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Abstract

We investigate a two-period Bayesian persuasion game, where the receiver faces
a decision, akin to a one-armed bandit problem: to undertake an action, gaining
noisy information and a corresponding positive or negative payoff, or to refrain.
The sender’s objective is to dissuade the receiver from taking action by furnish-
ing information about the payoff. Our findings describe the optimal strategy for
the amount and timing of information disclosure. In scenarios where the sender
possesses knowledge of the receiver’s first-period action or observes a noisy pub-
lic signal correlated with it, the optimal strategy entails revealing information in
the second period. If this alone proves to be insufficient to dissuade the receiver
from acting, supplementary information is provided in the first period. In scenar-
ios where information must be provided without conditioning on the receiver’s
first-period action, the optimal strategy entails revealing information exclusively
in the first period.
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1. Introduction

In the Bayesian persuasion model, an informed sender communicates with an unin-
formed receiver to influence the receiver’s choices. The key question is how much in-
formation should the sender disclose to maximize her payoff. In a multi-period game,
timing is also crucial – the sender needs to determine when to reveal the information.

The classical model of Kamenica and Gentzkow (2011) and its subsequent varia-
tions assumed that the sender is the only source of information for the receiver, see
the survey Kamenica (2019). Recent papers have explored models where the receiver
has an additional source of information, independent of the play.

In certain dynamic interactions, the receiver’s choice affects not only the payoffs,
but also the amount of information he acquires about the state of nature. For instance,
in bandit problems, an agent who pulls a risky arm receives not only a stochastic
payoff, but also information about the machine’s probability of success, leading to
an explore-exploit trade-off. This paper seeks to understand how this characteristic
affects the timing and amount of information the sender should reveal to the receiver
if her goal is to dissuade the receiver from taking certain actions.

In our model, the receiver can act or refrain. When the receiver acts, he obtains a
gain or incurs a loss, depending on the state of nature. The state in which acting implies
a gain is denoted by 𝐺 and the state under which it implies a loss is denoted by 𝐿. If
the receiver refrains, he receives neither a payoff nor information. If the receiver acts,
a noisy signal is generated, whose distribution depends on the state of nature. This
signal plays two roles: it determines the receiver’s payoff and it provides information
to the receiver about the true state of nature. The sender suffers a cost whenever the
receiver acts. Hence, the sender’s objective is to minimize the number of times the
receiver acts.

An important motivation for our study is law enforcement, and, in particular, tax
evasion.1 The sender is an enforcement agency and the receiver is an offender. The
state of nature represents the amount of resources deployed for enforcement (or en-
forcement efficiency), which determines the probability of punishment. The state 𝐺 ,
where the offender gains, corresponds to few resources (low efficiency) and state 𝐿,
where the offender loses, corresponds to many resources (high efficiency). The of-
fender has prior beliefs about the state of nature, and he can learn more about it by
offending (i.e., selecting act) and observing whether he is detected or not (i.e., the
signal). In other words, acting also serves as an exploration mechanism. The law en-
forcement agency, on its part, contemplates whether to reveal information about its
resources (efficiency) to deter wrongdoing, or whether to remain silent leaving the
offender in the dark.

We investigate a two-period model. The receiver has the incentive to act if he
assigns a high probability to state 𝐺 and to refrain if he assigns a low probability
to this state. In the intermediate range of beliefs, it might still be beneficial for the
receiver to act in period 1 despite the associated cost, because the information learned
by this action in period 1 can generate a gain in period 2.

1Our study applies naturally to any one-armed bandit problem where there is an additional player
who has superior knowledge about the state of nature and who aims at dissuading the decision maker
from acting, see examples in Section 3.
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Since exploration hurts the sender, she may attempt to discourage it by revealing
information in period 1 or by offering to reveal information in period 2.2 Revealing
information in period 2 may or may not depend on the receiver’s action in period 1,
or more generally on the information the sender possesses about the receiver’s action
in period 1.

We investigate three distinct information provision structures that differ in infor-
mation design and equilibrium outcomes:
• Unconditional Information Provision: the sender observes neither the receiver’s ac-

tions nor his signals. In this scenario, any information revealed in period 2 is dis-
closed regardless of the action taken in, or on the outcome of, period 1.

• Action-Based Information Provision: the sender observes the receiver’s action in pe-
riod 1 and can condition the revelation of information in period 2 on these actions.

• Signal-Based Information Provision: the sender observes the signal generated by the
receiver’s action, but not necessarily the action itself, and can condition the revela-
tion of information in period 2 on this signal.

Except when the prior belief of the state 𝐺 is below a certain threshold level and it is
optimal for the sender to disclose no information, the optimal information structure
is different for the three models.

Efficiency. The aforementioned information structures are evaluated by comparing
their outcomes to the benchmark case in which no information is provided. The num-
ber of times the receiver acts in this case is an upper bound of the number of times he
acts in any equilibrium when the sender can provide information. The receiver’s pay-
off in this benchmark case is a lower bound of his equilibrium payoff when the sender
can provide information. Normalizing the payoff in state𝐺 (resp., 𝐿) to 1 (resp., −𝑐 for
𝑐 > 0), the receiver’s payoff in the benchmark case is also a lower bound on the num-
ber of times the receiver acts in any equilibrium, and hence it is also a lower bound on
the sender’s loss in equilibrium.

We show that in the three scenarios of information provision we study, the sender
can reduce, to her own benefit, the number of times the receiver acts relative to the
benchmark case. In essence, this is because the receiver, without information, may
take actions that are detrimental to him in some states of the nature. The most ef-
fective way to do so is when information revelation can be based on the receiver’s
actions. In this variation, the sender can, in many cases, attain the lower bound of her
loss. Under Signal-Based Information Provision, as long as the receiver’s action and
his signal are sufficiently correlated, the equilibrium strategies and outcomes are no
different than under Action-Based Information Provision, so in many cases the sender
can still achieve the lower bound of her loss. On the other hand, under Unconditional
Information Provision, the sender cannot achieve the lower bound of her loss, and, not
surprisingly, this one is the worst for her among the three variations under consider-
ation.

Intuitively, the aim of information revelation when the sender can base her strategy
on actions or signals is two-fold. First, the sender wants to dissuade the receiver from
acting in period 1. This is achieved by conditional information revelation, which acts

2In both cases, we mean revealing information before the receiver decides whether to act or refrain.
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as a ‘reward’ or incentive for the receiver to refrain in period 1. Second, the sender
seeks to manipulate the receiver’s belief in a way that maximizes her own payoff,
similar to other persuasion models. Conditioning information provision on behavior
allows the sender, in some instances, to tailor the information quantity such that the
receiver obtains no benefit compared to the no-information scenario. This enables the
sender to achieve the desired lower-bound outcome. However, when information is
delivered unconditionally (in either period 1 or 2), it enhances the receiver’s potential
payoff compared to the no-information case. This is because the receiver can combine
the provided information with his own signals to gain an advantage. Consequently,
the sender cannot achieve the lower bound in this scenario.
Timing. In the Unconditional Information Provision model, the optimal strategy for
the sender is to send a single message in period 1. This message either induces the re-
ceiver’s prior belief to the maximum level that leads him to refrain in both periods, or
it instills full certainty that the state of nature is 𝐺 , prompting action in both periods.
Interestingly, promising to disclose information in period 2 as an incentive to deter the
receiver from acting in period 1 is inefficient. This is because the Unconditional Infor-
mation Provision cannot serve as a reward for either acting or refraining. However,
promising to disclose information in period 2 can dissuade the receiver from acting
in period 1 when acting in period 1 entails costs. To further explain the inefficiency
of disclosing information as an incentive, consider a scenario where acting in period
1 entails costs but provides valuable information for period 2 that may still justify it.
A naive approach might suggest deterring action in period 1 by disclosing equivalent
information in period 2. However, this would not suffice. The unconditional nature
of the disclosure lets the receiver combine the disclosed information with the infor-
mation gained from acting in period 1, granting him an advantage. To dissuade the
receiver from acting in period 1 would necessitate an excessive amount of promised
information in period 2 compared to what could be attained by providing information
solely in period 1.

In contrast, under Action-Based and Signal-Based Information Provision, the op-
timal strategy is to postpone information revelation to period 2, and to condition it
on the receiver’s action or on the public signal in period 1. Thus, in these scenarios,
the information serves as a reward for refraining in period 1. When the prior belief is
moderate, this reward is sufficient to achieve its goal. When the receiver has optimistic
beliefs about the true state of nature, the reward is insufficient to ensure no action in
period 1. In such instances, supplementary information must be disclosed at the outset
of period 1. This early provided information guarantees that the information promised
in period 2 can serve as an effective carrot.
The “clear-message” strategy. A feature common to all scenarios is that, in equi-
librium, the sender utilizes a “clear-message” strategy. In such a strategy, the sender
reveals that the state of nature is𝐺 with positive probability, and otherwise maintains
a sufficiently high level of uncertainty about the true state of nature. To this, the re-
ceiver responds with a “compliance” strategy, where he takes the harmful action only
when the sender reveals that the state of nature is 𝐺 .

The reason why efficient information revelation features these equilibrium strate-
gies is as follows. In our setup, the sender can “pay” the receiver with information,
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which the receiver utilizes to optimize his actions and payoffs. The receiver obtains a
maximal payoff, normalized to 1, when he acts if the state of nature is 𝐺 . When he is
not completely sure that the state is 𝐺 , and still takes the harmful action, his payoff is
less than the maximal possible payoff, but the sender suffers the same cost. This means
that when the receiver is unsure that the state is 𝐺 and still takes the harmful action,
the sender, by revealing information with positive probability, can keep the payoff to
the receiver unchanged, while at the same time reducing the harm to herself. Thus, it
is part of the equilibrium strategy that the receiver acts only when he is certain that
the state of nature is 𝐺 .3

An interesting consequence of this equilibrium property is that the receiver does
not utilize the exploration opportunities offered by his harmful action. In equilibrium,
the receiver only takes the informative action when he already knows that the ac-
tual state is 𝐺 , rendering his actions void of any informational gain. Throughout the
game, the receiver solely relies on the information supplied by the sender. Simply put,
in equilibrium, the sender effectively eradicates the receiver’s ability to gain private
knowledge through her strategically optimal information provision.
Our Contribution. This paper presents two significant contributions to the litera-
ture. Firstly, it introduces a Bayesian persuasion model where the receiver can take
actions that influence his own information. This unique feature in our model is, to
the best of our knowledge, missing in the literature. Previous dynamic models have
explored scenarios where the receiver receives exogenous information or where his
actions affect the beliefs of subsequent receivers. Our model is the first to examine a
situation where the receiver’s actions directly impact his own beliefs, and thereby, his
subsequent behavior.

Our second contribution is in providing new insights regarding optimal informa-
tion revelation. We show the importance of the timing of information disclosure as
a function on what the information disclosure can or cannot be based on. When the
sender observes the receiver’s actions or the public signal, information is largely back-
loading. That is, the sender delays information provision as much as possible. More-
over, when backloading is insufficient to deter acting in period 1, supplementary in-
formation must be revealed in period 1. To the best of our knowledge, this is the first
time such a phenomenon has been observed in the literature. On the other hand, when
the sender lacks visibility into the receiver’s actions or the public signal, information
disclosure is solely frontloading, with the sender revealing information at the earliest
possible opportunity.
Related Literature. The literature on Bayesian persuasion studies how an informed
player can influence the beliefs and decisions of another player by strategically reveal-
ing information to maximize her own payoffs. Numerous studies analyze static mod-
els.4 There is also a growing literature that focus on dynamic models. These models
allow the sender to provide partial information along the play, potentially conditional

3Compare with Ely and Szydlowski (2020); Solan and Zhao (2021); Zhao et al. (2024).
4See, e.g., Matysková and Montes (2018); Arieli and Babichenko (2019); Orlov et al. (2020); Liao

(2021); Montes (2022); Ui (2022a,b).
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on the history of the game.5 In some of these studies the receiver can obtain additional
information beyond what the sender provides, for instance, from independent sources.
The classes of dynamic games studied in the literature vary considerably. This makes
comparisons among papers a hard task. We focus on the papers most relevant to our
paper, highlighting the key differences. While these studies are similar to ours in cer-
tain aspects, for example, in utilizing information as an incentive tool, our paper offers
a distinct element: the receiver can actively gather information through his actions,
which he can then utilize to his benefit. This distinctive element, giving strategic ex-
ploratory quality to actions, distinguishes our model from the existing literature. A
second difference between our paper and the literature concerns the research ques-
tion. While the literature assumes that the sender observes the receiver’s actions, and
therefore can condition information disclosure on these actions, we study how varying
the monitoring technology of the sender affects the resulting equilibrium.

