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1 Introduction

1.1 Regret-free strategies

Both in real life and in game theory, the term ”regret” relates to the amount of dissatisfaction a

person might have about his past actions or behavior. This kind of assessment in retrospect is

significant when the decision making is done over and over again.

In a sequential decision problem the decision maker (DM) ought to take an action every

period. Upon taking an action he receives a stage-payoff that depends also on a stochastic state

of nature. Consider, for instance, a trader interacting with a market. The trader is unaware of

the exact way the market evolves. Instead, he assess his past performance in comparison with

the best he could do against the market’s empirical distribution of states. Having no-regret in

this situation formally means that the decision maker’s past performance is not inferior to the

performance of the best among a list of pre-specified strategies. For instance, having no external

regret means that past performance is at least as good as that of the best stationary strategy.

Hannan [14] was the first to discuss regret-free strategies. He proved the existence of an

external regret-free strategy. Hannan’s results implies1 that the trader has a strategy that could

perform as well as any stationary strategy. In particular, the DM is doing as well as the constant

strategy that plays the best response against the empirical distribution of states.

This paper deals with a situation where the information about past outcomes reaches the

DM with delay. It applies, for instance, to a case where market information, as it often occurs in

real life, does not reach the trader instantaneously but rather with delay. We show that delayed

information might still allow regret-free strategies to exist. Exact bounds on the time delay that

ensures the existence of a regret-free strategy are provided.

1.2 Main results

The first part of the paper assumes that the DM is eventually informed of the outcome of every

stage. That is, any information related to the decision problem that might have occurred in the

past, will eventually reach the DM. It turns out that if the time delay grows at a moderated rate,2

for instance if the information about the state of nature at time n is delayed for 100 periods, then

a regret-free strategy exists. A simple example shows that this bound is tight, meaning that if

the delay time increases faster than o(n), then a no-regret strategy might not exist.

The second part studies regret-free strategies with stochastic delayed information. We prove

1Under the assumption that there are finitely many states of nature.
2Formally, if the information about time n is obtained before o(n) periods after n (the notation o(n) stands

for any function f(n) such that f(n)/n→ 0).
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that a regret-free strategy exists even when the DM is not fully informed of past states. Specifi-

cally, we show that whenever the DM is getting a fair amount of informative data with sufficiently

high probability3 he has a regret-free strategy. We exemplify this result through a specific model

where the information the DM receives about previous outcomes is not only delayed, but also

inaccurate, and yet allows a regret-free strategy to exist.

The third part is devoted to studying the rate of convergence of past performance to being

regret-free. Blackwell’s condition and Hannan’s no-regret result prove that the rate of convergence

cannot be better than n−1/2. In other words, at time n, the best the DM could hope for is that

past performance falls short of the best achievable by cn−1/2, where c is a constant. We give a

new bound on the rate of convergence based on the time delay. We also show that when time

delay increases with time in a linear fashion,4 the strategy discussed becomes a bounded-regret

strategy, rather than regret-free.

Analyzing the case of time delay has a further advantage, namely, it enables one to generalize

no-regret strategies to cases that involve transaction cost. We show that a regret-free strategy

exists also when the DM incurs an extra cost any time he decides to change his mode of action.

1.3 No-regret and approachability

The main tool we use is an extension of Blackwell’s Approachability Theorem [2]. Blackwell

considered a sequential decision problem where the DM’s payoff at each stage is a vector in a

finite-dimensional space. A pre-specified target set C in the payoff space is said to be approachable

by the DM if he has a strategy that ensures that the difference between the average payoff and

its closest point in C converges to zero with probability 1 as time grows unboundedly. Blackwell

characterized the sets that are approachable when the DM fully monitors the outcomes of the

game and the information about time n is available immediately.

Hart and Mas-Colell [15] were the first to note that no-regret theorems can be proven using

Blackwell’s Approachability Theorem. Foster and Vohra [10, 11] used games with vector payoffs

to show a process that converges to correlated equilibrium. DeMarzo, Kremer and Mansour [9]

used regret minimization for option pricing and online algo trading. They showed that using a

strategy minimizing his regret, the trader can derive a fairly accurate option price compared to

the Black-Scholes model.

In recent years, Approachability Theory has also been used to find processes that converge

to correlated equilibrium (see, for instance, Foster and Vohra [10] and Hart and Mas-Colell [15]).

3More precisely, information about at least n past outcomes until time n+ o(n) with a probability higher than

1− n−α (where α > 1).
4That is, when information about time n arrives at time n+ cn.
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Rustichini [27], using Blackwell’s Approachability Theorem, obtained a no-regret theorem when

the DM has imperfect monitoring. These applications deal with a finite number of constraints.

Lehrer [19] proved an Approachability Theorem when the payoffs are infinite-dimensional; this

result has been employed by Lehrer [18] and by Sandroni, Smorodinsky, and Vohra [28] to con-

struct manipulating strategies. Aumann and Maschler [1] utilized Blackwell’s Theorem to show

the existence of a value in infinitely repeated games with incomplete information. Lehrer and

Solan [21] examined simple strategies and their power to guarantee approachability.

All these results were based on the assumption that the DM, the person who tries to approach

a target set, is perfectly informed about the outcome of each stage and this information reached

him immediately after the stage is over. In this paper, we consider a situation where the infor-

mation the DM receives is delayed and involves a certain amount of noise: rather than getting

instantaneous information about the actual outcome, the DM receives a delayed and noisy signal

that might reveal only partial information about past outcomes. While the issue of noisy signal

obtained with no delay was partially treated by Lehrer and Solan [22], the subject of no-regret

with information lag (using the terminology of Levy [23]) was not discussed so far.

Time delay in dynamic games has been discussed by Shmaya [29] in the context of perfect

information infinite zero-sum game. Shmaya analyzed the case where the information is delayed

but eventually becomes perfect, i.e., when the DM becomes aware of the history with an arbi-

trarily high accuracy after a sufficiently long time. Levy [23] analyzed zero-sum stochastic games

when one or both players (nature can be considered as the second player) observe past actions

of their opponent with a time-dependent delay – information lag. Recently Fudenberg et al. [12]

examined equilibrium in repeated games when players’ signals about the actions of others arrive

with a certain lag.

1.4 Structure of the paper

In Section 2 we present the model, definitions, and main results. Blackwell’s Approachability

Theorem along with problems that arise when information is delayed are discussed in Section

3. In Section 4 we prove the existence of a regret-free strategy under time delay and partial

information. Our proof is based on two specific deterministic and stochastic signaling functions.

Section 5 discusses rates of convergence and bounded-regret strategies. We conclude this paper

by presenting an additional application of the time-delay regret-free strategy in models that

include transactions costs (Section 6).

3



2 Regret-free strategies

2.1 The model

A sequential decision problem with one DM is a triplet (I,J ,U), where I is the finite set of

actions, J is the finite set of states of nature, and U : I × J → R is the payoff function. At every

stage n, the DM chooses an action in ∈ I, simultaneously nature chooses a state jn ∈ J , and the

DM receives a payoff of U(in, jn) ∈ R.

