theorem 6 states that when earnings shocks are i.i.d. and the agent is prudent (i.e., the

marginal utility from consumption is convex), the agent’s savings increase when the earnings

risk increases (in the sense of second order stochastic dominance). Thus, prudence generates

precautionary savings when the earnings shocks are i.i.d.19 We note that it remains an open

question whether this result can be extended to a case where the agent’s earnings follow a

Markov process. In other words, it is not known to us whether convexity of the marginal

utility is sufficient to generate precautionary savings.

7 The approach of Hopenhayn and Prescott

The approach of Hopenhayn and Prescott (henceforth, HP) to deriving comparative stat-

ics results uses lattice programming techniques. Consider the parameterized consumption-

savings problem introduced in Section 3.3. In our framework, Theorem 6.2 in Topkis (1978)

implies that if the objective function h has increasing differences in pb, eq for all px, sq P Z

19This statement is true also when earnings shocks are not necessarily identical but independent over time

(see Miller (1976)).

17



then gpx, s, eq is increasing in e for all px, sq P Z. HP identify the conditions that imply

that the value function has increasing differences in pb, eq and use Topkis’s theorem to derive

comparative statics results. HP’s approach is summarized by the following Proposition. We

phrase Proposition 2 of Hopenhayn and Prescott (1992) differently in order to fit it to our

framework, and then compare it to our approach.20

Proposition 4. If V having increasing differences in px, eq implies that h has increasing

differences in px, b, eq for each s P S then gpx, s, eq is increasing in e for all px, sq P Z.

The idea of the proof goes as follows. If h has increasing differences in px, b, eq, then

Lemma 1 in Hopenhayn and Prescott (1992) shows that TV has increasing differences in

px, eq. Since the set of functions that has increasing differences is closed (see Topkis (2011)),

Lemma 1 implies that V has increasing differences in px, eq. Thus, h has increasing differences

in px, b, eq which from Theorem 6.2 in Topkis (1978) implies that gpx, s, eq is increasing in e

for all px, sq P Z. This approach is more general than ours, as it does not require concavity of

the utility function or differentiability. To apply Topkis’s theorem one only needs h to have

increasing differences in pb, eq. However, HP require that h have increasing differences in

px, b, eq. This is required in order to prove that TV has increasing differences. Our approach

uses concavity and the envelope condition in order to show that TV preserves increasing

differences.

If one assumes differentiability and concavity, our approach is stronger than that of HP

in the following sense. HP’s technique relies on the fact that whenever V has increasing

differences in px, eq, the function h has increasing differences in px, b, eq. Our approach, by

contrast, requires only that whenever V has increasing differences in px, eq, the function h

has increasing differences in pb, eq. This means that h has the CP property, which enables

us to use Theorem 1. Thus, whenever HP’s technique can be used, ours can be used as well.

In some applications, however, h does not have increasing differences in px, b, eq, which

does not allow the use of the lattice programming approach. In Section 5, for instance, we

show that for two labor income functions y1,y2 if y2 psq ¥ y1 psq for each state s P S, then for

every px, siq P Z the agent’s consumption is higher under y2 than under y1. We prove this

statement by showing that whenever V has increasing differences in p�x, yq, the function

h has increasing differences in p�b, yq. However, h does not necessarily have increasing

differences in p�x,�b, yq. It is therefore impossible to implement HP’s approach in this

case.

20The condition in Proposition 2 that the correspondence C is ascending is omitted here because it is

always satisfied in our framework.
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8 Final comments

8.1 Summary

In this paper we find conditions that guarantee that consumption increases as a result of

lowering interest rates. We introduce a method to derive general comparative statics results

in dynamic economies and apply it to derive a few other comparative statics results related

to income functions, discount factors and states-dynamics.

8.2 Stationary vs. non-stationary interest rate policies

In our framework the interest rate policy is stationary: it is a function that depends only on

the state of the economy and it does not depend on time (in particular, it does not depend on

the history of states.) We leave it to future research to find out the effect of non-stationary

interest rate policies on consumption and savings decisions.
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9 Appendix

Lemma 2. Let z : R ÑR and f : R Ñ R be strictly concave, continuously differentiable

functions. Let φ ¡ 0. Denote xf � argmaxxPr0,φs f pxq and xz � argmaxxPr0,φs z pxq.

(i) Assume xz P p0, φq. Then f 1 pxzq ¥ z1 pxzq if and only if xf ¥ xz.