Zhao et al. (2024) explores a repeated game scenario wherein the sender’s objective
is to maximize the (discounted) frequency with which the receiver opts for the sender’s
preferred action. The optimal strategy for the sender involves revealing information
precisely when the sender’s preferred action does not align with the receiver’s best
response in the static game. In line with our findings, Zhao et al. (2024) demonstrates
that by conditioning information disclosure on specific actions, the sender uses infor-
mation as an incentive to encourage the receiver to favor the desired action. Notably,
our study differs in that the receiver lacks observation of his own stage payoff and
relies solely on information provided by the sender. It implies that in persuading the
receiver to adopt a particular action, the sender should consider only the receiver’s
payoff, without factoring in additional information the receiver may acquire through
his chosen action, as in our model.

Bizzotto et al. (2021) present a stopping model wherein a sender endeavors to per-
suade a receiver to accept an offer before a specified deadline. The receiver’s deci-
sion to accept the offer hinges on the uncertainty of the prevailing state of the world.
While the receiver has the option to wait and accumulate information, doing so incurs
a cost attributed to the time value of money. Information, crucial to decision-making,
can originate either from the sender, often denoted as inside information, or from an
external source, referred to as outside information. A key distinction between their
model and ours lies in the nature of outside information, which, in their framework, is
beyond the control of both the sender and receiver. In contrast, our model allows the
receiver to acquire information not only from the sender, but also under his control,
exhibiting a new aspect of the dynamics of information acquisition and strategic in-
teraction. In Bizzotto et al. (2021) the outside information is restricted to be decisive:
either revealing with some probability that the state is bad, or with some probability
that the state is good. In our model, distinguished by its repeated game nature as op-
posed to a stopping scenario, the outside source of information is never decisive. The
absence of conclusive outside information in our setting adds a layer of complexity to
the interplay between beliefs, information acquisition, and strategic decisions.

5See, e.g.,Renault et al. (2013); Kremer et al. (2014); Ganglmair and Tarantino (2014); Hörner and
Skrzypacz (2016); Ely (2017); Renault et al. (2017); Halac et al. (2017); Che and Hörner (2018); Honryo
(2018); Ely and Szydlowski (2020); Bizzotto et al. (2021); Su et al. (2022); Lehrer and Shaiderman (2023);
Zhao et al. (2024).
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Ely and Szydlowski (2020) study the role of information as an incentive device in
a dynamic moral hazard framework. An agent works on a task of uncertain difficulty.
The principal knows the task difficulty and can provide information over time in order
to induce the agent to work as long as possible. The main difference between this paper
and ours is that in the former the sender is the only source of information, while in
ours, the agent’s action generates information as well. In addition, in our paper, the
sender aims at dissuading the agent, while in their paper she aims at inducing him to
work as long as possible. This distinction generates significant behavioral differences.
Moreover, the model of Ely and Szydlowski (2020) is a quitting game, while our model
is a repeated game. Nevertheless, our paper shares similar features, in particular that
information can function as an incentive device.

Orlov et al. (2020) study a continuous-time quitting game (e.g., exercising a real
option), where the payoffs depend on two random parameters: the realization of a
geometric Brownian motion which is publicly known, and a binary parameter known
only to the sender. Two types of misalignment between the sender and the receiver are
considered. In their model, the receiver obtain information about the binary parameter
only through the sender.

A recent paper by Best and Quigley (2023) shares with our paper the idea that an
action of the receiver produces information that is used in the longer term. However,
in this paper, there is no long-term interaction between the sender and the receiver, as
the sender meets a sequence of short-run receivers, and questions such as the optimal
timing of information disclosure to a receiver and the exploration/exploitation issues
are not addressed. Moreover, the focus of Best and Quigley (2023) is markedly differ-
ent, as it aims to analyze how reputation can substitute for exogenous commitment
and under what communication/monitoring technology the resulting equilibrium can
replicate the outcome of (static) Bayesian persuasion, where exogenous commitment
is instead assumed.

Our leading example focuses on the interaction between law enforcement agencies
and offenders. Several studies, including Hernández and Neeman (2022) and the refer-
ences therein, explore Bayesian persuasion of this topic in static models. For instance,
Lazear (2006) demonstrates in one-shot interactions that providing information to po-
tential offenders can increase compliance levels. Similarly, Lando and Shavell (2004)
show that focusing law enforcement resources on a subgroup of offenders can increase
deterrence. In this context, it is well established that future compliance is affected by
punishment (see, e.g., Dušek and Traxler, 2022).
The structure of the paper. The paper is structured as follows. Section 2 describes
the model. Section 3 discusses several applications, in particular, law enforcement
and tax evasion. Section 4 studies the benchmark case where the sender provides
no information. Section 5 examines the case where the sender provides information
unconditionally. Sections 6 and 7 present the most intriguing results from a behavioral
standpoint. In Section 6, the sender can base her messages to the receiver on the choice
made by the receiver in period 1. In Section 7, the sender can base her messages on
the signal generated by the receiver’s action; in the law enforcement setup, the signal
represents whether the offender was detected and punished for her offense or not. All
proofs are relegated to the appendix.
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2. The Model

The game under consideration involves two players: a sender (“she”) and a receiver
(“he”). It is a two-period, incomplete-information game with two possible states of
nature: 𝐺 and 𝐿.6 The prior probability of state 𝐺 is 𝑞 ∈ (0, 1).

At the outset of the game, the sender is informed of the realized state, while the
receiver is not. This incomplete information model sets the stage for strategic commu-
nication and persuasion, with the sender aiming to influence the receiver’s decision
making.

In each of the two periods, which we refer to as period 1 and period 2, the receiver
can decide to ‘act’ (A) or ‘refrain’ (R). Acting is costly to the sender and it may imply
either a gain or a loss to the receiver depending on the state of nature, while refraining
implies zero payoff to both players.

Before the receiver decides whether to act or to refrain, the sender can send a mes-
sage to the receiver from a set 𝑀 that contains at least two messages. Moreover, by
acting, the receiver may obtain a (noisy) signal on the state of nature. Specifically, the
signal is either positive (+) or negative (−). When the state is 𝐺 (resp., 𝐿), the proba-
bility of a positive signal is 𝛼𝐺 (resp., 𝛼𝐿), while the probability of a negative signal is
1−𝛼𝐺 (resp., 1−𝛼𝐿). We assume that 𝛼𝐺 > 𝛼𝐿 . That is, the probability of obtaining the
positive signal is higher at the state 𝐺 than at the state 𝐿. In contrast, when choosing
action R, the receiver obtains neither a stage payoff, nor an informative signal. For-
mally, we assume that, when choosing R, the signal is positive with probability one in
both states.

The receiver’s payoff when he acts depends on the signal realization. Namely, a
positive signal implies a positive payoff, while a negative signal a negative payoff,
hence the expected payoff is larger at 𝐺 than at 𝐿. We normalize payoffs so that the
receiver’s expected stage payoff is 1 at 𝐺 and −𝑐 at 𝐿, for some 𝑐 > 0.

Table 1 summarizes the state-dependent probability of signals and the expected
payoffs of the receiver when taking actions A or R.

Act (A) Refrain (R)
Signal probability Expected

Payoff
Signal probability Expected

PayoffState (+) (−) (+) (−)

𝐺 𝛼𝐺 1 − 𝛼𝐺 1 1 0 0
𝐿 𝛼𝐿 1 − 𝛼𝐿 −𝑐 1 0 0

Table 1: Signals probabilities and the receiver’s expected payoff

The sender’s stage payoff is determined entirely by the choice made by the receiver.
If the receiver chooses A, the sender’s stage payoff is −1; otherwise, it is 0. The goal of
each player is to maximize her or his sum of the two stage payoffs. In particular, the
sender’s goal is to minimize the number of times the receivers acts.

6𝐺 stands for the state of nature where the receiver gains, 𝐿 for the state where he loses.
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The solution concept we employ is Stackelberg equilibrium: the sender moves first
and commits to a strategy (for the whole game), and then the receiver reacts by choos-
ing his strategy.

3. Applications

Our framework is applicable to the two-period one-armed bandit problem with a Bernoulli
reward process, but with a twist. In addition to the decision maker, there is another
agent, playing the role of the sender, who is aware of the true probability of success
for the arm and can provide information about it to the decision maker, who plays the
role of the receiver. The sender’s goal is to discourage the decision maker from play-
ing at all. This combination of Bayesian persuasion and bandit exploration applies
naturally to various scenarios. We will discuss four examples that fit our model to
varying degrees: law enforcement and tax evasion, international relations, parenting,
and gambling.
Tax Enforcement. Our leading example concerns law enforcement in general, and
tax evasion in particular. A key feature of law enforcement is that the level of en-
forcement, as opposed to the level of punishment, is usually unknown to the potential
offender. As a consequence, there is a policy question on the part of the police or the
enforcement agency of whether to provide information to potential offenders. Law
enforcers and policy makers can and sometimes do provide information regarding the
enforcement techniques and levels. For example, in certain road segments there are
signs indicating “speed camera enforced” or “high enforcement level”. Yet, in other
cases, law enforcers and policy makers adopt a vagueness policy, keeping the level of
enforcement efforts and techniques secret. One of the best examples is the top-secret
computer software algorithm, known as the Discriminant Index Factor (DIF), used by
the IRS for selecting tax returns for audits. This algorithm is said to be guarded like
the “Coca Cola formula” (Harcourt, 2007, p 9).

Imagine a repeated game between the tax administration (the sender) and a po-
tential tax evader (the receiver). The tax evader should decide whether to evade taxes
(A) or not (R) in each of the two periods, gaining some benefits and facing a penalty
in case of detection. The probability of detection, which is a random variable deter-
mined by the tax administration’s resource allocation or enforcement efficiency, can
be either low, benefiting the evader, or high, leading to evader losses. This gives rise
to a classical explore-exploit strategy for the tax evader. The tax administration, on
its side, knows its own type and can strategically disclose information to or conceal it
from the offender to minimize tax evasion.

The tax administration can of course combat tax evasion by increasing the penal-
ties for it or by improving its efficiency. However, in recent years, in order to overcome
the limitations of enforcement based only on ex post sanctions, tax authorities have
increasingly relied on strategies of “enforcement communication”. The latter may in-
clude letters or emails with reminders about obligations and the risk of noncompliance,
but also more specific information about the taxpayer position.7 While this communi-
cation is often standardised (a reminder of the sanctions in case of evasion), in many

7The role of enforcement communication as a strategy of compliance risk management is illustrated
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cases it includes information about the individual taxpayer’s level of compliance, based
on data available to the tax administration. If the recipients are selected using data of
the tax administration (elaborated through advanced statistical techniques, including
machine learning techniques), the very reception of the message provides information
on the ability to detect potential violations. This affects perception of the probability
of an audit for the specific taxpayer.

These strategies have attracted the attention of behavioral economics, where as-
pects such as education to legality and civic responsibility, building of a trust relation,
are considered. However, the optimal communication and sanction strategy can be
analysed also in terms of standard rational behavior as optimal information transmis-
sion policy.

Our model can improve the design of information provision strategies, and, in
particular, the proper timing of information disclosure as a function of the adminis-
tration’s information about the taxpayer’s past behavior. The different scenarios iden-
tified in the model can be related to various assumptions about the tax administration’s
monitoring technology.

a) The scenario where information revelation is unconditional corresponds to a
situation where the tax administration is not allowed to condition the disclosure
of information on available information on the taxpayer’s past behavior or the
resulting conviction. This scenario also serves as a fundamental benchmark for
comparison with the subsequent two scenarios.

b) The scenario where information provision can be contingent on the taxpayer’s
past behavior arises when a violation becomes known to the tax administration,
even if it does not lead to prosecution and punishment (indicated in our model
by a negative public signal ℓ) of the offender.8

c) The scenario where information provision is determined solely by the public
signal (i.e., the actual conviction of the taxpayer in past periods) is relevant when
the tax administration cannot determine if a violation has occurred, unless a
full inspection has been conducted and the taxpayer’s past behavior has been
verified and established.

By investigating these scenarios, we provide valuable insights that may improve
the strategies of law enforcement agencies, thereby potentially reducing wrongdoing
and enhancing public goals.
International Relations. Another application of our model is in the realm of inter-
national relations. Abstracting away from exact details, consider a repeated interaction
between two countries X and Y. Country X contemplates taking an action that could be
perceived as hostile by country Y, potentially triggering a negative reaction. Suppose

for example in European Commission (2010).
8This scenario may occur for different reasons, including the inherent limitations of evidence and the

higher burden of proof required for convicting and punishing offenders compared to mere knowledge of
a violation, or the limitation of resources available to the tax administration to start a formal inspection
in all cases where evidence available points to a likely violation. Law enforcement typically allocates
more resources towards investigating and apprehending potential offenders whom they have reason to
believe engaged in the past in unlawful activities, even if these individuals have not yet been convicted
or subjected to punishment.
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that the probability of negative reaction can be either high or low depending on coun-
try’s Y type, which is a private information. Country X benefits from taking the action
only if the probability of a reaction from Y is low, otherwise it suffers harm. However,
X lacks complete information about Y’s likelihood of reacting. The repeated nature
of the interaction implies that country X may engage in an explore-exploit strategy.
Now imagine that country Y or a third country Z, which knows the type of country Y,
have a goal to discourage country X from taking the hostile action. As an alternative
to a direct reaction that might escalate to irreversible and potentially catastrophic out-
come, country Y (or country Z), playing the role of the sender, could utilize diplomatic
channels or informal intelligence relations to provide information to X, playing the
role of the receiver, about the probability of Y’s reaction (the type of country Y). The
information might encompass insights into Y’s readiness for conflict, the attitudes of
key decision makers within Y’s government, or the perceptions of influential players
in the international community.