A history of length n is a sequence of n actions and n states, hn = (i1, j1, i2, j2, ..., in, jn).

For every n, define Hn to be the set of all histories of length n and H =
⋃
n(I × J)n to be the

set of all histories. For any ht, hn ∈ H we say that ht � hn (resp. ht ≺ hn) if ht is a prefix of hn

(resp. ht � hn and t < n). Denote H = (I × J)∞, where each element h∞ ∈ H will be referred

to as a play. The nth prefix of the play h∞ ∈ H is denoted by hn ∈ H.

For any play h∞ = (i1, j1, i2, j2, . . . ), we denote by Un(h∞) = Un(hn) = 1
n

∑n
t=1 U(it, jt)

the average payoff up to stage n. The range of U is extended to ∆(I) ×∆(J) in a multi-linear

fashion. For every play h∞ and every action i ∈ I, let hn,i be the history (i, j1, i, j2, ..., i, jn),

where the DM plays constantly the action i (it = i for every t ∈ {1, . . . , n}), while the states of

nature remain unchanged (i.e., coincide with those in h∞).

A sequential decision problem with time delay and imperfect monitoring is a sequential de-

cision problem (I,J ,U) with a set of signals S =
⋃
n Sn and two functions: the delay function

φ : H → N and the signaling function5 ψ : Hn → ∆(Sn), where Sn is a finite set of signals

relevant to histories of length n and ∆(Sn) is the set of distributions on Sn.

Let hn ∈ H be a history of length n. The DM receives at stage φ(hn) ≥ n a noisy signal

ψ(hn) that stochastically depends on hn. For every play h∞ ∈ H and every n, denote Qn(h∞) =

Qn(hn) = ×k; φ(hk)≤nSk. The set Qn(h∞) consists of all possible histories of signals that the

DM might have received (through the signalling function) up to time n and after hn. We assume

that the DM recalls his past actions and signals. Thus, a strategy σ of the DM is a function

σ :
⋃
n(In × Qn) → ∆(I). At any period the DM may condition his mixed action on his past

actions as well as on the signals he already received.

A strategy of nature is a function τ : H → ∆(J). Any pair (σ, τ) of the DM’s and nature’s

strategies induces a probability distribution Pr σ,τ on the set H of plays.

5For the sake of simplicity references to measurability requirements will be henceforth omitted.
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2.2 Internal and external regret

Hannan defined a regret-free strategy by comparing the DM’s actual payoff to his best hypothet-

ical payoff had he played consistently the same action.

Definition 1. Let ε ≥ 0.

(i) A strategy σ is ε-regret-free if for every strategy τ of nature and every action i ∈ I,

Pr σ,τ

(
h∞; lim inf

n→∞

(
Un(hn)− Un(hn,i)

)
≥ −ε

)
= 1.

(ii) A strategy σ is regret-free if it is 0-regret free.

In other words, assuming that the evolution of the states of nature is independent of the DM’s

actions, σ is regret-free if it guarantees him no less than what he could get had he played the

best response to the empirical distribution of the states of nature. Hannan’s no regret notion is

usually referred to as external no regret.

Remark 1. Since external regret is based on comparing the actual average payoff with the hy-

pothetical average payoff had the DM played constantly some fixed action, we can consider an

equivalent decision problem with vector payoffs. Each coordinate i of the vector payoff is the

difference between the actual stage payoff and the payoff had the DM played action i repeatedly

throughout the game. That is, the payoff at time n is x(in, jn) = (U(in, jn)− U(i, jn))i∈I . This

is the “regret vector” of the DM for deciding to play action in instead of any other action i. The

regret vector is what links between sequential decision problems and vector-payoff dynamic games.

External regret is not the only way to evaluate one’s strategy. Hart and Mas-Colell [15] and

Fudenberg and Levine [13] introduced a stronger no-regret notion than external regret. This

notion, commonly referred to as internal regret, compares the DM’s actual average payoff with

what he might have gained had he insistently replaced one action with another.

Formally, for every pair of actions i, i′ ∈ I and every play h∞ = (i1, j1, i2, j2, . . . ), define the

average payoff up to time n by

Rn(i, i′, hn) =
1

n

n∑
t=1

(Iit=iU(i′, jt) + Iit 6=iU(it, jt)) ,

where hn ≺ h∞. Given the play h∞, Rn(i, i′, hn) is the average payoff had the DM played the

action i′ instead of i every time the latter was played.

Definition 2. Let ε ≥ 0.
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(i) A strategy σ is ε-internal regret free if for every strategy τ of nature and every two actions

i, i′ ∈ I,

Pr σ,τ

(
h∞; lim inf

n→∞
(Un(hn)−Rn(i, i′, hn)) ≥ −ε

)
= 1.

(ii) A strategy σ is internal regret free if it is 0-internal regret free.

When σ is an internal-regret-free strategy, the DM cannot gain by replacing one action with

another throughout the game.

2.3 The main result

The main result shows the balance between the uncertainty embedded in ψ and the delay ex-

pressed by φ that ensures the existence of a regret-free strategy. Plainly, if the delay is too large

(meaning that φ increases rapidly) and, in addition, the signaling function ψ is not sufficiently

informative, then a regret-free strategy does not exist.

Fix a play h∞. By time n the DM received a sequence of signals s ∈ Qn(h∞). In addition

he knows his own actions, i1, . . . , in. Had the DM known the strategy τ of nature, he could

calculate the probability that jn1
, . . . , jnm were the realized states at times n1, . . . , nm, resp.

This probability is denoted as Prσ,τ (jn1
, . . . , jnm |i1, . . . , in, s).

Definition 3. Let p ∈ [0, 1] and m ≤ n be natural numbers. A play h∞ is (m,n, r)-revealing if

for hn ≺ h∞, for every s ∈ Qn(h∞), and for every τ and σ, there are m periods n1, . . . , nm ≤ n

such that

Pr σ,τ (jn1
, . . . , jnm |i1, . . . , in, s) ≥ r.

That is, a play h∞ is (m,n, r)-revealing if no matter what τ is, for every sequence of signals

s ∈ Qn(h∞), there are m periods n1, . . . , nm ≤ n such that the DM can identify the true states,

jn1
, . . . , jnm , with probability of at least r. For example, if ψ(hm) = (im, jm) and φ(hm) ≤ m+n

then every play h∞ is (m,n, 1)-revealing.

Definition 4. The functions ψ, φ are sufficiently informative if for every σ and τ , there is

α > 1 such that the plays h∞ that are (n, n+ o(n), 1− n−α)-revealing for sufficiently large n

have probability 1.

When the functions ψ, φ are sufficiently informative, then from some stage onwards there are

at least n stages such that the DM is aware of the realized states of nature during these stages

until time n+ o(n) with probability of at least 1− n−α.