(ii) If for all x P r0, φs we have f 1 pxq ¥ z1pxq then xf ¥ xz. Furthermore, if xz P p0, φq and

f 1 pxq ¡ z1 pxq for all x P r0, φs then xf ¡ xz.

Proof. Recall that if f is continuously differentiable and concave then for all x1, x2 we have

f px1q ¤ f px2q � f 1 px2q px1 � x2q. Furthermore, if f : R Ñ R is strictly concave and

continuous on a compact subset r0, φs � R then f has a unique maximizer on r0, φs.

(i) First assume that xz P p0, φq which implies from the optimality of xz that z1 pxzq � 0.

Since f is concave we have

f pxf q ¤ f pxzq � f 1 pxzq pxf � xzq .

From the optimality of xf we have f pxf q ¡ f pxzq, thus f 1 pxzq pxf � xzq ¥ 0 which implies

that f 1 pxzq ¥ 0 � z1 pxzq if and only if xf ¥ xz. Furthermore, if f 1 pxzq ¡ z1 pxzq � 0 then

xz � xf . For part (ii) consider two cases. The first is where xz � 0. In this case xf ¥ 0 � xz.

The second case is xz � φ which implies z1 pxq ¡ 0 for all x P p0, φq. Thus, f 1 pxq ¡ 0 for all

x P p0, φq, implying that xf � φ.

Theorem 2. Let φ ¡ 0. Assume that u exhibits SED on W :� p0, Kφ � y psnqs and that

the consumption policy function is concave in x. Then ρ2 ¥ ρ1 implies that σ px, s, ρ1q ¥

σ px, s, ρ2q for all x P p0, φs and s P S.

We first need the following two Lemmas.

Lemma 4. Let f : r0,8q Ñ r0,8q be a concave function that satisfies f p0q � 0. Then, the

function k
fpkq

is increasing on p0,8q.
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Proof. Since f is concave then the function fpkq�fpk1q
k�k1

is decreasing in k for a fixed k1. For

k1 � 0 we obtain that fpkq�fp0q
k�0

� fpkq
k

is decreasing in k, implying that k
fpkq

is increasing in

k.

Lemma 5. Fix the interest rate policy ρ and the labor income function y. Let φ ¡ 0. Assume

that u exhibits SED on W :� p0, Kφ � y psnqs and that the consumption policy is concave.

Then, for every s P S, a1 P p0, φs, a2 P r0, y psnqs, the function kV 1pa1k � a2, sq is increasing

in k on r1, Ks.

Proof. First we show that for every state s P S, xV 1px, sq is increasing in x on W . Let s P S,

a1 P p0, φs and a2 P r0, y psnqs. The envelope condition implies

xV 1 px, sq � xu1 pσ px, sqq �
x

σ px, sq
σ px, squ1 pσ px, sqq .

Let α pxq :� x
σpx,sq

and δ pxq :� σ px, squ1 pσpx, sqq. Since σ px, sq is concave in x and

σp0, sq � 0, Lemma 4 implies that α pxq is increasing in x. Since σ px, sq is strictly increasing21

in x, and cu1 pcq is increasing on W , δ pxq is also increasing in x, over the range W . Thus,

xV 1px, sq is increasing in x on W as the product of two positive increasing functions. Thus,

pa1k�a2qV
1pa1k�a2, sq � a1kV

1pa1k�a2, sq�a2V
1pa1k�a2, sq is increasing in k on r1, Ks.

Since V is concave in the first argument, a2V
1pa1k � a2, sq is decreasing in k. This implies

that kV 1pa1k � a2q is increasing in k on r1, Ks, which proves the lemma.

Proof of Theorem 2. Let I be the set of interest rate policies. We show that h has the CP

property. Let ρ2 ¥ ρ1 and assume that V 1px, s, ρ2q ¥ V 1 px, s, ρ1q for all px, sq P W � S. Fix

x P p0, φs, s P S and b P r0, xs. From Lemma 5,

ρ2 psqV
1 pρ2 psq b� y psq , s, ρ2q ¥ ρ1 psqV

1 pρ1 psq b� y psq , s, ρ2q .

This inequality and V 1px, si, ρ2q ¥ V 1 px, si, ρ1q for all px, siq P W � S imply that

β
ņ

j�1

Pijρ2 psjqV
1 pρ2 psjq b� y psjq , sj, ρ2q ¥ β

ņ

j�1

Pijρ1 psjqV
1 pρ1 psjq b� y psjq , sj, ρ2q

¥ β
ņ

j�1

Pijρ1 psjqV
1 pρ1 psjq b� y psjq , sj, ρ1q .