The timing and content of this information disclosure can have a significant im-
pact on X’s decision-making process. Repeated interactions between the sender and
receiver can influence X’s incentive to “test” Y’s reaction through its actions. More-
over, the provision of information can be made contingent on specific events, such as
X’s actions.9

Parents and children. Children and young adults often consume substances or par-
ticipate in activities that might cause them harm. Examples include using drugs, en-
gage in unsafe sex, driving in motorbikes, swimming in unauthorized beaches, and
more. These activities are often repeated, allowing the teenager to learn the associated
risk level and whether they would like to continue participating in them. It stands to
reason that the notion that teenagers are risk takers at least partly can be understood
as a story of utilizating an explore-exploit strategy.10

Parents are sometimes more informed about the riskiness of the activities or the
ability of their children to safely participate in these potentially harmful activities.
Moreover, some parents may wish to dissuade their children from participating in
these activities, irrespective of their actual risks, due to perceiving them as exces-
sively dangerous or harmful. These parents may achieve their goals by prohibiting
their children from engaging in these activities and punishing them if they disobey or
by offering rewards to the children if they behave in the desired way. Alternatively,
parents can intervene in a less drastic way by offering information about the riskiness
of the activity.

Our results suggest that the optimal strategy for parents depends on the monitor-
ing structure. When parents are well informed of their children behavior, the optimal
way to dissuade children is a rewarding strategy — the child is rewarded for not par-
ticipating in the risky activity. A rewarding strategy is also optimal when parents
learn that their children participation in the activity only if it goes awry. On the other

9Hennigs (2021) analyzes the role of information disclosure by a mediator who wants to prevent
a conflict in a model of Bayesian persuasion. However, that model considers a single period and the
parties do not learn from their interaction.

10Indeed, the literature has studied how children take risky decisions and whether they have Bayesian
intuition, see, e.g., Jacobs and Potenza (1991), Reyna and Ellis (1994), Levin and Hart (2003), Gigerenzer
et al. (2021).
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hand, in cases where the parents will never know whether their children participate
in the risky activity, even if it goes amiss, they should provide information about the
riskiness before the children decide whether to participate in the activity.
Gambling. Lastly, our model applies to the original “one-armed” bandit problem. In
the classical bandit problem, a gambler is faced with the decision of playing a slot
machine repeatedly. The outcome of playing is contingent on the unknown probability
of success, which could be either high or low, resulting in either a gain or a loss to the
gambler. The decision-maker lacks knowledge of the exact probability of success, but
holds a prior belief about it, and therefore he may engage in explore-exploit strategy.

Imagine now an additional entity, such as a non-governmental organization or the
government, who possesses information about the likelihood of success and is com-
mitted to reducing the use of slot machines. The government, for example, could of
course prohibit gambling and punish violators. However, in recent years there is a ten-
dency in public policy to utilize less drastic tools to influence behavior. One possibility
for the government is to provide information to the gambler about the probability of
success. It stands to reason that if the probability of success is low, the government
would like to inform the gambler. But what should the government do if the proba-
bility of success is high? Our analysis can inform the government on when and how
much information it should disclose in order to fulfill the objective of limiting slot
machine usage.

4. Benchmark: No Information Provision

We examine here a benchmark scenario where the sender provides no information to
the receiver. Therefore, the receiver may update his belief about the real state of nature
only after taking action A and receiving a signal.

Since in any model with information provision the receiver has the option to dis-
regard any information the sender provides, the payoff associated with the optimal
strategy for the receiver in this benchmark case is a lower bound on the payoff that
the receiver will attain in any Stackelberg equilibrium, even when the sender can send
messages to the receiver. Since the sender’s cost when the receiver selects A is 1, and
since the receiver’s payoff is at most 1, the receiver’s payoff in the benchmark case is
also a lower bound on cost to the sender in all Stackelberg equilibria when messages
can be sent.

Without information, among all possible strategies in the two-stage decision prob-
lem, the receiver has three optimal strategy candidates:11

(i) RR: choosing R in both periods, which yields payoff zero;
(ii) AC: choosing A in period 1 and making a conditional choice in period 2, namely,

choosing A in period 2 if and only if the signal in period 1 was positive, which
yields payoff 𝑞 − (1 − 𝑞)𝑐 + 𝛼𝐺𝑞 − 𝛼𝐿 (1 − 𝑞)𝑐;

(iii) AA: choosing A in both periods, which yields payoff 2(𝑞 − (1 − 𝑞)𝑐).
When the prior probability of𝐺 is sufficiently low (say, 𝑞 = 0), the optimal strategy

is RR. Conversely, when it is sufficiently high (say, 𝑞 = 1), the optimal strategy is AA.
11It is not difficult to verify that any other strategy is weakly dominated by one of these three strate-

gies.
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Strategy AC is optimal in an intermediate range characterized by two cut-off points:

𝑞𝑖 := 𝑐 (1 + 𝛼𝐿)
(1 + 𝛼𝐺 ) + 𝑐 (1 + 𝛼𝐿)

, (1)

𝑞𝑖𝑖 := 𝑐 (1 − 𝛼𝐿)
(1 − 𝛼𝐺 ) + 𝑐 (1 − 𝛼𝐿)

. (2)

so that the optimal receiver’s strategy can be characterised as follows:
Proposition 1 (No Information Provision). When the sender provides no informa-
tion, the optimal strategy for the receiver is:

a) play RR when 0 ⩽ 𝑞 ⩽ 𝑞𝑖 ;
b) play AC when 𝑞𝑖 < 𝑞 ⩽ 𝑞𝑖𝑖 ;
c) play AA when 𝑞𝑖𝑖 < 𝑞 ⩽ 1.
The receiver’s optimal strategy that is indicated in Proposition 1 induces the fol-

lowing payoff 𝜋 (𝑞) to the receiver and cost 𝑁 (𝑞) to the sender:

𝜋 (𝑞) :=


0, 0 < 𝑞 ⩽ 𝑞𝑖,(
𝑞 − (1 − 𝑞)𝑐 + 𝑞𝛼𝐺 − (1 − 𝑞)𝛼𝐿𝑐

)
, 𝑞𝑖 < 𝑞 ⩽ 𝑞𝑖𝑖,

2(𝑞 − (1 − 𝑞)𝑐), 𝑞𝑖𝑖 < 𝑞 ⩽ 1,
(3)

𝑁 (𝑞) :=


0, 0 < 𝑞 ⩽ 𝑞𝑖,

1 + 𝑞𝛼𝐺 + (1 − 𝑞)𝛼𝐿, 𝑞𝑖 < 𝑞 ⩽ 𝑞𝑖𝑖,

2, 𝑞𝑖𝑖 < 𝑞 ⩽ 1.
(4)

Figure 1 depicts these two functions, 𝜋 (𝑞) in black and 𝑁 (𝑞) in red; 𝜋 (𝑞) is the
maximum of three lines representing the payoff from the three strategies RR (between
0 and 𝑞𝑖 ), AC (between 𝑞𝑖 and 𝑞𝑖𝑖 ) and AA (between 𝑞𝑖𝑖 and 1).

We denote by 𝑞𝑚 the level of 𝑞 at which the receiver’s one-stage payoff from taking
action A, i.e., 𝑞 − (1 − 𝑞)𝑐 , is zero:

𝑞𝑚 := 𝑐

1 + 𝑐 . (5)

It is easy to verify that𝑞𝑚 ∈ (𝑞𝑖, 𝑞𝑖𝑖). Observe that in period 2 the receiver chooses R
(respectively, A) if his posterior belief is below (respectively, above) 𝑞𝑚 . When 𝑞 > 𝑞𝑖𝑖 ,
the posterior belief is above 𝑞𝑚 under both signals, and AA is the optimal strategy of
the receiver.

When 𝑞 ∈ (𝑞𝑖, 𝑞𝑖𝑖), the posterior belief of the receiver is above 𝑞𝑚 if he receives
the positive signal, and below 𝑞𝑚 if he receives the negative signal, and AC is the opti-
mal receiver’s strategy. We can further divide (𝑞𝑖, 𝑞𝑖𝑖) into two sub-intervals, (𝑞𝑖, 𝑞𝑚)
and (𝑞𝑚, 𝑞𝑖𝑖). In (𝑞𝑖, 𝑞𝑚) the receiver strategy is “explore-exploit”: he bears a negative
payoff in period 1 in exchange for a larger positive payoff in period 2. In (𝑞𝑚, 𝑞𝑖𝑖) the
receiver strategy is “exploit-learn-exploit”: the payoff from A is positive in period 1,
and in addition, it generates valuable information, such that in period 2 the receiver
acts if and only if the signal is positive.

When 𝑞 < 𝑞𝑖 , acting yields a negative payoff, and the only incentive to act in
period 1 is to obtain information on the state. In this case, even when the posterior
after obtaining the positive signal is above𝑞𝑚 , the gain in period 2 does not compensate
for the loss in period 1, implying that RR is the optimal strategy for the receiver.
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Figure 1: Receiver’s optimal payoff (black) and sender’s cost (red).

The function 𝝅 (𝒒) as a benchmark. As mentioned above, 𝜋 (𝑞) is a lower bound
on the receiver’s payoff and on the sender’s loss in any Stackelberg equilibrium, even
when the sender can send information.

In a hypothetical scenario where the sender observes the receiver’s choices and
can make monetary transfers to the receiver, transferring 𝜋 (𝑞) to the receiver would
be sufficient to prevent the receiver from ever choosing A. Yet, in our framework,
direct monetary transfers from the sender to the receiver are not allowed. Instead, the
sender can “pay” the receiver with information, which the receiver utilizes to optimize
his actions and payoffs. This, of course, is costly to the sender.

The difference 𝑁 (𝑞) − 𝜋 (𝑞), which is reflected by the vertical distance between
the red line and the black line in Figure 1, measures the maximal potential gains for
the sender in providing information. If the sender can send messages to the receiver
and if 𝑁 (𝑞) denotes the sender’s cost in equilibrium, then the difference 𝑁 (𝑞) − 𝜋 (𝑞)
measures the sender’s loss due to the information structure and her inability to transfer
money to the receiver. The closer the cost to the sender is to 𝜋 (𝑞), the more effective
the sender’s information provision policy is in influencing the receiver’s decision.

5. Unconditional Information Provision

In this section we examine the scenario where the information the sender provides to
the receiver is not conditioned on the receiver’s actions or on the signals. Our goal is to
determine the optimal revelation strategy, namely, when and how much information to
reveal, and its effectiveness in reducing the sender’s costs. Since with no information
the cost to the sender is 0 when 𝑞 ∈ (0, 𝑞𝑖], we restrict attention to values 𝑞 ∈ (𝑞𝑖, 1).

The set of messages 𝑀 is assumed to contain two messages, which we denote for
convenience 𝑔 and ℓ , so that 𝑀 = {𝑔, ℓ}.
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Messaging strategy. Since the sender’s strategy is independent of the receiver’s be-
havior, the sender’s strategy in period 1 is a function 𝜇1 : [0, 1] × {𝐺, 𝐿} → Δ({𝑔, ℓ}),
where Δ({𝑔, ℓ}) is the set of probability distributions over {𝑔, ℓ}. The sender’s strat-
egy in period 2 can depend on the message sent in period 1, hence it is a function
𝜇2 : [0, 1] × {𝐺, 𝐿} × {𝑔, ℓ} → Δ({𝑔, ℓ}).

Let 0 ⩽ 𝑟 < 𝑞 < 1. We say that the sender splits𝑞 into ⟨𝑟 ; 1⟩ if she uses the following
strategy:

(i) When the state of nature is 𝐺 , the sender sends the message 𝑔 with probability
𝛾 =

𝑞−𝑟
(1−𝑟 )𝑞 , and the message ℓ with probability 1 − 𝛾 .

(ii) When the state of nature is 𝐿, the sender always sends the message ℓ .
Simple algebraic manipulations show that, when the receiver’s prior belief is 𝑞,

upon obtaining a message, the receiver’s updated belief is

P(𝐺 | 𝑔) = 1 and P(𝐺 | ℓ) = 𝑟, (6)

which explains the appellation “split 𝑞 into ⟨𝑟 ; 1⟩”. Moreover, the probability of the
signal 𝑔 (resp., ℓ) is 𝑞𝛾 (resp., 1 − 𝑞𝛾 ).