Theorem 1. (Main Theorem) If ψ and φ are sufficiently informative, then the DM has a regret-

free strategy.
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Remark 2. Regret-free theorems under imperfect monitoring usually compare the realized payoff

to the minimal payoff possible that is still consistent with the signals the DM received (e.g.,

Rustichini [27]). In our model, however, since the DM is informed of the states of nature with

high probability, we define the no-regret notion as it is defined in perfect monitoring models.

The bounds stated in Theorem 1 are tight. The following example shows that in case the

conditions do not hold, the DM does not necessarily have a regret-free strategy.

2.4 A long delay might prevent the existence of regret-free strategy

Example 1.

Consider the matching pennies game:

H T

H –1 1

T 1 –1

where at each stage n, the DM and nature need to decide between ‘Heads’ and ‘Tails’, denoted

by H and T , respectively. After each stage the DM receives the payoff indicated in the matrix

above, depending on both the realized action and the state.

Suppose that the DM is informed of the realized state jn only at time 2n. In terms of the

signalling function ψ and the delay function φ, this means that ψ(hn) = (in, jn) and φ(hn) = 2n

for every hn = (i1, j1, ..., in, jn). We show that the DM does not have a regret-free strategy.

Lemma 1. The DM does not have a regret-free strategy.

Proof. Consider the possibility that for every n ≥ 0, the state of nature j2n is chosen

randomly (with equal probabilities) and the following 2n − 1 states are identical to j2n . Since

φ(hn) = 2n, during the periods between 2n and 2n+1 − 1 the DM is informed only of the states

that had been realized prior to stage 2n.

Fix a stage n, a history h2n , and a strategy σ of the DM. Denote the average number of times

the DM played ‘T’ (resp., ‘H’) from stage 2n until stage 2n+1 − 1 by tn (resp., bn) and denote

the constant state during these stages by Gn. Denote the average payoff of the DM from stage

2n until stage 2n+1 − 1 by Ũ2n(h2n). Then
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Pr
(
∃i : Ũ2n(h2n) ≤ 0, Ũ2n(h2n,i) = 1

)
= Pr (Gn = T ) · Pr

(
bn ≤

1

2
, i = H

∣∣∣∣Gn = T

)
+ Pr (Gn = H) · Pr

(
tn ≤

1

2
, i = T

∣∣∣∣Gn = H

)
=

1

2

[
Pr

(
bn ≤

1

2

)
+ Pr

(
tn ≤

1

2

)]
≥ 1

2
,

where the last equality is due to the fact that the DM is informed of Gn only after stage 2n+1−1.

Since Ũt(ht,i) = 1 for t = 2n−1, 2n−2 yields that U2n(h2n,i) ≥ 1
2 , one can show in a similar way

that

Pr

(
∃i : Ũ2n(h2n) ≤ 0, Ũ2n(h2n,i) = 1, U2n(h2n,i) ≥

1

2

)
≥ 1

8
,

thus

Pr

(
∃i : Uk(hk) ≤ Uk(hk,i)−

1

4

)
≥ Pr

(
∃i : Uk(hk) ≤ 1

2
, Uk(hk,i) ≥

3

4

)
≥ 1

8
,

for k = 2n+1. Note that the last inequality is independent of the history prior to stage 2n−2 and

the result follows for the last inequality and the Borel-Cantelli Lemma.

3 Blackwell’s Approachability Theory with delayed infor-

mation

In this section we present Blackwell’s Approachability Theorem and condition. We show that

Blackwell’s condition, although sufficient for approachability under perfect monitoring conditions,

fails when information is delayed for too long.

3.1 The classical Approachability Theory

Let C be a convex and closed set in R|I|. We will refer to C as the target set. For every x ∈ R|I|

denote by ΠC(x) the closest point to x in C and for every sequence {xt}∞t=1 ⊂ R|I| denote by

xn = 1
n

∑n
t=1 xt the arithmetic average of its first n elements.

Definition 5. The sequence {xt}∞t=1 approaches C if ‖xn −Πc(xn)‖ converges to zero.

Recall that the vector payoff of every stage t ∈ N in the vector payoff decision problem was

defined by x(it, jt) = (U(it, jt)− U(i, jt))i∈I ∈ R|I|.

Definition 6. The set C is approachable by the DM if there exists a strategy σ such that for every

strategy τ of nature, {x(it, jt)}∞t=1 approaches C almost surely (with respect to the distribution

induced by σ and τ).
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The central theme of Approachability Theory is to find conditions under which C is approach-

able by the DM. The following Blackwell’s condition guarantees approachability.

Definition 7. The set C and the payoff function x satisfy Blackwell’s condition if for every

y ∈ R|I| there is a mixed action p ∈ ∆(I) of the DM such that

〈y −ΠC(y), x(p, q)−ΠC(y)〉 ≤ 0, (1)

for every q ∈ ∆(J).

In words, Blackwell condition states that for every vector y in R|I|, there is a mixed action p

of the DM that guarantees that, against any mixed state q of nature, the expected payoff corrects

the error of y relative to C in the sense that the expected payoff x(p, q) and y sit on different

sides of the hyperplane that supports C and is perpendicular to the line y −ΠC(y).

The case where ψ(hn) = (in, jn) and φ(hn) = n is the case of perfect monitoring. At any

stage n the DM is fully informed of the exact previously realized state, jn−1. Blackwell’s Ap-

proachability Theorem [2] states that under perfect monitoring, if C and x satisfy Blackwell’s

condition, then C is approachable by the DM. By setting the target set C to be the non-negative

orthant, C = {x ∈ R|I| : xi ≥ 0, i = 1, . . . , |I|}, any strategy that approaches C is a regret-free

strategy in the original sequential decision problem.

Blackwell [2] provided a sufficient condition for a set to be approachable, and Hou [17] and

Spinat [30] fully characterized the family of approachable sets.

3.2 Blackwell’s condition does not guarantee approachability when in-

formation is delayed

Blackwell’s condition does not guarantee approachability when the information received by the

DM is delayed for too long. The following example illustrates this point.

Example 2.

Consider the following game:

L R

T (–1,1) (0,0)

B (0,0) (1,–1)

The DM has two actions, T andB, and nature has two states, L andR. Let C = {(y1, y2); y1, y2 ≥

0} be the positive orthant of R2. A straightforward examination shows that x and C satisfy Black-

well’s condition. Suppose that the time delay, signaling function, and strategy of nature τ are

similar to the ones described in Example 1.
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Lemma 2. With probability 1, there are infinitely many n’s such that the average payoff at time

2n is bounded away from C.

Proof. For simplicity, let us consider a reduction of the game mentioned above to the 1-

dimensional case.

L R

T –1 0

B 0 1

Both the DM and nature maintain the same actions and states defined in the 2-dimensional

game, however C will be the singleton C = {0}. This reduction is obvious due to the fact that

the payoffs (in the vector payoff game mentioned above) lie symmetrically with respect to the

point (0, 0) along the line {(y,−y);−1 ≤ y ≤ 1} and the possibilities of both the DM and nature

preserve their relative features.