Adding �u1 px� bq to both sides of the last inequality yields

h1px, b, si, ρ2, V px, s, ρ2qq ¥ h1px, b, si, ρ1, V px, s, ρ1qq.

We conclude that h has the CP property. Theorem 1 proves the theorem.

Proposition 2. Let x be such that x0 ¤ x ¤ 0. Then, ρ2 ¥ ρ1 implies that σ px, s, ρ1q ¥

σ px, s, ρ2q for all s P S.

21Recall that V 1 px, sq � u1 pσ px, sqq is strictly decreasing in x for each s P S.
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Proof. Let x P rx0, 0s. Since V 1 is decreasing and b ¤ x ¤ 0 we have

ρ2 psqV
1 pρ2 psq b� y psq , s, ρ2q ¥ ρ1 psqV

1 pρ1 psq b� y psq , s, ρ2q

for each state s P S. We can continue as in the proof of Theorem 2 and prove the proposition.

Theorem 3 Fix the interest rate policy ρ. Let y1 � y2 be two labor income functions such

that y2 ¥ y1. Then,

(i) σ px, s, y2q ¥ σ px, s, y1q for all px, sq P Z.

(ii) If P ¡ 0 (i.e., Pij ¡ 0 for every i, j) then inequality (i) is strict for px, sq P Z that

satisfies σ px, s, y1q P p0, xq.

Proof. Let y2 ¥ y1. Assume V 1px, si, y2q ¤ V 1px, si, y1q for all px, siq P Z. Let px, siq P Z and

b P C pxq. For each state s P S we have the following inequality

ρ psqV 1pρ psq b� y1 psq , s, y1q ¥ ρ psqV 1pρ psq b� y1 psq , s, y2q.

Thus, we have

ņ

j�1

Pijρ psjqV
1 pρ psjq b� y1 psjq , sj, y1q ¥

ņ

j�1

Pijρ psjqV
1 pρ psjq b� y1 psjq , sj, y2q

¥
ņ

j�1

Pijρ psjqV
1 pρ psjq b� y2 psjq , sj, y2q ,

where the second inequality follows from the strict concavity of V and the fact that y2 ¥ y1.

Multiplying by β and adding �u1px� bq to each side of the last inequality yields

(6) h1px, b, si, y1, V px, s, y1qq ¥ h1px, b, si, y2, V px, s, y2qq.

This proves that h has the CP property. Theorem 1 implies that g px, s, y1q ¥ g px, s, y2q

and σ px, s, y2q ¥ σ px, s, y1q for all px, sq P Z. Note that inequality (6) is strict if y2 � y1,

P ¡ 0. Now apply Lemma 2 to prove that σ px, s, y2q ¡ σ px, s, y1q for all px, sq such that

σ px, s, y1q P p0, xq.

Proposition 3. Let y2 ¥ y1. Then the expected utility inequality r px, sq is decreasing in x

for each state s P S.

Proof. First we show that r px, sq ¤ 1 for all px, sq P Z. The proof is by induction. Let

U1 � U2 � 0. Define U t
i px, sq � maxbPCpxq h

�
x, b, s, yi, U

t�1
i

�
for all px, sq P Z, i � 1, 2 and

t � 1, 2, . . .. Then for every t, U t
i is strictly increasing, continuous, strictly concave and
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bounded. Assume that for some t ¥ 1 we have U t
2 ¥ U t

1. Let px, siq P Z and b P C pxq. We

have

U t�1
2 px, siq ¥ u px� bq � β

ņ

j�1

PijU
t
2 pρ psjq b� y2 psjq , sjq

¥ u px� bq � β
ņ

j�1

PijU
t
1 pρ psjq b� y1 psjq , sjq .

The first inequality follows from the definition of U t�1
2 . The second inequality follows from

the induction hypothesis and the fact that U t
1 is increasing in the first argument. Taking the

maximum in the RHS of the last inequality yields U t�1
2 ¥ U t�1

1 . We conclude that for every

t ¥ 1 we have U t
2 ¥ U t

1.

The Banach Theorem and the continuity of V imply that V px, s, y2q ¥ V px, s, y1q. Thus,

r px, sq ¤ 1. To prove that r px, sq is increasing in x, let s P S and note that

Br px, sq

Bx
�
V 1 px, s, y1qV px, s, y2q � V px, s, y1qV

1 px, s, y2q

rV px, s, y2s2
¥ 0,

where the inequality follows from V px, s, y2q ¥ V px, s, y1q ¥ 0 and from Theorem 3, which

implies that V 1 px, s, y1q ¥ V 1 px, s, y2q ¥ 0.