We will also say that the receiver responds with the “compliance strategy” if he
acts in accordance with the information the sender provides: when the sender reveals
that the state is 𝐺 , the receiver acts, and otherwise he refrains.

The following result characterizes the Stackelberg equilibrium.

Proposition 2 (Unconditional Information Provision). When information revela-
tion is unconditional on actions or signals, for any prior𝑞, Stackelberg equilibrium payoffs
are unique. The following represents an equilibrium:

a) When 0 < 𝑞 ⩽ 𝑞𝑖 , the sender reveals no information and the receiver plays 𝑅𝑅. The
sender’s cost in this equilibrium is 𝑁U(𝑞) = 0.

b) When 𝑞𝑖 < 𝑞 < 1, the sender reveals information only in period 1. Furthermore,
at the outset of the game the sender splits 𝑞 into ⟨𝑞𝑖 ; 1⟩. The receiver complies: he
responds with RR if the split realization is 𝑞𝑖 and with AA if it is 1. The sender’s
cost in this equilibrium is 𝑁U(𝑞) = 2 𝑞−𝑞𝑖

1−𝑞𝑖 .

Proposition 2 implies that it is inefficient for the sender to provide information
unconditionally in period 2. In equilibrium, any disclosed information should be pro-
vided before the receiver can take any action (in period 1). When the prior belief 𝑞
is smaller than a certain threshold (i.e., 𝑞𝑖 ), without any additional information, the
receiver has no incentive to act. In this trivial case, there is no reason to disclose in-
formation. When 𝑞 > 𝑞𝑖 , in equilibrium, if the state is 𝐺 , the sender will reveal the
truth to the receiver with a positive probability (which is a function of 𝑞). In this case,
the receiver will respond with AA.

In all other cases, the receiver will assign probability 𝑞𝑖 to𝐺 , and will respond with
RR. The cost to the sender is, therefore, twice the probability with which revelation
occurs. The blue dashed line in Figure 1 exhibits the equilibrium cost to the sender. As
can be seen, it is below the red line, but above the black line. In words, with Uncondi-
tional Information Provision, the sender’s cost in the Stackelberg equilibrium is lower
than the cost with no information provision, but still does not reach the lower bound.
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At first glance, it may seem obvious that the sender is better off disclosing informa-
tion upfront in period 1 rather than delaying it until period 2. However, upon closer
examination, one might question why the sender would not simply commit to reveal-
ing unconditional information in period 2 that coincides with what the receiver could
discover by acting in period 1. Such a commitment could seemingly incentivize the
receiver to refrain in period 1, saving the associated costs. As Proposition 2 demon-
strates, this reasoning is flawed. The fallacy lies in the assumption that acting in period
1 would fully reveal the truth. Due to the stochastic nature of the signal, acting in pe-
riod 1 will inevitably leave room for further valuable exploration.

The receiver can always act in period 1, and acquire additional and independent
information beyond any (non-fully revealing) unconditional information revealed in
period 2. This implies that the sender may never be able to fully replicate the infor-
mation the receiver can obtain in period 1. In cases where the prior probability 𝑞 falls
within the range (𝑞𝑖, 𝑞𝑚), a reasonable amount (from the sender’s perspective) of un-
conditional disclosure of information in period 2 would still leave the receiver’s benefit
of acting in period 1 outweighing the associated cost.

Stated differently, when information revelation is unconditional on actions or sig-
nals, the receiver possesses an additional strategy not available in the benchmark case:
selecting A in period 1 and conditioning the choice in period 2 on both the signal ob-
tained in period 1 and the message provided by the sender. The non-trivial assertion
of Proposition 2 is that the amount of information revealed in period 2, which could
entice the receiver to forego the exploration cost in period 1, is so substantial that it ex-
ceeds the amount necessary to achieve this outcome from the start, even considering
the potential value of this information in both periods.
Uniqueness. In Proposition 2, it is stated that the equilibrium payoffs are unique.
However, the equilibrium strategies are typically not unique. Specifically, for values
of 𝑞 that fall within a range where the sender’s payoff is linear, the sender has the
flexibility to split the prior probability into different values within this interval with-
out affecting the payoffs. Therefore, when the cost to the sender is linear, the sender
can choose from multiple equilibrium strategies. For instance, in the trivial case of
Proposition 2, when 𝑞 ∈ (0, 𝑞𝑖), the sender can split 𝑞 into ⟨0;𝑞𝑖⟩ at the beginning of
the game without changing the outcome.

6. Action-Based Information Provision

We now examine the scenario where the sender’s messaging policy can be based on
the receiver’s behaviour in period 1. Formally, the sender’s messaging strategy is 𝜇 =

(𝜇1, 𝜇2), where 𝜇1 : [0, 1] × {𝐺, 𝐿} → Δ({𝑔, ℓ})
and 𝜇2 : [0, 1] × {𝐺, 𝐿} × {A, R} → Δ({𝑔, ℓ}).
Suppose the sender reveals the true state of nature in period 2 and the receiver

utilizes the compliance strategy: he selects R in period 1 and A in period 2 if and only
if the sender revealed that the state is 𝐺 . Then the payoff to the receiver is 𝑞, namely,
the identity function. The following lemma relates the identity function with 𝜋 (𝑞), the
lower bound on the receiver’s equilibrium payoff.
Lemma 1. There is a unique point 𝑝∗ > 0 such that 𝜋 (𝑝∗) = 𝑝∗. Moreover,
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a) 𝑝∗ ⩾ 𝑞𝑖𝑖 if and only if 2𝛼𝐺 − 𝛼𝐿 ⩽ 1;
b) 𝑝∗ > 𝑞𝑚 ;
c) if 𝑞 < 𝑝∗ then 𝑞 ⩽ 𝜋 (𝑞).

Lemma 1 states that, depending on the primitives of the model, 𝑝∗ might be above
or below 𝑞𝑖𝑖 . The following theorem emphasizes the importance of this relationship
to achieving the lower bound of the sender’s loss (the lower bound is attainable only
when 𝑝∗ ⩾ 𝑞𝑖𝑖 ).

Denote
𝜉 (𝑞) := 𝑞 − 𝜋 (𝑞)

1 − 𝜋 (𝑞) . (7)

By Lemma 1(c), 𝜉 (𝑞) ⩾ 0 whenever 𝑞 ⩽ 𝑝∗.

Theorem 1 (Action-Based Information Provision). When the messaging strategy
of the sender may depend on the receiver’s action, equilibrium strategies, the equilibrium
payoff of the receiver, and the sender’s cost, denoted 𝑁A(𝑞), are as follows:

a) For 0 < 𝑞 ⩽ 𝑞𝑖 , the sender reveals no information and the receiver plays 𝑅𝑅. In this
case, 𝑁A(𝑞) = 0.

b) For 𝑞𝑖 < 𝑞 ⩽ 𝑝∗, the sender provides no information in period 1; in period 2,
conditional on the receiver choosing R in period 1, she provides information by
splitting 𝑞 into ⟨𝜉 (𝑞); 1⟩, where 𝜉 (𝑞) < 𝑞𝑖 . The receiver follows the compliance
strategy. In this case, 𝑁A(𝑞) = 𝜋 (𝑞).

c) For 𝑝∗ < 𝑞 < 1, the sender splits 𝑞 into ⟨𝑝∗; 1⟩ in period 1; if the split realization is
𝑝∗ and the receiver refrains in period 1, then in period 2 she splits 𝑝∗ into ⟨0; 1⟩. In
this case, 𝑁A(𝑞) = 𝜋 (𝑞) if and only if 𝑝∗ > 𝑞𝑖𝑖 . Otherwise, 𝑁A(𝑞) > 𝜋 (𝑞).

Theorem 1 states that it is efficient to condition information disclosure on the ac-
tions of the receiver, leading to the optimal messaging strategy of deferring informa-
tion disclosure to period 2 (see also Fuchs, 2007). This finding sharply contrasts with
Proposition 2, where it is efficient not to delay information.

When the state 𝐺 is completely revealed, the maximal payoff to the receiver in
period 2 is 𝑞. Moreover, 𝜋 (𝑞) is a lower bound on the receiver’s equilibrium payoff. It
implies that when 𝑞 ⩾ 𝜋 (𝑞), providing information in period 2 alone suffices to incen-
tivize the receiver to choose R in period 1. Conversely, when 𝑞 < 𝜋 (𝑞), postponing
information disclosure to period 2 becomes insufficient, requiring that information be
provided also in period 1. According to Lemma 1, the threshold level, denoted 𝑝∗,
determines whether the information in period 2 is sufficient to dissuade the receiver
from choosing R in period 1.

When 𝑝∗ > 𝑞𝑖𝑖 , providing information in period 1 does not harm the sender’s in-
terests. In fact, it allows the sender to achieve the lower bound of her loss. This is
because, when 𝑝∗ > 𝑞𝑖𝑖 , within the interval (𝑝∗, 1), the receiver’s optimal strategy in
the absence of information is to choose strategy AA. Therefore, the additional informa-
tion revealed by the sender in period 1 does not improve the receiver’s payoffs (refer
to Figure 2(b)).

Conversely, when 𝑝∗ < 𝑞𝑖𝑖 , within the interval (𝑝∗, 𝑞𝑖𝑖), the receiver’s optimal
strategy without any information is to choose strategy AC. However, the receiver can
utilize the information provided in period 1 to increase his payoffs by employing a
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(a) The case 𝑝∗ < 𝑞𝑖𝑖
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(b) The case 𝑝∗ ⩾ 𝑞𝑖𝑖

Figure 2: The graphs of 𝑞 (red) and 𝜋 (𝑞) (black), together with the sender’s cost in
equilibrium when 𝑞 > 𝑝∗ (blue, dashed).

conditional strategy: choosing strategy AA when state 𝐺 is revealed in period 1, and
choosing strategy AC when the state 𝐺 remains undisclosed. This is the reason why
providing information in period 1 becomes detrimental to the sender. In this case, the
sender does not attain the lower bound of her loss (as depicted by the dashed blue line
in Figure 2(a)).
Uniqueness. In Theorem 1, like in Proposition 2, equilibrium payoffs are unique, but
equilibrium strategies need not be unique. For example, when 𝑝∗ < 𝑞𝑖𝑖 and𝑞 ∈ (𝑞𝑖, 𝑝∗),
the sender can split the prior to values within the interval (𝑞𝑖, 𝑝∗), and promise to
reveal the appropriate level of information in period 2, conditional on the receiver
choosing R in period 1.

7. Signal-Based Information Provision

In this section we assume that information provision cannot be based on the actions
of the receiver, but rather on the signal they generate. This amounts to assuming that
actions are private and the signals are public. In this variation, the sender’s messaging
strategy is 𝜇 = (𝜇1, 𝜇2), where 𝜇1 : [0, 1] × {𝐺, 𝐿} → Δ({𝑔, ℓ}) and 𝜇2 : [0, 1] × {𝐺, 𝐿} ×
{+,−} → Δ({𝑔, ℓ}).

The next result describes the Stackelberg equilibrium. As it turns out, the equilib-
rium often has the same structure as in the action-based scenario.

Theorem 2 (Signal-Based Information Provision). Suppose the receiver’s actions
are private, but the signals they generate are public. Then, an equilibrium strategy, the
equilibrium payoff of the receiver, and the sender’s cost, denoted 𝑁 S(𝑞), are as follows:

a) If 𝛼𝐺 ⩽ 1
2 , then the equilibrium coincides with the action-based equilibrium as

described in Theorem 1.
b) If 𝛼𝐺 > 1

2 , there is a threshold 𝑝
𝑒 ∈ (𝑞𝑚,min [𝑝∗, 𝑞𝑖𝑖]) such that:

i) For 0 < 𝑞 ⩽ 𝑝𝑒 , the equilibrium coincides with the action-based equilibrium,
as described in cases 𝑎 and 𝑏 of Theorem 1. In this case, 𝑁 S(𝑞) = 𝜋 (𝑞).
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ii) For 𝑝𝑒 < 𝑞 < 1, in period 1 the sender splits 𝑞 into ⟨𝑝𝑒 ; 1⟩. If the split re-
alization is 𝑝𝑒 , then in period 2 she splits 𝑝𝑒 into ⟨𝜉 (𝑝𝑒); 1⟩. In this case,
𝑁 S(𝑞) > 𝜋 (𝑞).

Theorem 2 highlights that in certain circumstances, that is, when 𝛼𝐺 ⩽ 1/2 or 𝑞 ⩽
𝑝𝑒 , allowing the sender to base information on actions does not confer any practical
advantage over relying solely on signals.