Denote by (Yn, Zn) ∈ ∆(I) × J the average actions of the DM and state of nature between

periods 2n and 2n+1 − 1. That is, Yn = (tn, bn) and Zn ∈ {L,R} when Yn is independent of Zn.

Fix ε > 0 and for every n define the event Dn = {‖x(Yn, Zn)‖ < ε}. Let Bm =
⋂∞
n≥mDn. Bm is

an increasing sequence of events. It is sufficient to show that6 Pr(Dc
n i.o.) = 1 or, equivalently,

Pr(
⋃∞
m=1Bm) = 0.

Assume that C is approachable by the DM and Pr (
⋃∞
m=1Bm) = a > 0. Note that Pr (

⋃∞
m=1Bm) =

lim
m→∞

Pr(Bm), therefore there exists N0 ∈ N such that Pr(Bm) ≥ a
2 for all m ≥ N0.

Note that

Pr(Dn) =
1

2
[Pr(tn < ε|Zn = L) + Pr(bn < ε|Zn = R)]

=
1

2
[Pr(tn < ε|Zn = L) + 1− Pr(1− tn ≥ ε|Zn = R)]

=
1

2
[Pr(tn < ε|Zn = L) + 1− Pr(tn ≤ 1− ε|Zn = R)] ≤ 1

2
.

Furthermore,

Pr(Dn ∩Dn+1) ≤ 1

2
[Pr(Dn+1|Dn)]

≤ 1

22
[Pr(tn+1 < ε|Dn, Zn+1 = L) + Pr(bn+1 < ε|Dn, Zn+1 = R)] ≤ 1

22
.

Continuing inductively we obtain that Pr
(⋂m+k

n≥mDn

)
≤ 1/2k, which suggests that for large

enough k ∈ N and m ≥ N0,

Pr(Bm) ≤ Pr

m+k⋂
n≥m

Dn

 ≤ 1

2k
<
a

2
,

6We denote the term ”infinitely often” by i.o.
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in contradiction with Pr(Bm) ≥ a
2 > 0 ∀m ≥ N0.

Note that without any time delay the DM can guarantee that the average payoff will converge

to C.

4 Regret-free strategies with time delay

In order to prove Theorem 1, we need two preliminary propositions, which are based on specific

deterministic and stochastic signaling functions.

Since the validity of the Approachability Theorem under general signaling functions yields

the existence of a regret-free strategy, the proofs of the propositions and theorems will be given

in terms of approachability instead of no-regret.

4.1 Deterministic information with time delay

In the model of imperfect monitoring (see, e.g., Rustichini [27], Mannor and Shimkin [25], Cesa-

Bianchi, Lugosi, and Stoltz [5], Lugosi, Mannor and Stoltz [24], Blum and Mansour [3], Lehrer

and Solan [21] and Perchet [32]) the signal that the DM receives does not depend on the entire

history hn. Rather, ψ(hn) is Markovian and depends only on the last state and action played,

that is, ψ(hn) = ψ(in, jn). In this paper, the signal that the DM receives may depend, and it

typically does, on the entire history hn.

Recall that after time φ(hn) the DM receives a signal ψ(hn). We say that the signal ψ(hn)

depends deterministically on the history hn if, for every n, ψ(hn) = ψ(h′n) implies that hn = h′n.

In other words, without loss of generality, ψ(hn) = hn = (i1, j1, i2, j2, ..., in, jn). In Proposition

1, we assume that ψ(hn) depends deterministically on the history hn and show that when φ(hn)

is bounded by n+ o(n), a regret-free strategy exists.

Proposition 1. If φ(hn) = n+ o(n) and ψ(hn) depends deterministically on hn, the DM has a

regret-free strategy.

In order to prove Proposition 1, we first need to present our generalization of the Approach-

ability Theorem and more specifically, the generalization of the geometric principle behind ap-

proachability.

Approachability’s Geometric Principle. The original Blackwell condition is based on a

rather simple geometric principle: Let z1, z2, . . . be a bounded sequence of points in R|I|. If for

every k

〈zk+1 −ΠC(zk), zk −ΠC(zk)〉 ≤ 0, (2)
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then the sequence {zk}∞k=1 approaches C. That is, ‖zk −ΠC(zk)‖ → 0 as k →∞.

Lemmas 3 and 4 extend this principle to contexts that are relevant to delayed information.

Their proofs are postponed to the Appendix.

Lemma 3. [First extension of approachability′s geometric principle] Let z1, z2, . . . be a bounded

sequence of points in R|I| and let α1, α2, . . . be a sequence of non-negative real numbers, with

α1 > 0. Denote Ak =
∑k
l=1 αl and let zk = 1

Ak

∑k
l=1 αlzl be the weighted average of z1, z2, . . . , zk.

Suppose that αk
Ak
→ 0 and Ak →∞ as k →∞. If for every k

〈zk+1 −ΠC(zk), zk −ΠC(zk)〉 ≤ 0, (3)

then {zk}∞k=1 approaches C.

Lemma 4. [Second extension of approachability′s geometric principle] Let z1, z2, . . . be a bounded

sequence of points in R|I| and let α1, α2, . . . be a sequence of non-negative real numbers, with

α1 > 0. Denote Ak =
∑k
l=1 αl and let zk = 1

Ak

∑k
l=1 αlzl be the weighted average of z1, z2, . . . , zk.

Suppose that αk
Ak
→ 0 and Ak →∞ as k →∞. If for every k

〈zk+1 −ΠC(zk−1), zk−1 −ΠC(zk−1)〉 ≤ 0, (4)

then {zk}∞k=1 approaches C.

The difference between Lemmas 3 and 4 is that in (3) the inner product involves zk while in

(4), it involves zk−1.

The generalization presented in Lemmas 3 and 4 has a simple interpretation. The DM receives

new information about past states with a certain delay. The time that passes between two periods

where the DM receives new information is the reason for introducing the weights (α1, α2, . . . ).

The weight αk is the number stages from the time the DM received the kth signal until he received

the (k+1)st signal. After receiving the new information, the DM can play an action that corrects

the error of the average payoff, relative to C (in the sense of Ineq. (4)), until he obtains another

piece of information.

Proof of Proposition 1. Define the strategy σ of the DM as follows. Fix a history hn ∈ H.

After history hn, the DM is familiar with every average payoff, xt, such that ht ≺ hn and

φ(ht) ≤ n. Define t(hn) to be largest t that satisfies ht ≺ hn and φ(ht) ≤ n. The strategy

σ prescribes to play independently the same mixed action at all histories hm that are strict

continuations of hn (i.e., hn ≺ hm) and satisfy t(hn) = t(hm). That is, the DM plays the same

mixed action until he receives new information. The mixed action p∗ ∈ ∆(I) to be played is the

one that satisfies

12



〈
xt(hn) −ΠC(xt(hn)), x(p∗, q)−ΠC(xt(hn))

〉
≤ 0, (5)

for every mixed state q of nature.