Theorem 4. Let β2 ¡ β1 be two discount factors, then g px, s, β2q ¥ g px, s, β1q for all

px, sq P Z. Furthermore, if g px, s, β1q P p0, xq then g px, s, β2q ¡ g px, s, β1q.

Proof. Assume that V 1 px, s, βq is increasing in β. Let px, siq P Z and b P C pxq. Since V 1 is

increasing in β for β2 ¥ β1 we have

ņ

j�1

Pijρ psjqV
1 pρ psjq b� y psjq , sj, β2q ¥

ņ

j�1

Pijρ psjqV
1 pρ psjq b� y psjq , sj, β1q .

Multiplying the LHS of the last inequality by β2 and the RHS of the last inequality by β1
preserves the last inequality. Adding �u1 px� bq to each side of the last inequality yields

(7) h1px, b, si, β2, V px, s, β2qq ¥ h1px, b, si, β1, V px, s, β1qq,

which from Theorem 1 proves that g px, s, β2q ¥ g px, s, β1q for all px, sq P Z. Inequality (7)

is strict if β2 ¡ β1. Thus, Lemma 2 implies that if g px, s, β1q P p0, xq, then g px, s, β2q ¡

g px, s, β1q.

Lemma 3. Assume that the transition probabilities are inertial and ρ psq � r for all s P

S. Then, V 1 px, sq is decreasing in s for all x P X and the consumption policy σ px, sq is

increasing in s for each x P X.

25



Proof. Assume that V 1px, sq is decreasing in s for all x P X. Let i ¡ k, x P X, and b P C pxq.

Since V 1 is decreasing in s we have

V 1 prb� y pskq , skq ¥ V 1 prb� y psiq , skq ¥ V 1 prb� y psiq , siq ,

where the first inequality follows from the concavity of V . Thus, V 1 prb� y psq , sq is decreas-

ing in s. Since the probabilities are inertial we have

ņ

j�1

PkjV
1 prb� y psjq , sjq ¥

ņ

j�1

PijV
1 prb� y psjq , sjq .

Multiplying by βr and adding �u1px� bq to each side of the last inequality yields

h1px, b, sk, V q ¥ h1px, b, si, V q.

Together with Theorem 1 this proves the Lemma.

Theorem 5. Assume that the transition probabilities P are inertial and ρ psq � r for all

s P S. If P ¥ Q then σ px, s, P q ¥ σ px, s,Qq for all px, sq P Z.

Proof. From Theorem 1 we need to show only that the fact that V 1px, s,Qq ¥ V 1px, s, P q for

every px, sq P Z implies that h1px, b, s, Q, V px, s,Qqq ¥ h1px, b, s, P, V px, s, P qq.

Let px, siq P Z and b P C pxq. Lemma 3 implies that V 1prb � y psq , sq is decreasing in s.

Since P first order stochastically dominates Q we have

ņ

j�1

QijV
1 prb� y psjq , sj, Qq ¥

ņ

j�1

QijV
1 prb� y psjq , sj, P q

¥
ņ

j�1

PijV
1 prb� y psjq , sj, P q .

Multiplying by βr and adding �u1px� bq to each side of the last inequality yields

h1 px, b, si, Q, V px, s,Qqq ¥ h1 px, b, si, P, V px, s, P qq ,

which proves the theorem.

Theorem 6. Assume that Pij � θj for all si P S and that the interest rate is r. In this

case the savings policy function does not depend on the state s. Let θ,θ1 be two distributions.

Assume that θ is riskier than θ1 and u1 is convex. Then, for all x P X, g px, θq ¥ g px, θ1q.
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Proof. Lemma 1 in Miller (1976) shows that if u1 pcq is convex then V 1 px, θq is convex in

x for a fixed distribution θ. Assume V 1 px, θq ¥ V 1 px, θ1q for all x P X. Let x P X and

b P C pxq. We have

ņ

j�1

θjV
1 prb� y psjq , θq ¥

ņ

j�1

θ1jV
1 prb� y psjq , θq

¥
ņ

j�1

θ1jV
1 prb� y psjq , θ

1q ,

where the first inequality follows from the fact that the function fpaq :� V 1prb�a, θq is convex

and non-increasing in a and from θ second order stochastically dominating θ1. Multiplying

by βr and adding �u1px� bq to each side of the last inequality yields

h1px, b, θ, V px, θqq ¥ h1px, b, θ1, V px, θ1qq,

which together with Theorem 1 proves that g px, θq ¥ g px, θ1q for all x P X.
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