To gain some understanding for this result, note that when messages depend on
signals, the receiver will obtain exactly the same information from the sender if he
chooses R in period 1. However, the receiver does not need to choose R in period 1 to
obtain the message later. In fact, even after choosing A, there is a positive probability
of obtaining the information from the sender. This probability depends on several
factors, including 𝑞, 𝛼𝐺 , and 𝛾 , reflecting the splitting probability. In situations where
𝛼𝐺 < 1/2 or when 𝑞 is relatively low, the probability, and hence the value of receiving
an informative message after selecting A, are particularly low. In such cases, it is better
for the receiver to disregard the message conveyed by the sender, and instead rely in
period 2 solely on the signal obtained by his own actions. Indeed, in the signal-based
scenario, if the receiver chooses A in period 1, he can either use the signal generated
by his action and disregard the message delivered by the sender, or conversely, rely
on the message from the sender and ignore the self-generated signal, but he cannot
use both the signal and the message.12 When the receiver chooses A in period 1 and
is better off ignoring the message in period 2 and relying on his signal, he obtains
the payoff 𝜋 (𝑞). To discourage the receiver from choosing A in period 1, the sender
must provide conditional information that results in a payoff to the receiver of at least
𝜋 (𝑞). This constraint is precisely what the sender faces in the action-based scenario.
Furthermore, as pointed out, when the receiver abstains from choosing A in period 1,
the information (message) obtained remains identical regardless of whether it is based
on actions or signals. Consequently, to satisfy this constraint, the sender must employ
the same strategy.

When 𝛼𝐺 > 1/2 and 𝑞 > 𝑝𝑒 , the Signal-Based Information Provision is still more
effective than the Unconditional Information Provision, but less effective than the
Action-Based Information Provision. This is so precisely because in the signal-based
scenario the receiver can obtain and utilize the information promised by the sender
even when he chooses A in period 1, something which is impossible in the action-based
scenario.

In both the action-based and the signal-based scenarios, the sender chooses to de-
fer information revelation to period 2 and, if the promise of future information alone
is insufficient to influence the receiver’s behavior in period 1, the sender provides ad-
ditional information in period 1.

In all scenarios, when the sender opts to disclose information in period 1, she splits
the prior between the upper limit of 1 and a certain level 𝑞∗. The magnitude of 𝑞∗
varies across the different scenarios, providing interesting insights. Specifically, the
unconditional scenario exhibits the lowest value of𝑞∗, namely𝑞𝑖 , reflecting the highest

12This stands in sharp contrast to the Unconditional Information Provision scenario, where messages
from the sender can be utilized together with signals generated by actions, and from the Action-Based
Information Provision scenario, where messages are never sent if the receiver chooses A in period 1.
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Figure 3: Optimal splitting with Action-Based (dashed blue line), Signal-Based (dashed
red line) or Unconditional Information (dashed black line)

level of information disclosure, and consequently the highest loss to the sender. On
the other hand, the action-based scenario demonstrates the highest value of𝑞∗, namely
𝑝∗, indicating the lowest level of information disclosure, and consequently the lowest
loss to the sender. Accordingly, we observe the ordering 𝑞𝑖 < 𝑝𝑒 < 𝑝∗, which reflects
the varying levels of 𝑞∗ among the three scenarios when the sender opts to disclose
information in period 1.

Figure 3 illustrates this ordering in the case where 𝛼𝐺 > 1/2 and 𝑝∗ < 𝑞𝑖𝑖 . Here,
the dashed black line, reflecting the unconditional scenario split, is above the red line
which reflects the signal-based scenario split in period 1. The latter is further above
the blue line, which represents the action-based scenario split in period 1.

A further difference between the action-based and the signal-based scenarios is
that in the former case providing information in period 1 is always accompanied by
full revelation in period 2 (formally, 𝑝∗ is split into ⟨0; 1⟩). However, in the signal-based
scenario, the situation is different as long as the equilibrium strategies do not coincide.
Here, in period 1 the prior is split into ⟨𝑝𝑒 ; 1⟩. When the receiver’s belief in period 2 is
𝑝𝑒 , since 𝑝𝑒 is always less than 𝑝∗, the optimal revelation by the sender still leaves the
receiver with some residual uncertainty regarding the actual state. This uncertainty
is formally represented by the split of 𝑝𝑒 in period 2 into ⟨𝜉 (𝑝𝑒); 1⟩ (since 𝑝𝑒 < 𝑝∗,
𝜉 (𝑝𝑒) ⩾ 0).

8. Summary

An overview. In this paper we incorporate Bayesian persuasion into a bandit ex-
ploration problem. We analyse a dynamic persuasion model that accounts for the
possibility that the receiver partially learns about the true state of nature through his
actions, which may harm the sender. In this model, the receiver considers not only the
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Table 2: A summary of equilibrium strategies

Variation Prior Range

Strategies Lower
Bound
𝑁 = 𝜋

Sender Receiver

period 1 period 2 period 1 period 2

No Information
(benchmark)

0 < 𝑞 ⩽ 𝑞𝑖

No Information

R R Yes

𝑞𝑖 < 𝑞 ⩽ 𝑞𝑖𝑖 A R if signal (−)
A if signal (+) No

𝑞𝑖𝑖 < 𝑞 < 1 A A

Unconditional
Information
Provision

0 < 𝑞 ⩽ 𝑞𝑖 No Information R R Yes

𝑞𝑖 < 𝑞 < 1 Split 𝑞
into ⟨𝑞𝑖 ; 1⟩

No
Information RR if 𝜇1 = ℓ , AA if 𝜇1 = 𝑔 No

Action-Based
Information
Provision

0 < 𝑞 ⩽ 𝑞𝑖 No Information R R Yes

𝑞𝑖 < 𝑞 ⩽ 𝑝∗
No

Information
(*) Split 𝑞

into ⟨𝜉 (𝑞); 1⟩ R R if 𝜇2 = ℓ

A if 𝜇2 = 𝑔
Yes

𝑝∗ < 𝑞 < 1 Split 𝑞
into ⟨𝑝∗; 1⟩

(*) Split 𝑝∗
into ⟨0; 1⟩

R if 𝜇1 = ℓ , then R if 𝜇2 = ℓ

A if 𝜇2 = 𝑔

AA if 𝜇1 = 𝑔

Only if
𝑝∗ > 𝑞𝑖𝑖

Signal-Based
Information
Provision
(𝛼𝐺 > 1/2)

0 < 𝑞 ⩽ 𝑞𝑖 No Information R R Yes

𝑞𝑖 < 𝑞 ⩽ 𝑝𝑒
No

Information
(**) Split 𝑞

into ⟨𝜉 (𝑞); 1⟩ R R if 𝜇2 = ℓ

A if 𝜇2 = 𝑔
Yes

𝑝𝑒 < 𝑞 < 1 Split 𝑞
into ⟨𝑝𝑒 ; 1⟩

(**) Split 𝑝𝑒
into ⟨𝜉 (𝑝𝑒 ); 1⟩

R if 𝜇1 = ℓ , then R if 𝜇2 = ℓ

A if 𝜇2 = 𝑔

AA if 𝜇1 = 𝑔
No

(𝛼𝐿 ⩽ 1/2) 0 < 𝑞 ⩽ 1 Like the Action-Based Information Provision

(*) = conditional on the receiver choosing R in period 1.
(**) = conditional on the signal in period 1 being positive.

payoff, but also the informational value of his actions. The sender’s objective is to min-
imize the number of times the receiver chooses the harmful (and informative) action.
We distinguish three scenarios. The first is where the sender provides information
unconditionally. The second is where the sender can condition the information provi-
sion on the actions of the receiver, and in the third scenario the sender can condition
information based only on the public signals. Table 2 summarises our main results.

Our findings indicate that, among the three scenarios, the best equilibrium out-
come, from the sender’s perspective, occurs when she can condition the information
she provides on the actions taken by the receiver. The worst equilibrium outcome is
in the case where the sender cannot condition her information provision on anything,
except for the prior.

Although the scenarios of the Action-Based and the Signal-Based Information Pro-
vision may differ in terms of efficiency, they share a common feature. Namely, in both
scenarios, depending on the prior beliefs, the optimal provision occurs either exclu-
sively in period 2 or in both periods, but it never occurs solely in period 1. In contrast,
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in the model where the sender cannot condition information on the receiver’s behavior
or on the public signal, information is provided only in period 1, and its effectiveness
is accordingly limited.

Despite notable differences, our analysis has unveiled several features shared by
all the scenarios considered. In each model, the optimal strategy prescribes both the
quantity of information provided and the timing of its provision. In all Stackelberg
equilibria, the sender employs a “clear-message” strategy, while the receiver adopts
a “compliance” strategy. This entails that the sender, with a positive probability, dis-
closes that the state of nature is𝐺 or maintains a sufficient level of uncertainty regard-
ing the true state of nature. In response, the receiver only takes the detrimental action
when the sender reveals that the state of nature is 𝐺 .
Exploratory opportunities are never exploited. A noteworthy characteristic of
our model, independent of what the information provided may rely upon, is that the
receiver possesses exploration opportunities. Specifically, the receiver can partially
learn about the true state of nature by taking the harmful action in period 1. Sur-
prisingly, in all equilibria, the receiver does not exploit this opportunity. The reason
is that the sender commits to disclosing an amount of information that incentivizes
the receiver either to refrain in period 1, or to act in both periods when the state 𝐺

has already been revealed to him by the sender and nothing has been left unknown.
Consequently, the receiver relies solely on the information provided by the sender.
Policy implications: law enforcement. Our model applies naturally to many two-
period one armed-bandit problems, where there is another player who aims at dis-
couraging the decision maker from taking certain actions. One primary application of
our study is law enforcement in general and tax evasion in particular.

Our findings regarding Action-Based and Signal-Based Information Provision have
important implications for tax enforcement policy, and possibly law enforcement pol-
icy in general. They suggest that, when policies rely on strategies of enforcement
communication, authorities should refrain from disclosing full information about en-
forcement at the outset. Instead, whenever conditional disclosure of information is
feasible, a more effective approach would be to gradually reveal information based on
the behavior or records of offenders. This strategy implies that individuals with a clean
record should be entitled to receive information about enforcement, while those with
a negative record should not.

The concept of Signal-Based Information Provision resembles other aspects of law
enforcement; specifically, the principle that repeat offenders undergo heightened scru-
tiny and receive more severe punishments. For instance, the U.S. Federal Sentencing
Guidelines state that “a defendant with a history of prior criminal behavior is more
culpable than a first-time offender and therefore deserves a greater punishment.” In
our model, non-repeat offenders are not granted lighter sentences or reduced enforce-
ment. Instead, they are “rewarded” with valuable information about enforcement. By
implementing this approach, enforcement authorities can effectively utilize informa-
tion provision as a tool to incentivize good behavior and deter potential offenders.
Information provision vs. monetary transfers. Information provision contrasts
with incentives provided through monetary transfers, where similar timing issues are
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not typically observed. This distinction arises from two key differences. Firstly, mon-
etary transfers can generally be executed in a single stage, regardless of their magni-
tude. This eliminates the need for strategic timing considerations. Secondly, monetary
transfers lack the ability to influence future behavior; they have no lasting impact on
the receiver’s decision-making process. As a result, early and unconditional monetary
transfers are often ineffective. In contrast, information disclosure alters the receiver’s
beliefs, thereby affecting his future actions.
Future directions. Our analysis focused on an interaction between two players: a
sender and a receiver, akin to an enforcer and an offender. A natural extension of
this analysis involves scenarios with one sender and multiple receivers. In such set-
tings, a crucial consideration is whether the sender can disclose private information
to individual receivers or must provide public information accessible to all receivers.

In the case of private information disclosure, our findings extend seamlessly. The
sender can strategically tailor the information provided to each receiver, potentially
influencing their decisions and achieving the desired outcome. When public informa-
tion is the only option, the dynamics become more complex, presenting an intriguing
area for future research.

Our analysis concentrated on scenarios in which the sender sought to dissuade the
receiver from taking actions. Another interesting avenue for future research involves
investigating how the analysis and results would vary if the sender’s intention was to
encourage the receiver to take actions.
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Bizzotto, Jacopo, Jesper Rüdiger, and Adrien Vigier. 2021. “Dynamic persuasion with
outside information.” American Economic Journal: Microeconomics 13: 179–94.