In the first stages (until time φ(h1) + 1) the DM plays arbitrarily. Since φ(hn) is finite for

every n and history hn, σ is well defined.

Fix an infinite sequence of states τ = {jl}∞l=1. For every play h∞, let αk denote the number

of stages from the kth signal till the (k+ 1)st signal with respect to h∞ and φ. Let Ak =
∑k
l=1 αl

and assume that the kth signal reached the DM at time n. Since φ(hn) = n + o(n), it follows

that

αk ≤ φ(hn)− n = o(n). (6)

Note that αk and Ak are random variables that depend on the play and, by definition,

Ak = Ak−1 + αk = n+ αk.

Hence, Ak → ∞ and αk
Ak
→ 0 as n → ∞ (i.e., for every h∞, see Lemma 8 in the Appendix). In

addition, Ak →∞ if and only if n→∞.

Consider the rounds played from the kth signal till the (k+1)st signal as a single round game,

denoted by Gk, in which the payoff is the average payoff received during these αk periods, which

we denote by zk. The action played during these stages, namely in Gk, is the mixed action p

that satisfies Eq. (5). This action was played independently.

Note that at stage Ak the average payoff, which was denoted by xAk , equals 1
Ak

∑k
l=1 αlzl.

The independence of the action played in every Gk according to the strategy σ (satisfying Eq.

(5)) and the properties of αk and Ak ensure that the conditions for Lemma 4 are satisfied,

therefore the set C is approachable by the DM, in the sense that ‖xm − ΠC(xm)‖ convergence

to 0.

The next proposition weakens the conditions of Theorem 1 by allowing general delay and

signaling functions during a finite number of stages.

Proposition 2. Fix N0 ∈ N. If φ(hn) = n + o(n) and ψ(hn) depends deterministically on hn

for all n ≥ N0, then the DM has a regret-free strategy.

Proof. Since

lim
n→∞

1

n

n∑
t=1

x(it, jt) = lim
n→∞

1

n

[
N0∑
t=1

x(it, jt) +

n∑
t=N0+1

x(it, jt)

]

= lim
n→∞

1

n

N0∑
t=1

x(it, jt) + lim
n→∞

1

n

∞∑
t=N0+1

x(it, jt),

13



it follows that lim
n→∞

1
n

∑n
t=1 x(it, jt) = lim

n→∞
1
n

∑∞
t=N0+1 x(it, jt). Thus, every strategy that follows

the strategy σ specified in the proof of Proposition 1 only from stage N0 onwards, is regret-free.

4.2 Stochastic information with time delay

This subsection deals with a specific stochastic signaling function. Since this signaling function

does not depend deterministically on histories hn, we will introduce a new regret-free strategy

which will be later used in the proof of Theorem 1.

The values of the new signaling function ψ are stochastic and defined as follows. For every

possible state of nature there is a specific distribution on the set {0, 1}. At time φ(hn), the DM

receives a signal consisting of n bits. Each 0 or 1 bit is chosen with respect to the identifying

distribution of the relevant past state of nature. The DM needs to collect enough signals in order

to gain a good understanding of past states, but he will never have absolute certainty about them.

At each stage there is a positive probability that the DM’s understanding of past occurrences is

wrong.

Formally, for every z ∈ [0, 1] denote by B(z) the Bernoulli distribution with parameter z: if

X ∼ B(z), then Pr(X = 1) = z = 1 − Pr(x = 0). Let η : J → P be a bijection from J to

P = {pi ; i = 1, . . . ,m, 0 ≤ p1 < · · · < pm ≤ 1}. The signal ψ(hn) the DM receives about

history hn is a word of n bits,

ψ(hn) = (X1
n, . . . , X

n
n ),

where X1
n, . . . , X

n
n are independent of each other, independent of {X l

k}k<n,1≤l≤k, and Xt
n ∼

B(η(jt)) for every n ∈ N. That is, the bit Xt
n which was received at time φ(hn) (along with n−1

other bits) and relates to the realized state jt is chosen according to the identifying distribution

B(η(jt)).

Since the parameters of the Bernoulli distributions for the different states of nature are differ-

ent from each other, this signaling function gradually enables the DM to have a good assessment

of past states. We will now find the number of stages Tn that the DM needs in order to identify

n states of nature with high probability.

For every t, denote the moving average of the Xt
n’s by

F (t, T ) =
1

T − t

T∑
n=t+1

Xt
n.

Intuitively, one can think of F (t, T ) as the average of the signals from time t + 1 until time T

concerning the state of nature jt. Fix 0 < ε < 1
4 min
j,j′∈J

|pj − pj′ | and define the event Ct,T by

14



Ct,T = {|F (t, T )− η(jt)| ≤ ε}. Since Xt
n are i.i.d. with distribution B(η(jt)), by the strong law

of large numbers, F (t, T ) converges to η(jt) with probability 1.

We say that the DM can identify the states of nature j1, . . . , jn with probability higher than

p at time T if Pr (
⋂n
t=1 Ct,T ) ≥ p. Therefore, the average payoff xn is identified with probability

higher than p at time T if j1, . . . , jn can be identified with probability higher than p at time T

and the average payoff, according to (i1, j1, . . . , in, jn), is xn. Obviously, as the game progresses

the DM receives more and more signals about jt and, as Proposition 3 shows, the DM has a

regret-free strategy.

Lemma 5. For every decision problem there is a fixed δ > 0 such that for every sufficiently large n

and history hn, the DM can identify with probability higher than 1− 1
n2 at time Tn = n+d 4δ ln(n)e

the states j1, . . . , jn.

It follows from Lemma 5 that for every n and history hn, the time until the DM can identify

hn with probability higher than 1− 1
n2 is bounded from above by n+ o(n). The proof of Lemma

5 is given in the Appendix.

Proposition 3. If for every n the information about histories hn is obtained through the signaling

function ψ defined in Subsection 4.2 and φ(hn) = n+o(n), then the DM has a regret-free strategy.

Proof. Let N0 � 1 be a positive natural number such that the approximation in Eq. (17)

holds for all n ≥ N0 (meaning that for every n ≥ N0 the DM can identify with probability higher

than 1− 1
n2 at time Tn = n+ d 4δ ln(n)e the realized states j1, . . . , jn of nature).

Define the strategy σ of the DM as follows. Until stage TN0
, the strategy σ prescribes playing

arbitrarily. For every n ≥ N0, the strategy prescribes playing the same mixed action repeatedly

from stage Tn until stage Tn+1. The mixed action p∗ ∈ ∆(I) to be played is the one that satisfies

〈xn −ΠC(xn), x(p∗, q)−ΠC(xn)〉 ≤ 0 ∀q ∈ ∆(J).

It follows from Lemma 5 that for every n ≥ N0 the average payoff xn is identified with probability

higher than 1− 1
n2 from stage Tn. That is, the DM plays the mixed action p∗ ∈ ∆(I) according

to xn only from the stage he can identify j1, . . . , jn with probability higher than 1− 1
n2 .

Let Vn be the event that the DM played the mixed action p∗ according to xn when xn is

not the actual average payoff until time n. This means that for some t < n, |F (t, Tn)− η(jt)| >

ε. For every n ≥ N0, Pr(Vn) = Pr (
⋃n
t=1 {Ct,Tn}c) ≤

1
n2 , which implies that

∑∞
n=1 Pr[Vn] ≤∑N0

n=1 Pr[Vn]+
∑∞
n=N0+1

1
n2 <∞. By the Borrel-Cantelli Lemma, Pr[Vn i.o.] = 0. It follows that

with probability 1 there is M0 ∈ N such that, for all n ≥ M0, the DM played the mixed action

p∗ according to xn when xn is the actual realized average payoff. Since the time delay, including

Tn, is bounded by n+ o(n), the conditions of Proposition 2 hold and the result follows.
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4.3 Proof of Theorem 1

In this section we prove Theorem 1. This theorem generalizes both the deterministic and the

stochastic cases since it does not depend on a specific signaling function.

Since the functions φ and ψ are sufficiently informative, there is an α > 1 such that the plays

h∞ that are
(
n, n+ o(n), 1− 1

nα

)
-revealing for sufficiently large n have probability 1. Thus, for

every τ , σ, and s ∈ Qn+o(n)(h∞) there are n stages t1, . . . , tn such that

Pr σ,τ (jt1 , . . . , jtn |i1, . . . , in+o(n), s) ≥ r.

That is, the DM can identify with probability higher than 1 − 1
nα at least n previous states

of nature by time n+ o(n), for some α > 1 and every n large enough. Let the DM use the same

strategy previously defined in the proof of Proposition 3 and let Wn be the event that the DM

played the mixed action p∗ according to xn when xn is not the actual average payoff (with a

slight abuse of notation, we now use xn to denote the average payoff of the states t1, . . . , tn).

By the Borrel-Cantelli Lemma, Pr[Wn i.o.] = 0. Therefore, almost surely there is some

N1 ∈ N such that for all n ≥ N1, the DM plays the mixed action p∗ when xn is the actual

average payoff and, by the bound on φ, the result follows from Proposition 2.

Note that the DM does not necessarily know hn, but some n previous plays. However, since

the strategy is based only on knowing only the average outcome of previous plays, the result still

holds.

5 Bounded regret and rates of convergence

In the previous sections we provided conditions that ensure the existence of a regret-free strategy

in the presence of delay. In this section we focus on cases where regret-free strategies need not

exist and on the rates of convergence of regret-free strategies to the target set in the vector payoff

game7.

5.1 Bounded regret

We will now show that our previous extensions of Blackwell’s Approachability Theorem in Lem-

mas 3 and 4 are useful in situations with time delay larger than o(n). Example 1 shows that

a regret-free strategy need not exist once the time delay is linear. However, bounded-regret

strategies – strategies which are ε-regret free – might still exist.

The following theorem shows that the strategy presented in Proposition 1 is still useful in

cases where the time delay is linear.

7We will sometimes refer to this as the rates of convergence of regret-free strategies.
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Theorem 2. If β > 0 is such that for every play h∞ and n ∈ N, φ(hn) ≤ n+ βn, then the DM

has a 2MG

√
7β-regret free strategy.

This theorem shows that, given a linear delay function with a slope of β which is small relative

to 1
(MG)2 , the DM still possesses a small regret-free strategy.

Proof. It follows from the proof of Proposition 1 and Lemmas 3 and 4 that a strategy is

ε-regret free if the distance between zk and C is asymptotically bounded by ε.

Eq. (16) and Lemma 7 in the Appendix show that

‖zk −ΠC(zk)‖2 ≤ 7M2 max

{
k∑
l=2

αlαl−1
A2
k

,

k∑
l=1

α2
l

A2
k

}
≤ 28M2

G

αlk
Alk

,

where αlk = max
l=1,...,k

αl and M ≤ 2MG.

Since φ(hn) ≤ n+ βn, the term
αlk
Alk

is bounded from above by β (as αk
Ak
≤ nβ

n = β) and the

result follows.

5.2 Rates of convergence

The original Blackwell condition with perfect monitoring guarantees the DM a rate of convergence

of 1√
n

. A natural question is how time delay changes the rate of convergence to the target set, or,

equivalently, the rate of convergence of the regret-free strategy. Knowing the differences between

the rates of convergence gives a good assessment of the importance of constant monitoring and

strategy updating. In cases of limited time to react and other constraints on resources, a DM

might prefer not to update his strategy on each round, although he can, if the rate of convergence

is sufficient for his needs.

The rate of convergence under time delay is mainly affected by the fact that the DM does not

update his action unless he receives new information. Recall that after receiving the kth signal,

the DM plays the same action for αk stages (using the notation of Proposition 1) and this action

will be updated only after receiving the (k + 1)st signal.

Theorem 3. If for every play h∞ and n ∈ N, φ(hn) ≤ n+ o(n) and ψ(hn) depends determinis-

tically8 on hn, then the rate of convergence of the regret-free strategy is o(1).9

Proof. We have to consider two cases: the αk’s are bounded by some constant θ ∈ R and

the αk’s are unbounded.

8This condition concerns the deterministic signaling function. The stochastic function requires the condition

of Proposition 3.
9o(1) is a function that converges to 0 as n goes to infinity.
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Using Ineq. (18) from Lemma 7 (in the Appendix), we obtain

1

A2
k

k∑
l=1

α2
l ≤

αlk
Ak

, (7)

where αlk = max
l=1,...,k

αl. Since αk is bounded by some large enough θ for every k, the bound on

the left-hand side of Ineq. (7) becomes

1

A2
k

k∑
l=1

α2
l ≤

θ

Ak
≤ θ

n
.

The same holds for the second sum in Ineq. (16), proving that in case of bounded weights the

rate of convergence is in fact n−
1
2 , as in the original Approachability Theorem.

On the other hand, the rate of convergence in the case the αk’s are unbounded might be

weaker, up to o(1), depending on how the weights behave asymptotically. Ineq. (7) still holds

under the current conditions, however αk is unbounded, therefore αlk goes to infinity as n→∞.

From Ineq. (6), the upper and lower bounds on αlk are 0 ≤ αlk ≤ o(n). Thus,

1

A2
k

k∑
l=1

α2
l ≤

αlk
Ak
≤ αlk
n+ αk

≤ o(1),

where the last passages follow also from Ineq. (19) and Eq. (20) in the Appendix, and the

statement holds.

6 Application: Regret-free strategy with transaction costs

The regret-free strategy with time delay is applicable in scenarios other than time delay, where

one of which is the case of trading with transaction costs.

The problem of sequential portfolio selection has been broadly discussed by Cover [6, 7],

Cover and Ordentlich [8] and Helmbold, Schapire, Singer and Warmuth [16]. Stoltz and Gabor

[31] combined the concept of regret minimization with on-line portfolio selection, but without

transaction cost. Blum and Kalai [4] examined Cover’s universal algorithm with transaction costs

and showed that an updated algorithm can preform almost as well as the constant re-balanced

portfolio.