Che, Yeon-Koo and Johannes Hörner. 2018. “Recommender systems as mechanisms
for social learning.” TheQuarterly Journal of Economics 133: 871–925.
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Appendix: Proofs

Proof of Lemma 1

Uniqueness of 𝑝∗ follows from the fact that both functions are continuous, 𝜋 (𝑞) is
convex, 𝑞 is linear, 𝑞 > 𝜋 (𝑞) for 𝑞 > 0 sufficiently small, and 𝜋 (1) = 2 (see also
Figure 2). For 𝑝 ⩾ 𝑞𝑖𝑖 we have 𝜋 (𝑞) = 2(𝑞 − (1−𝑞)𝑐). Thus, when 𝑝∗ ⩾ 𝑞𝑖𝑖 , 𝑝∗ = 𝜋 (𝑝∗)
solves to

𝑝∗ =
2𝑐

1 + 2𝑐 . (A.1)

Together with (2), this implies 2𝛼𝐺 − 𝛼𝐿 ⩽ 1.
When 𝑞𝑖 < 𝑝 < 𝑞𝑖𝑖 , we have 𝜋 (𝑞) = 𝑞(1 + 𝛼𝐺 ) − (1 − 𝑞) (1 + 𝛼𝐿)𝑐 . Thus, when

𝑝∗ < 𝑞𝑖𝑖 , 𝑝∗ = 𝜋 (𝑝∗) solves to

𝑝∗ =
(1 + 𝛼𝐿)𝑐

𝛼𝐺 + (1 + 𝛼𝐿)𝑐
. (A.2)

Together with (2), this implies 2𝛼𝐺 − 𝛼𝐿 > 1, proving point a).
Point b) of the Lemma (i.e., 𝑝∗ > 𝑞𝑚) is proven by comparing (A.1) and (A.2) with

(5).
Point c) of the Lemma (i.e., 𝑞 < 𝑝∗ implies 𝑞 ⩾ 𝜋 (𝑞)) follows from the fact that

𝜋 (1) > 1.

In the proofs of Proposition 2 and Theorems 1 and 2, we will use the following
observations.

1) Information revealed in period 1 changes the receiver’s belief and serves as a
convexification devise. We will therefore study the related problem in which
the sender can send information only in period 2, and use revelation in period 1
to convexify the sender’s payoff.

2) If the receiver acts in period 1, the sender’s loss is at least 1, while if the receiver
refrains in period 1, the sender’s loss is at most 1. Hence, the sender’s optimal
strategy will attempt to cause the receiver to refrain from acting in period 1.

We start by defining a simple class of sender’s strategies, called extreme strategies,
and showing that in some cases it is sufficient to restrict attention to these strategies.

To simplify notation, we denote 𝑢 (𝑞) = 𝑞 − (1−𝑞)𝑐 , and recall that 𝑢 (𝑞𝑚) = 0. The
quantity 𝑢 (𝑞) is the receiver’s expected stage payoff when he acts and his belief is 𝑞.

Definition (Extreme strategy). We define “extreme” a sender’s strategy that reveals
no information in period 1, while in period 2 it:
• sends the message 𝑔 with probability 𝛾 when the state is𝐺 (and the message ℓ with

probability 1 − 𝛾 );
• sends the message ℓ with probability 1 when the state is 𝐿.

An extreme strategy splits the belief 𝑞 of the receiver at the end of period 1 into
⟨ (1−𝛾)𝑞1−𝛾𝑞 , 1⟩.13

We state the following:
13Compare this with our definition of split in the main text in relation to equations (6).
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Lemma 2. For each given 𝑞 ∈ [0, 1], consider the class Σ(𝑞) of sender’s strategies that
(1) reveal no information in period 1, and (2) against which the receiver has an optimal
response that refrains in period 1. For each strategy 𝜎𝑆 ∈ Σ(𝑞) there exists an extreme
strategy in Σ(𝑞) that is at least as good as 𝜎𝑆 for the sender.

Proof. Fix an arbitrary strategy 𝜎𝑆 ∈ Σ(𝑞) throughout the proof. If the receiver re-
frains in the first period, the sender’s message will involve posteriors (𝑞 𝑗 )𝑛𝑗=1 with
corresponding probabilities (𝛽 𝑗 )𝑛𝑗=1, with 𝑛 ⩾ 1. We necessarily have

∑𝑛
𝑗=1 𝛽 𝑗𝑞 𝑗 = 𝑞

and
∑𝑛

𝑗=1 𝛽 𝑗 = 1.
Let 𝜎𝑅 be an optimal receiver’s response to 𝜎𝑆 such that the receiver refrains in

period 1. Because 𝜎𝑅 is optimal, any alternative strategy 𝜎′
𝑅
, where the receiver acts

in period 1, does not yield to the receiver a higher payoff. When the receiver acts in
period 1, he observes a signal in addition to the sender’s message. Each 𝑞 𝑗 induces two
possible posteriors, denoted 𝑞+𝑗 (when the signal was positive) and 𝑞−𝑗 (when the signal
was negative). These are given by:

𝑞+𝑗 =
𝑞𝑖𝛼𝐺

𝑞𝑖𝛼𝐺 + (1 − 𝑞𝑖)𝛼𝐿
and 𝑞−𝑗 =

𝑞𝑖 (1 − 𝛼𝐺 )
𝑞𝑖 (1 − 𝛼𝐺 ) + (1 − 𝑞𝑖) (1 − 𝛼𝐿)

. (A.3)

Let 𝜎′
𝑅

be the strategy that prescribes to act in period 1, and to do so in period 2
only if the receiver’s posterior is above 𝑞𝑚 . This strategy is optimal for the receiver
among all the strategies that prescribe to act in period 1.14 Under both strategies 𝜎𝑅
and 𝜎′

𝑅
, the receiver acts in period 2 only if the posterior is higher than 𝑞𝑚 .

The idea of the proof is to iteratively change 𝜎𝑆 by eliminating messages that corre-
spond to various posteriors, until we are left with two posteriors: 1 and some posterior
between 𝑞𝑖 and 𝑞𝑚 . In Step 1 we consider a given posterior 𝑞 𝑗 > 𝑞𝑚 , and we show that
instead of sending the message that corresponds to this posterior, the sender could
have split 𝑞 𝑗 into ⟨0, 1⟩, without affecting the property that 𝜎𝑅 is better for the receiver
than 𝜎′

𝑅
. In Step 2 we consider a given posterior 𝑞 𝑗 < 𝑞𝑖 , and we show that by prop-

erly lowering the probability of reaching the posterior 𝑞 𝑗 , lowering the probability of
reaching any posterior 𝑞𝑘 (with 𝑞𝑘 > 𝑞𝑖), and increasing the probability of reaching
the posterior 𝑞𝑖 , we still do not affect the property that 𝜎𝑅 is better for the receiver
than 𝜎′

𝑅
. Finally, in Step 3 we show that by collecting all posteriors 𝑞 𝑗 in [𝑞𝑖, 𝑞𝑚] into

their average, we still do not affect the property that 𝜎𝑅 is better for the receiver than
𝜎′
𝑅
.

Step 1: Handling posteriors 𝒒𝒋 > 𝒒𝒎. Fix a posterior 𝑞 𝑗 > 𝑞𝑚 that can be attained
under 𝜎𝑆 . Let 𝜎𝑆 be similar to 𝜎𝑆 , except that if the message sent to the receiver is the
one that leads his belief to 𝑞 𝑗 (calculated assuming the receiver refrained in period 1),
then the sender further splits 𝑞 𝑗 into ⟨0; 1⟩.

We will show that 𝜎𝑅 is weakly better for the receiver than 𝜎′
𝑅

when facing 𝜎𝑆 ,
so that 𝜎𝑆 ∈ Σ(𝑞). To this end, denote by 𝜙𝑅 (𝜎𝑆 , 𝜎𝑅) the receiver’s payoff under the
strategy pair (𝜎𝑆 , 𝜎𝑅), by 𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | 𝑞 𝑗 ) the receiver’s payoff in period 2 conditioned
on the sender’s message corresponding to the posterior 𝑞 𝑗 , and by 𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 )
the receiver’s payoff in period 2 conditioned that the sender’s message is not the one

14Note that the definition of 𝜎 ′
𝑅

relies on beliefs rather than signals. This choice is made to streamline
the proof and facilitate its presentation.
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corresponding to the posterior 𝑞 𝑗 . We use analogous notation for the strategies 𝜎𝑆 and
𝜎′
𝑅
.
The definition implies that

𝜙𝑅 (𝜎𝑆 , 𝜎𝑅) = 𝛽 𝑗𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | 𝑞 𝑗 ) + (1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 ), (A.4)
𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅) = 𝑢 (𝑞) + 𝛽 𝑗𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅 | 𝑞 𝑗 ) + (1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅 | ¬𝑞 𝑗 ), (A.5)
𝜙𝑅 (𝜎𝑆 , 𝜎𝑅) = 𝛽 𝑗𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | 𝑞 𝑗 ) + (1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 ), (A.6)
𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅) = 𝑢 (𝑞) + 𝛽 𝑗𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅 | 𝑞 𝑗 ) + (1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅 | ¬𝑞 𝑗 ). (A.7)

Since at 𝑞 𝑗 the strategy 𝜎𝑆 splits 𝑞 𝑗 into ⟨0; 1⟩, and in period 2 both 𝜎𝑅 and 𝜎′
𝑅

act at the
belief 1 and refrain at the belief 0, we have

𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | 𝑞 𝑗 ) = 𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅 | 𝑞 𝑗 ). (A.8)

Since 𝜎𝑆 and 𝜎𝑆 coincide in period 1, as well as in period 2 at beliefs different than 𝑞 𝑗 ,
we have

𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 ) = 𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 ), (A.9)
𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅 | ¬𝑞 𝑗 ) = 𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅 | ¬𝑞 𝑗 ). (A.10)

We argue that
𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | 𝑞 𝑗 ) ⩽ 𝜙𝑅 (𝜎𝑆 , 𝜎′

𝑅 | 𝑞 𝑗 ). (A.11)

Indeed, under (𝜎𝑆 , 𝜎𝑅), at the belief 𝑞 𝑗 , the receiver acts in period 2 (because 𝑞 𝑗 > 𝑞𝑚).
Under (𝜎𝑆 , 𝜎′

𝑅
), the belief 𝑞 𝑗 is split to 𝑞+𝑗 and 𝑞−𝑗 . Because 𝑞+𝑗 > 𝑞 𝑗 > 𝑞𝑚 , under (𝜎𝑆 , 𝜎′

𝑅
)

the receiver acts at the belief 𝑞+𝑗 . If under (𝜎𝑆 , 𝜎′
𝑅
) the receiver acts at 𝑞−𝑗 as well, then

(A.11) holds with equality. Suppose then that under (𝜎𝑆 , 𝜎′
𝑅
) the receiver refrains at

𝑞−𝑗 . This means that 𝑞−𝑗 ⩽ 𝑞𝑚 , so that the receiver’s payoff upon acting at 𝑞−𝑗 is non-
positive. The linearity of the payoff function implies that the receiver’s payoff upon
acting at 𝑞 𝑗 is a weighted average of his payoff upon acting at 𝑞+𝑗 and his payoff upon
acting at 𝑞−𝑗 . This, together with the non-positiveness of the payoff upon acting at 𝑞−𝑗 ,
implies that (A.11) holds (with inequality) in this case.

Since 𝜎𝑆 ∈ Σ(𝑞), it follows that

𝜙𝑅 (𝜎𝑆 , 𝜎𝑅) ⩾ 𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅). (A.12)

This, together with (A.4), (A.5), and (A.11) implies that

(1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎𝑅 | ¬𝑞 𝑗 ) ⩾ 𝑢 (𝑞) + (1 − 𝛽 𝑗 )𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅 | ¬𝑞 𝑗 ). (A.13)

Equations (A.6), (A.7), (A.8), (A.9), (A.10), and (A.13) imply that

𝜙𝑅 (𝜎𝑆 , 𝜎𝑅) ⩾ 𝜙𝑅 (𝜎𝑆 , 𝜎′
𝑅), (A.14)

and therefore 𝜎𝑆 ∈ Σ(𝑞). Under (𝜎𝑆 , 𝜎𝑅) the receiver acts in period 2 with lower prob-
ability than under (𝜎𝑆 , 𝜎𝑅), and hence 𝜎𝑆 is better for the sender than 𝜎𝑆 .
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Step 2: Handling posteriors 𝒒𝒋 < 𝒒 𝒊. Let 𝑞𝑘 be such that 𝑞𝑘 > 𝑞𝑖 . Such 𝑞𝑘 exists
because the weighted average of the posteriors is 𝑞, which is higher than 𝑞𝑖 . Let 𝛿
solve 𝑞𝑖 = 𝛿𝑞𝑘 + (1−𝛿)𝑞 𝑗 . Fix 𝜀 > 0 such that 𝛿𝜀 ⩽ 𝛽𝑘 and (1−𝛿)𝜀 ⩽ 𝛽 𝑗 . We define the
strategy 𝜎𝑆 to be similar to 𝜎𝑆 , except that it lowers the probabilities to split to 𝑞 𝑗 and
𝑞𝑘 , and increases the probability to split to 𝑞𝑖 . That is, 𝜎𝑆 is the sender’s strategy that
provides no information in period 1 and in period 2 sends messages with the following
properties:
• for each ℎ ∈ {1, 2, . . . , 𝑛}\{ 𝑗, 𝑘}, with probability 𝛽ℎ the receiver’s posterior belief

in period 2 is 𝑞ℎ;
• with probability 𝛽 𝑗 − (1 − 𝛿)𝜀 the receiver’s posterior belief in period 2 is 𝑞 𝑗 ;
• with probability 𝛽𝑘 − 𝛿𝜀 the receiver’s posterior belief in period 2 is 𝑞𝑘 ;
• with probability 𝜀 the receiver’s posterior belief in period 2 is 𝑞𝑖 .
The choice of 𝜀 implies that such a strategy exists. In words, relative to 𝜎𝑆 , the strategy
𝜎𝑆 decreases slightly the probability of the posteriors 𝑞 𝑗 and 𝑞ℎ , and introduces (or
increases the probability of) the posterior 𝑞𝑖 . An analogous argument to that in Step 1
shows that 𝜎𝑅 is at least as good to the receiver as 𝜎′