However, a regret-free portfolio selection strategy with transaction cost is yet to be found.

This section shows the application of our regret-free strategy with time delay when considering

transaction costs.

Consider a model with no time delay where the DM is a trader working with an online learning

algorithm. At every stage n the trader chooses a mixed action, pn ∈ ∆(I), which indicates the
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structure of the portfolio of the trader at time n. Simultaneously, the market moves to a state

qn ∈ ∆(J) and the trader receives a stage payoff of U(pn, qn) − c‖pn − pn−1‖ for some fixed

positive real number c that represents the transaction cost. The payoff at each stage depends on

the portfolio of the trader, the market’s behavior, and the transaction cost c.

On the one hand, the trader wishes to update his portfolio in order to adjust to the market’s

behavior. On the other hand, frequent updating might be too costly. It turns out that regret-free

strategies with time delay might be of help in this problem.

A regret-free strategy with transaction cost. For every strategy σ of the trader, define

the function lσ : H → N such that lσ(hn) is the last stage the trader updated his portfolio

with respect to hn, time n, and σ. For example, if lσ(hn) = n
2 then from stage n

2 until stage n

the trader constantly chose the same mixed action p ∈ ∆(I) according to σ and therefore the

transaction cost during these stages was 0.

Fix 0 < β < 1 and N ∈ N. The regret-free strategy σ1 of the trader allows him to choose a

portfolio arbitrarily until stage N . By definition, lσ1
(hN ) is the last stage that the trader updated

his portfolio. The strategy prescribes that the trader next updates the portfolio, according to

the condition of Eq. (5), only on stage lσ1
(hN ) + lσ1

(hN )β . In other words, the trader needs to

wait from stage lσ1(hN ) another lσ1(hN )β stages until he can update his portfolio, where lσ1(hN )

is the time of the last update.

Continuing inductively, for every n > N the strategy σ requires the trader to update his

portfolio only on stage lσ1
(hn) + lσ1

(hn)β . Note that as long as the trader does not update his

portfolio from stage n until stage n + k for some k ∈ N, it holds that lσ1(hn) = lσ1(hn+m) for

every m ≤ k.

This decision to update the portfolio on specific delayed stages relates to the time-delay model,

since the mixed actions (according to our proposed strategy in Proposition 1) are updated only

after a new signal reaches the DM. It is easy to verify that Proposition 1 and Proposition 2

guarantee that the strategy σ1 is in fact regret free and the average transaction cost diminishes

to 0. That is, the strategy σ1 guarantees the trader no less than what he could get had he

repeatedly chosen the best response portfolio, with respect to the empirical distribution of the

states of the market.

However, this strategy can be very costly in terms of rate of convergence. Therefore, we will

now prove that an even better regret-free strategy exists.

A regret-free strategy with transaction cost and improved rate of convergence. The

improved strategy σ2 is defined as follows. Let the first update of the portfolio be after the first

stage. For every k ∈ N the strategy σ2 prescribes that the kth update of the portfolio, according
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to the condition of Eq. (5), will be after exactly k rounds from the last update.

Formally, fix a history hn. The last update of the portfolio of the trader occurred on stage

lσ2
(hn). Assume that until stage lσ2

(hn) (not including) the portfolio was updated k − 1 times

for some k ∈ N. The strategy of the trader states that the next update (the (k + 1)st update),

according to the condition of Eq. (5), will be on stage lσ(hn) + k + 1.

Lemma 6. The strategy σ2 is regret free with a rate of convergence of o(n−
1
2 ).

Proof. The trader’s strategy requires that he delay the updating of the portfolio although he

constantly receives new information. The delay defined in strategy σ2 satisfies the same condition

stated in Proposition 1 for the delay function in the time-delay model. Hence, it follows from

Proposition 1 and Proposition 2 that σ2 is regret free.

Fix k ∈ N. Recall that the αk’s in Proposition 1 denoted the number of stages from the

(k−1)st until the kth signal in the time-delay model. In the transaction cost model αk translates

to the number of stages from the (k − 1)st until the kth update of the trader’s portfolio.

Assume that the (k − 1)st update of the portfolio occurred on stage n. According to the

strategy σ2, αk = k and the next update should be on stage n+ k. Note that

Ak =

k∑
l=1

αk = n+ αk = n+ k =

k∑
l=1

l =
k(k + 1)

2
,

and therefore

n =
k(k + 1)

2
− k =

k(k − 1)

2
≤ (k + 1)2

2
.

Consequently,

αk
Ak

=
2k

k(k + 1)
≤
√

2

n
. (8)

Also, note that the average transaction cost until time n+ k is Ck/(n+ k). As n = k(k− 1)/2 ≥

(k − 1)2/2,

Ck

n+ k
≤ Ck

n
≤ C(

√
2n+ 1)

n
. (9)

Since the rate of convergence of the regret-free strategy depends on the average tranaction cost

and on the convergence of αk/Ak to 0 (see Lemma 7 in the Appendix), the result follows from

Eqs. (8) and (9).

Remark 3. Our proposed model and strategies differ from previous work in several ways. The

natural portfolio selection model considers a list of assets. The utility of the DM is the value of

his portfolio relative to the closing prices of the assets and his initial investment, and not on a

stage payoff. In our model the trader can stay with the same action throughout the stages without
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paying transaction fees, whereas the portfolio selection model requires the trader to sell and buy

assets in order to re-balance his portfolio at every stage. Another difference is that our our

cumulative payoff is additive and not multiplicative. A full examination of a regret-free portfolio

selection with transaction cost is left for future research.
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7 Appendix

Proof of Lemma 3.

‖zk −ΠC(zk)‖2 ≤ ‖zk −ΠC(zk−1)‖2 (10)

≤
[
Ak−1
Ak

]2
‖zk−1 −ΠC(zk−1)‖2 (11)

+

[
αk
Ak

]2
‖zk −ΠC(zk−1)‖2

+ 2
αk
Ak

Ak−1
Ak

〈zk −ΠC(zk−1), zk−1 −ΠC(zk−1)〉

≤
[
Ak−1
Ak

]2
‖zk−1 −ΠC(zk−1)‖2 (12)

+

[
αk
Ak

]2
‖zk −ΠC(zk−1)‖2 ,

where Ineq. (10) and Ineq. (11) follow from the fact that ΠC(zk) is the closest point to zk in C

and that zk = Ak−1

Ak
zk−1 + αk

Ak
zk. Ineq. (12) follows from (3). Continuing inductively we obtain,

‖zk −ΠC(zk)‖2 ≤
[
α1

Ak

]2
‖z1 −ΠC(z1)‖2 +

k∑
l=2

[
αl
Ak

]2
‖zl −ΠC(zl−1)‖2

≤ M

k∑
l=1

α2
l

A2
k

, (13)

for some large constant M , since {zk}∞k=1 is bounded and C is compact.
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Since αk
Ak
→ 0 and Ak →∞, it follows that lim

k→∞

k∑
l=1

α2
l

A2
k

= 0 (see Lemma 7 in the Appendix),

and the result follows.

Proof of Lemma 4. Starting in the same way as in the proof of Lemma 3, Ineq. (10) and Ineq.

(11) still hold and the last term before (12) is

γ := 2
αk
Ak

Ak−1
Ak

〈zk −ΠC(zk−1), zk−1 −ΠC(zk−1)〉 .

The assumption of Lemma 4 does not require γ to be non-positive, as in Lemma 3. Nonetheless,

γ = 2
αk
Ak

Ak−1
Ak

〈zk −ΠC(zk−1) + ΠC(zk−2)−ΠC(zk−2), zk−1 −ΠC(zk−1)〉 .

By the bilinearity of the inner product,

γ = 2
αk
Ak

Ak−1
Ak

〈zk −ΠC(zk−2), zk−2 −ΠC(zk−2)〉

+ 2
αk
Ak

Ak−1
Ak

〈zk −ΠC(zk−2), zk−1 − zk−2 + ΠC(zk−2)−ΠC(zk−1)〉

+ 2
αk
Ak

Ak−1
Ak

〈ΠC(zk−2)−ΠC(zk−1), zk−1 −ΠC(zk−1)〉

≤ 2
αk
Ak

Ak−1
Ak

|〈zk −ΠC(zk−2), zk−1 − zk−2〉| (14)

+ 2
αk
Ak

Ak−1
Ak

|〈zk −ΠC(zk−2),ΠC(zk−2)−ΠC(zk−1)〉|

+ 2
αk
Ak

Ak−1
Ak

|〈ΠC(zk−2)−ΠC(zk−1), zk−1 −ΠC(zk−1)〉| ,

where (4) yields Ineq. (14). Note that

‖zk−1 − zk−2‖ =

∥∥∥∥∥ 1

Ak−1

k−1∑
l=1

αlzl −
1

Ak−2

k−2∑
l=1

αlzl

∥∥∥∥∥
=

∥∥∥∥∥αk−1zk−1Ak−1
−
(

1

Ak−2
− 1

Ak−1

) k−2∑
l=1

αlzl

∥∥∥∥∥
=

∥∥∥∥αk−1zk−1Ak−1
− αk−1zk−2

Ak−1

∥∥∥∥ ≤M αk−1
Ak−1

for some constant M , as in the proof of Lemma 3. Also note that the mapping ΠC(·) is non-

expansive. From the Cauchy-Schwartz Inequality one concludes that

γ ≤ 2
αk
Ak

Ak−1
Ak

(
M2 +M2 +M2

) α2
k−1

A2
k−1
≤ 6

αkαk−1

Ak
2 M2. (15)

Combining Ineq. (15) with Ineq. (11) and Ineq. (13) yields

‖zk −ΠC(zk)‖2 ≤ 6M2
k∑
l=2

αlαl−1
A2
k

+M2
k∑
l=1

α2
l

A2
k

≤ 7M2 max

{
k∑
l=2

αlαl−1
A2
k

,

k∑
l=1

α2
l

A2
k

}
. (16)
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The assumptions αk
Ak
→ 0 and Ak → ∞ imply that lim

k→∞

k∑
l=2

α2
l−1α

2
l

A2
k

= 0 and lim
k→∞

k∑
l=1

α2
l

A2
k

= 0

(see Lemma 7 in the Appendix) and the result follows as in the proof of Lemma 3.

Proof of Lemma 5. Let T ∈ N be a positive natural number. From time t + 1 until time

T the DM receives T − t signals concerning the realized state jt, {Xt
t+1, X

t
t+2, . . . , X

t
T }. Since

E[Xt
n] = η(jt) <∞, Var[Xt

n] <∞, then by the law of large numbers

‖F (t, T )− η(jt)‖ → 0 as T →∞ a.s.

Define

δ = min
α=±1,η(jt)

{D (η(jt) + εα, η(jt))},

where D(x, y) = x log(xy ) + (1− x) log(1−x
1−y ). Using Chernoff’s Inequality,

Pr(Ct,T ) ≥ 1− 2 exp(−δ(T − t)).

Hence,

Pr

(
n⋂
t=1

Ct,T

)
≥

n∏
t=1

(1− 2 exp(−δ(T − t))) ≥ (1− 2 exp(−δ(T − n)))n

≈ exp

(
− 2n

exp(δ(T − n))

)
for n� 1. (17)

Taking T = Tn = n+ d 4δ ln(n)e,

Pr

(
n⋂
t=1

Ct,T

)
& exp(−2n−3) ≥ 1− 1

n2
,

as desired.

Lemma 7. Let α1, α2, . . . be a sequence of non-negative real numbers and denote Ak =
∑k
l=1 αl.

If lim
k→∞

Ak =∞ and lim
k→∞

αk
Ak

= 0, then

(i) lim
k→∞

k∑
l=1

α2
l

A2
k

= 0,

(ii) lim
k→∞

k∑
l=2

αl·αl−1

A2
k

= 0.

Proof. We will start by proving (i). For every k, choose lk ∈ {1, . . . , k} that satisfies

αlk = max
l=1,...,k

αl. Since all the terms in Ak are non-negative,
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k∑
l=1

α2
l

A2
k

≤

(
max
l=1,...,k

αl

)
·
k∑
l=1

αl

A2
k

=
αlk ·Ak
A2
k

=
αlk
Ak

=
αlk
Alk
· Alk
Ak

. (18)

The index lk can either tend to infinity or be finite. If lim
k→∞

lk = ∞, then lim
k→∞

αlk
Alk

= 0 and

Alk
Ak
≤ 1, hence lim

k→∞

k∑
l=1

α2
l

A2
k

= 0. On the other hand, if lim
k→∞

lk < ∞, then lim
k→∞

Alk
Ak

= 0 and
αlk
Alk
≤ 1 and the result follows.

For (ii), note that

k∑
l=2

αl·αl−1

A2
k

≤

(
max

l=1,...,k−1
αl

)
·
k∑
l=1

αl

A2
k

≤

(
max

l=1,...,k
αl

)
·
k∑
l=1

αl

A2
k

and continue as in the

proof of Ineq. (18).

Lemma 8. Using the terminology of Proposition 1, assume that φ(hn) ≤ n + o(n) and αk

denotes the number of stages from the kth signal until the (k + 1)st signal for a given h∞. Then

Ak =
k∑
l=1

αl →∞ and αk
Ak
→ 0 as n→∞.

Proof. The delay function φ is non-decreasing with respect to ≺ and bounded by n ≤

φ(hn) ≤ n + o(n). Assume that the kth signal reached the DM at time n. From Eq. (6) we

conclude that

Ak =

k∑
l=1

αl = n+ αk ≤ φ(hn).

Therefore,
αk
Ak

=
αk

n+ αk
≤ o(n)

n
(19)

and

Ak = αk + n→∞ as n→∞, (20)

as claimed.
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