𝑅
when facing 𝜎𝑆 . As a result, 𝜎𝑆

is better for the sender than 𝜎𝑆 when 𝑞𝑘 > 𝑞𝑚 , and the two strategies perform equally
well when 𝑞𝑘 ∈ [𝑞𝑖, 𝑞𝑚].
Step 3: Handling posteriors 𝒒𝒋 ∈ (𝒒 𝒊, 𝒒𝒎]. Let J =

{
𝑗 ∈ {1, 2, . . . , 𝑛} : 𝑞 𝑗 ∈

[𝑞𝑖, 𝑞𝑚]
}
, let 𝑞 be the weighted average of all posteriors (𝑞 𝑗 ) 𝑗∈J , and let 𝛽 be the sum

of the probabilities corresponding to these posteriors:

𝑞 =

∑
𝑗∈J 𝛽 𝑗𝑞 𝑗∑
𝑗∈J 𝛽𝑖

, 𝛽 =
∑︁
𝑗∈J

𝛽𝑖 . (A.15)

Consider the sender’s strategy𝜎𝑆 that instead of splitting the receiver’s belief to (𝑞 𝑗 )𝑛𝑗=1,
replaces all beliefs𝑞 𝑗 ⩽ 𝑞𝑚 by their average𝑞. That is, the strategy 𝜎𝑆 splits𝑞 to (𝑞 𝑗 ) 𝑗∉J
(with probabilities (𝛽 𝑗 ) 𝑗∉J ) and 𝑞 (with probability 𝛽).

We argue that 𝜎𝑅 is at least as good for the receiver as 𝜎′
𝑅

against 𝜎𝑆 . Indeed, at all
(𝑞 𝑗 ) 𝑗∉J and at 𝑞, the receiver behaves similarly under 𝜎𝑅 (resp., under 𝜎′

𝑅
): he refrains

in all of them under 𝜎𝑅 , and he refrains in 𝑞−𝑗 and acts in 𝑞+𝑗 under 𝜎′
𝑅
. The linearity of

the payoff implies that since 𝜎𝑅 is at least as good for the receiver as 𝜎′
𝑅

when facing
𝜎𝑆 , the same relation holds also when facing 𝜎𝑆 .

Proof of Proposition 2

Step 1: The sender’s optimal loss is at most 𝑵U. The sender’s payoff in the bench-
mark case, in which the sender provides no information to the receiver, is the function
𝑁 displayed in red in Figure 1. Simple algebraic manipulations show that the line that
connects (𝑞𝑖, 𝑁 (𝑞𝑖)) and (1, 𝑁 (1)), i.e., the dashed blue line in Figure 1, passes below
the point (𝑞𝑖𝑖, 𝑁 (𝑞𝑖𝑖)). Therefore, the convexification of 𝑁 , namely, the smallest con-
vex function that is smaller than 𝑁 , is the function 𝑁U defined in the statement of
the proposition. This further implies that the sender’s strategy that is described in the
statement of the proposition, denoted 𝜎U

𝑆
, ensures that the sender’s loss is no more

than 𝑁U.
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Since the sender’s loss 𝑁U is the convexification of 𝑁 , the sender’s strategy 𝜎U
𝑆

is
optimal among all sender’s strategies that do not reveal information in period 2. Our
goal is to show that 𝜎U

𝑆
is the sender’s optimal strategy also among her strategies that

do provide information in period 2. To this purpose, we will show that the payoff
guaranteed by any sender’s strategy that reveals information only in period 2 is not
lower than 𝑁U(𝑞). Since information provided in period 1 serves as a convexification
device, and since 𝑁U is convex, this will imply that 𝜎U

𝑆
is indeed optimal.

We identify different cases which we handle in turn.
Step 2: The case 𝒒 ⩽ 𝒒 𝒊. In this case the receiver’s best response to 𝜎U

𝑆
is RR, hence

𝜎U
𝑆

is indeed optimal for the sender.
Step 3: The case 𝒒 > 𝒒𝒎. In this case the receiver’s payoff in period 1 is positive,
hence, when facing a sender’s strategy that does not reveal information in period 1,
he will act in period 1. Any information that the sender provides in period 2 is provided
independently of the receiver’s behavior in period 1. Since the receiver acts in period
1, providing this information in period 1 instead of in period 2 cannot harm the sender.
However, the optimal strategy that reveals information only in period 1 is 𝜎U

𝑆
.

Step 4: The case 𝒒 ∈ (𝒒 𝒊, 𝒒𝒎]. Fix a sender’s strategy that reveals information only
in period 2, and suppose that the receiver’s best response is to act in period 1. As in
the case of 𝑞 > 𝑞𝑚 , the sender could have revealed the information in period 1 without
increasing her loss. Yet the strategy 𝜎U

𝑆
is the optimal sender’s strategy that reveals

information only in period 1.
Hence, to verify that 𝜎U

𝑆
is optimal for 𝑞 ∈ (𝑞𝑖, 𝑞𝑚], it is sufficient to show that

a loss lower than 𝑁U(𝑞) cannot be obtained by any sender’s strategy that involves
information revelation only in period 2 and the receiver refraining in period 1.

From Lemma 2 we know that we can restrict our attention to extreme strategies.
Fix then an extreme strategy of the sender, and denote by 𝛾 the probability that the
message 𝑔 is sent when the state is 𝐺 . Let 𝜎𝑅 be the receiver’s optimal response, and
assume it refrains in period 1. Under 𝜎𝑅 , the receiver acts in period 2 if and only if his
belief is 1, hence the payoff of the receiver and the loss of the sender are both 𝛾𝑞. For
𝜎𝑅 to be an optimal response, 𝛾𝑞 must exceed the receiver’s payoff from alternative
strategies in response to the sender’s extreme strategy. These strategies are:

(a) act in period 1, and act in period 2 when the belief in period 2 is 1.
(b) act in period 1, and act in period 2 when the belief in period 2 is 1 or when the

signal in period 1 was positive.
Since 𝑞 ⩽ 𝑞𝑚 , the strategy (a) gives the receiver a payoff not higher than 𝜎𝑅 . As to (b),
it gives the receiver

𝑞 − (1 − 𝑞)𝑐 + 𝑞𝛼𝐺 − (1 − 𝑞)𝛼𝐿𝑐 + 𝑞(1 − 𝛼𝐺 )𝛾 . (A.16)

For the sender, the best extreme strategy is characterised by the minimum 𝛾 such that
𝑞𝛾 (the payoff from 𝜎𝑅) is not lower than (A.16). Denoting the minimum level of 𝛾 by
𝛾 (𝑞), the payoff from the extreme strategy 𝜎𝑅 turns out to be:

𝑞𝛾 (𝑞) = 𝑞 − (1 − 𝑞)𝑐 + 𝑞𝛼𝐺 − (1 − 𝑞)𝛼𝐿𝑐
𝛼𝐺

, (A.17)
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and simple algebraic manipulations show that 𝑞 ⩾ 𝑞𝑖 implies 𝑞𝛾 (𝑞) ⩾ 𝑁U(𝑞), proving
our result.

Proof of Theorem 1

Proof of Part (a). As in the proof of Proposition 2, when𝑞 ⩽ 𝑞𝑖 and the sender reveals
no information, the receiver’s best response is to refrain in both periods, which is the
optimal outcome for the sender.
Proof of Part (b). Suppose that𝑞𝑖 < 𝑞 ⩽ 𝑝∗, which implies𝑞 ⩾ 𝜋 (𝑞), and consider the
following strategy of the sender, which is described in the statement of the theorem:
• in period 1 reveal no information;
• if the receiver chose A in period 1, then in period 2 reveal no information;
• if the receiver chose R in period 1, then in period 2 split 𝑞 into ⟨𝜉 (𝑞); 1⟩.15

Observe that 𝜉 (𝑞) is decreasing in 𝑞. This is proved by considering that, with 𝑞𝑖 < 𝑞 <

𝑞′, we have
𝜉 (𝑞′) < 𝜉 (𝑞) ⇐⇒ 1 − 𝜋 (𝑞)

1 − 𝑞
<

𝜋 (𝑞′) − 𝜋 (𝑞)
𝑞′ − 𝑞

;

the latter inequality follows from the fact that the LHS is strictly lower – while the
RHS is always equal or higher – than 1 + 𝛼𝐺 + (1 + 𝛼𝐿)𝑐 , which is the slope of 𝜋 (𝑞) in
the interval (𝑞𝑖, 𝑞𝑖𝑖).

Since 𝜋 (𝑞𝑖) = 0 implies 𝜉 (𝑞𝑖) = 𝑞𝑖 , and since 𝜋 (𝑝∗) = 𝑝∗, for any 𝑞 ∈ (𝑞𝑖, 𝑝∗) we
have in particular 0 < 𝜉 (𝑞) < 𝑞𝑖 .

When the receiver responds with the compliance strategy, he plays A only in pe-
riod 2, and this occurs with probability 𝜋 (𝑞). The costs to the sender is therefore 𝜋 (𝑞),
and the receiver’s payoff is 𝜋 (𝑞).

We verify that this pair of strategies is a Stackelberg equilibrium. Since 𝜋 (𝑞) is the
best possible outcome for the sender, she cannot profit by deviating.

If the receiver deviates and plays A in period 1, he will get no information from
the sender in period 2, and his optimal payoff would still be 𝜋 (𝑞). Hence the receiver
cannot profit by deviating either. On the other hand, in period 2, when the receiver’s
belief is 𝜉 (𝑞) his best response is R, because 𝜉 (𝑞) < 𝑞𝑖 < 𝑞𝑚 .
Proof of Part (c). Assume 𝑞 > 𝑝∗. We distinguish between two cases.
Case 1: 𝒑∗ > 𝒒 𝒊 𝒊. Since 𝑞 > 𝑞𝑖𝑖 , 𝜋 (𝑞) is linear on the interval [𝑝∗, 1]. Consider the
following sender’s strategy:
• in period 1, splits 𝑞 into ⟨𝑝∗; 1⟩;
• in period 2, follow the strategy as described in the proof of Part (b). Namely, if the

sender chose A in period 1, then provide no information in period 2. If the sender
chose R in period 1, and the split realization is 𝑝∗, further split it in period 2 into
⟨0; 1⟩. Otherwise do nothing.
As we have seen, the receiver’s best response is as follows: if the split realization

in period 1 is to 1, follow strategy AA; if the split realization in period 1 is to 𝑝∗, choose
15In other words, if the state of nature is 𝐺 , reveal it with probability 𝜋 (𝑞), which is less than 1 for

𝑞 ⩽ 𝑝∗, and keep silent otherwise.
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R in period 1, and in period 2 choose A if and only if the split realization in period 2 is
to 1.

If the split realization in period 1 is 𝑝∗, the receiver’s payoff is(
1 − 𝑞 − 𝑝∗

1 − 𝑝∗

)
𝜋 (𝑝∗) + 𝑞 − 𝑝∗

1 − 𝑝∗
𝜋 (1) = 𝜋 (𝑞), (A.18)

where the equality is due to the linearity of 𝜋 on this interval. Hence, as in Part (b),
the receiver cannot profit by deviating. The sender’s expected loss under this strategy
is, therefore, 𝜋 (𝑞), and hence, as in Part (b), the sender cannot profit by deviating as
well.
Case 2: 𝒑∗ ⩽ 𝒒 𝒊 𝒊. Consider the strategy pair introduced in Case 1. Since 𝜋 (𝑞) is
convex on [𝑝∗, 1], the receiver’s strategy is the best response to the sender’s strategy.
However, 𝜋 (𝑞) is no longer linear on [𝑝∗, 1], and therefore the sender does not attain
the lower bound 𝜋 (𝑞). Hence, it is not clear whether the sender’s strategy is optimal.

When the receiver’s belief in period 2 is 𝑞, his highest payoff is obtained when the
sender reveals the state, and he, the receiver, chooses A when the state is 𝐺 , and R
when it is 𝐿. This results in a payoff 𝑞 to the receiver.

Since 𝑞 > 𝑝∗, we have 𝜋 (𝑞) > 𝑞: even ignoring information revealed by the sender,
the receiver can guarantee more than 𝑞. This implies that in any equilibrium, the
sender chooses A with positive probability in period 1.

If the receiver chooses A in period 1, and in period 2 he chooses A only if the signal
was positive, then the cost to the sender is:{1 + 𝑞𝛼𝐺 + (1 − 𝑞)𝛼𝐿, if 𝑝∗ ⩽ 𝑞 < 𝑞𝑖𝑖 ,

2, if 𝑞𝑖𝑖 ⩽ 𝑞.
(A.19)

Cost minimization for the sender involves the convexification of the function that
coincides with 𝜋 (𝑞) when 𝑞 ⩽ 𝑝∗ and with (A.19) when 𝑞 > 𝑝∗. For 𝑞 > 𝑝∗, this
function is linear, equals 𝜋 (𝑞) at 𝑞 = 𝑝∗ and equals 2 at 𝑞 = 1. For 𝑞 < 1 this linear
function lies strictly above 𝜋 (𝑞), which implies that the optimal outcome for the sender
is worse than the benchmark (see Figure 1).

The optimal messaging strategy that corresponds to this convexification is as fol-
lows:
• in period 1, split 𝑞 into ⟨𝑝∗; 1⟩;
• if the receiver chose A in period 1, reveal no information in period 2;
• if the receiver chose R in period 1 and the split realization was to 𝑝∗, in period 2

split the receiver’s belief into ⟨0; 1⟩.
By adopting this strategy, the sender provides some information about 𝑞 in period 1,
and fully reveals the state in period 2. The proof of Theorem 1 is complete.

Proof of Theorem 2

Proof of Part (a). Consider the following strategy of the sender:
• in period 1 reveal no information;
• if the signal in period 1 is negative, reveal no information in period 2;
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• if the signal in period 1 is positive and if the state is𝐺 , then in period 2 with proba-
bility 𝛾 send the message 𝑔, otherwise, send the message ℓ ; that is to say, split 𝑞 into
⟨ (1−𝛾)𝑞1−𝛾𝑞 ; 1⟩.
If the receiver complies (i.e., he refrains in period 1 and acts in period 2 if and only

if the message is 𝑔), his payoff is 𝑞𝛾 . Hence, a necessary condition for compliance to
be a best response is that the resulting payoff is no less than the payoff from ignoring
the sender’s message:

𝑞𝛾 ⩾ 𝜋 (𝑞). (A.20)

Since 𝛾 ∈ [0, 1], (A.20) can hold only when 𝑞 ⩾ 𝜋 (𝑞), that is, 𝑞 ⩽ 𝑝∗. As we showed
in the proof of Theorem 1, when 𝑞 ⩽ 𝑝∗ we have 𝜉 (𝑞) < 𝑞𝑖 . The condition (A.20)
can be equivalently expressed as (1−𝛾)𝑞

1−𝛾𝑞 ⩽ 𝜉 (𝑞). It follows that, when (A.20) holds,
the posterior belief in period 2 induced by the message ℓ is also lower than 𝑞𝑖 and,
therefore, lower than 𝑞𝑚 .

Consider now the alternative strategy for the receiver where he acts in period 1,
and in period 2 he acts if and only if the signal is positive and the message is 𝑔. The
receiver’s payoff in this case is 𝑢 (𝑞) + 𝑞𝛼𝐺𝛾 .

Therefore, a second condition that is necessary for compliance to be a best response
is 𝑞𝛾 ⩾ 𝑢 (𝑞) + 𝑞𝛼𝐺𝛾 , or:

𝑞𝛾 ⩾
𝑢 (𝑞)

1 − 𝛼𝐺
. (A.21)

Condition (A.21) can be compared to (A.20) to establish which of the two is binding
at each 𝑞. Namely, condition (A.20) will be binding when

𝑢 (𝑞)
1 − 𝛼𝐺

⩽ 𝜋 (𝑞), (A.22)

with 𝛾 ⩽ 1 implying that neither side can exceed 𝑞.
Recalling that 𝜋 (𝑞) is the maximum of three functions, with one of them being

2𝑢 (𝑞), we conclude that the inequality (A.22) holds at all 𝑞 if 𝑢 (𝑞)/(1 − 𝛼𝐺 ) ⩽ 2𝑢 (𝑞),
that is, if 𝛼𝐺 ⩽ 1/2. This is enough to prove part (a) of the Theorem. Indeed, if (A.22) is
always satisfied and (A.20) is the only condition for compliance to be a best receiver’s
response, then there is no difference between this case and the case of action-based
information discussed in Theorem 1.
Proof of Part (b). When 𝛼𝐺 > 1/2, the identity of the condition among (A.20) and
(A.21) that is binding depends on 𝑞 and 𝛾 . In this case, the optimal choice of 𝛾 for
the sender corresponds to the minimal 𝛾 ∈ [0, 1] that satisfies both inequalities (A.20)
and (A.21).

Before characterizing the optimal strategy, consider that, since 𝛾 ⩽ 1, condition
(A.20) cannot be satisfied when 𝑞 < 𝜋 (𝑞), i.e., when 𝑞 > 𝑝∗. Similarly, conditions
(A.21) cannot be satisfied for 𝛾 ⩽ 1 when 𝑞 < 𝑢 (𝑞) +𝛼𝐺𝑞, i.e., when 𝑞 exceeds the level

𝑝∗∗ := 𝑐

𝛼𝐺 + 𝑐 ⩾
𝑐

1 + 𝑐 = 𝑞𝑚 . (A.23)

Moreover, when 𝛼𝐺 > 1/2, we have 𝑢 (𝑞) +𝛼𝐺𝑞 > 𝜋 (𝑞). This follows from the fact that
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for 𝑞 ∈ (𝑞𝑖, 𝑞𝑖𝑖) we have

𝑢 (𝑞) + 𝛼𝐺𝑞 − 𝜋 (𝑞) = 𝑞 − (1 − 𝑞)𝑐 + 𝛼𝐺𝑞 − [𝑞(1 + 𝛼𝐺 ) − (1 − 𝑞) (1 + 𝛼𝐿)𝑐]
= 𝛼𝐿 (1 − 𝑞)𝑐 > 0,

while for 𝑞 ⩾ 𝑞𝑖𝑖 we have

𝑢 (𝑞) + 𝛼𝐺𝑞 − 𝜋 (𝑞) = (1 + 𝛼𝐺 )𝑞 − (1 − 𝑞)𝑐 − 2[𝑞 − (1 − 𝑞)𝑐]
= (1 − 𝑞)𝑐 − (1 − 𝛼𝐺 )𝑞 > 0.

Therefore,
𝑝∗∗ = 𝑢 (𝑝∗∗) + 𝛼𝐺𝑝

∗∗ > 𝜋 (𝑝∗∗), (A.24)
which implies 𝑝∗∗ < 𝑝∗.

We distinguish between three cases.
Case 1: 𝒒 ⩽ 𝒑∗∗. Because in condition (A.22) the LHS is linear, the RHS is convex,
the LHS is lower than the RHS at 𝑞 = 0, while the RHS is lower than the LHS at
𝑞 = 𝑝∗∗ (see (A.24)), there is 𝑝𝑒 ∈ (0, 𝑝∗∗) such that for 𝑞 < 𝑝𝑒 condition (A.20) is the
binding constraint, while for 𝑞 > 𝑝𝑒 condition (A.21) is the binding constraint. Since
at 𝑞𝑚 the LHS of (A.22) is zero while the RHS is positive, we have 𝑝𝑒 > 𝑞𝑚 . Since
𝑢 (𝑞𝑖𝑖)/(1 − 𝛼𝐺 ) > 2𝑢 (𝑞𝑖𝑖) = 𝜋 (𝑞𝑖𝑖), we have 𝑝𝑒 < 𝑞𝑖𝑖 .

By providing information only in period 2, the best the sender can do is as follows.
• When 𝑞 ⩽ 𝑝𝑒 , condition (A.20) is the binding constraint. In this case the receiver’s

payoff coincides with the action-based information payoff, which is 𝜋 (𝑞), and the
sender’s cost is therefore 𝜋 (𝑞).

• When 𝑝𝑒 < 𝑞 ⩽ 𝑝∗∗, the sender can still prevent the receiver from acting in period
1, but then the receiver’s payoff coincides with the RHS of condition (A.21), which
is 𝑢 (𝑞)/(1 − 𝛼𝐺 ), and the sender’s cost is accordingly 𝑢 (𝑞)/(1 − 𝛼𝐺 ).

Case 2: 𝒑∗∗ < 𝒒 ⩽ 𝒒 𝒊 𝒊. When 𝑝∗∗ < 𝑞𝑖𝑖 , no amount of information revealed in period
2 makes action R better than action A in period 1, hence the receiver will choose A in
period 1. Since the sender observes the signal obtained by the receiver, she knows the
receiver’s belief in period 2 (calculated under the assumption that the receiver acted
in period 1). Since 𝑞 ⩽ 𝑞𝑖𝑖 , if the signal in period 1 is negative, the receiver’s belief
in period 2 is at most 𝑞𝑚 , and the best response for the sender in period 2 is to reveal
no information. If the signal in period 1 is positive, the receiver’s belief in period 2
is above 𝑞𝑚 , and the best response for the sender in period 2 is to split the receiver’s
belief between ⟨𝑞𝑚; 1⟩. As a result, the sender’s optimal cost is

1 +
(
𝑞𝛼𝐺 + (1 − 𝑞)𝛼𝐿

)
×
(
𝑞+ − 𝑞𝑚

1 − 𝑞𝑚

)
, (A.25)

where, as in (A.3),
𝑞+ =

𝑞𝛼𝐺

𝑞𝛼𝐺 + (1 − 𝑞)𝛼𝐿
(A.26)

is the receiver’s posterior belief after a positive signal. The expression in (A.25) sim-
plifies to

1 + 𝑞𝛼𝐺 − (1 − 𝑞)𝛼𝐿𝑐. (A.27)
which is larger than 𝜋 (𝑞) on (𝑝∗∗, 𝑞𝑖𝑖].
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(a) The case 𝑝∗∗ < 𝑞𝑖𝑖
𝑞𝑖 𝑞𝑖𝑖𝑝𝑒

𝑝∗∗

0 1

1

2

(b) The case 𝑝∗∗ > 𝑞𝑖𝑖

Figure A.1: Sender’s payoff in the proof of Theorem 2, with kink points at 𝑞𝑖 and 𝑞𝑖𝑖 .

Case 3: 𝒒 > max{𝒑∗∗, 𝒒 𝒊 𝒊}. In this case, the receiver chooses A in period 1, and his
belief in period 2 is above 𝑞𝑚 , whatever signal he obtains from his action in period
1. Hence the best response for the sender in period 2 is to split the receiver’s belief
into ⟨𝑞𝑚; 1⟩, whether the signal in period 1 is positive or negative. Doing so, leads to
sender’s cost of 1 + 𝑞−𝑞𝑚

1−𝑞𝑚 , which is larger than 𝜋 (𝑞) for 𝑞 > max{𝑝∗∗, 𝑞𝑖𝑖}.
To summarize, when𝛼𝐺 > 1/2, the sender’s cost when information can be provided

only in period 2 is given by (see Figure A.1):

𝜋 (𝑞), if 𝑞 ⩽ 𝑝𝑒 ,
𝑢 (𝑞)

1 − 𝛼𝐺
, if 𝑝𝑒 < 𝑞 ⩽ 𝑝∗∗,

1 + 𝑞𝛼𝐺 − (1 − 𝑞)𝛼𝐿𝑐, if 𝑝∗∗ < 𝑞 ⩽ 𝑞𝑖𝑖 ,

1 + 𝑞 − 𝑞𝑚

1 − 𝑞𝑚
, if max{𝑝∗∗, 𝑞𝑖𝑖} < 𝑞 ⩽ 1.

(A.28)

Note that, when 𝑝∗∗ > 𝑞𝑖𝑖 , the third subcase in the definition of (A.28) is empty.
Since the sender wishes to minimize her cost, her Stackelberg equilibrium payoff is

the convexification of the function defined in (A.28). Tedious computations show that
the convexification is linear between 𝑝𝑒 and 1, and has a kink point at 𝑝𝑒 . Therefore,
when 𝑞 > 𝑝𝑒 the optimal messaging strategy is as follows:
• in period 1, split 𝑞 into ⟨𝑝𝑒 ; 1⟩;
• if the split realization is 𝑝𝑒 , further split 𝑝𝑒 into ⟨𝜉 (𝑝𝑒); 1⟩, and do nothing otherwise.
Notice that this optimal strategy renders 𝑝∗∗ irrelevant.
General sender’s strategies So far we have assumed that the sender can use only
extreme strategies. Since in all Stackelberg equilibria, the receiver refrains whenever
her belief is not 1, the same argument as in the proof of Proposition 2 shows that all
sender’s strategies are weakly dominated by extreme strategies. This completes the
proof.
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