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Abstract

We consider dynamic cooperative games, where the worth of coalitions

varies over time according to the history of allocations. When defining the

core of a dynamic game, we allow the possibility for coalitions to deviate at

any time and thereby to give rise to a new environment. When a coalition

deviates, from that point on, the game is no longer played with the original

set of players. The deviating coalition becomes the new grand coalition

which, in turn, induces a new dynamic game. The stage games of the new

dynamical game depend on all previous allocation including those that have

materialized from the deviating time on.

We define three types of core solutions: fair core, stable core and credible

core. We characterize the first two in case where the instantaneous game de-

pends on the last allocation (rather than on the whole history of allocations)

and the third in the general case.
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1 Introduction

Noncooperative game theory has dedicated a lot of attention to dynamic games

and refinements of Nash equilibrium have been studied to capture the features

that the dynamic induces in the game. When the dynamic is obtained by simply

repeating a stage game over time, the folk theorem shows that the set of equilibria

in an infinitely repeated game is in general much larger than the set of equilibria

in the stage game.

In cooperative game theory most of the literature studies only static situations:

a game is played only once and its solution is a set of suitable allocations that

satisfies some conditions.

In this paper we consider a bona fide dynamic version of a cooperative game,

where the worth of coalitions varies over time according to the history of the game.

In particular the worth of coalitions at time t depends on the allocations at all the

times before t.

When defining a solution concept we allow the possibility for coalitions to

deviate at any time and thereby to give rise to a new environment. When a coalition

deviates, from that point on, the game is no longer played with the original set

of players. The deviating coalition becomes the new grand coalition which, in

turn, induces a new dynamic game. The stage games of the new dynamical game

depend on all previous allocations including those that have materialized from the

deviating time on.

The existing literature on dynamic cooperative games considers games that

determine only the worth of any coalition in a stage game played with the original

grand coalition. However, in order to accommodate the possibility of deviating

coalitions that generate new dynamical games, we need a richer structure. In the

model of dynamic cooperative games that we introduce, the grand coalition of any

stage game might be strictly smaller than the original grand coalition, while the

allocation history is adapted accordingly.

In this paper we focus on dynamic games where the stage games are deter-

ministically determined by the historical allocations. In these games a sequence of

allocations uniquely induces a sequence of stage games. We investigate the core in

three different approaches.

A coalition is said to be under-treated if the present value of its stage-shares

is smaller than the present stage-worth of it. A sequence of stage-allocations is in
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the fair core if no sub-coalition is under-treated. Under the fair core approach,

which is similar to that taken by the relevant literature, an under-treated coalition

may complain but it cannot change the evolution of the game by abandoning the

previous environment and creating a whole new game.

In the stable core on the other hand, the share of a coalition is compared to

the opportunities it would have if it decided to deviate. A coalition is said to be

dissatisfied with a sequence of allocations if, by quitting the original game, the

coalition can form another dynamic game, with a smaller number of players, and

afford better future allocations. A sequence of allocations is in the stable core if

no coalition can deviate and get on its own a greater share than the one proposed

by the sequence.

The stable core does not consider what the threat of a potential deviating

coalition consists of. It might be that the sequence of allocations a coalition shows

in order to substantiate its dissatisfaction, is itself prone to deviations. Thus, a

threat of a coalition to deviate and obtain a certain sequence of allocations may

be non-sustainable and therefore non-credible. The credible core requires that any

better sequence it might generate on its own be credible. That is, any sequence

of future allocations must itself be immune to deviations of smaller sub-coalitions

that are also immune to deviations of smaller coalitions.

In all our analysis at every stage t, either no player deviates and therefore a

game involving all the players of the previous stage t − 1 is played, or a coalition

deviates and creates its own game, which is a subgame of the previous one. Players

are never allowed to establish a larger coalition once they have deviated and formed

a smaller one. So new games can be created by splitting, but not by aggregation.

We make this assumption since, without it the possible dynamics would be so

general as not to produce any interesting result. Moreover the assumption allows

to describe a huge spectrum of situations of relevance.

When a coalition S deviates from the grand coalition N , we do not take into

account what happens to the coalition N \ S. This is due to the fact that we

are concerned with stability and therefore with conditions that guarantee that no

deviation will actually materialize, no matter what the status of the abandoned

coalition is.
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1.1 Existing literature

Dynamic cooperative games have been studied in a few versions. Most of the

studies, as we do, concentrate on the core. Oviedo (2000) studies the core of a

finitely repeated discounted cooperative game where the stage game does not vary

over time and no dynamic consideration is involved.

Kranich, Perea, and Peters (2005) consider a finite horizon of predetermined

games. They study three different core concepts. The classical core assumes that

coalitions planning to split off do so right at the beginning. This concept does not

depend on the temporal structure of the game: the classical core coincides with

the core of an induced static game. The strong sequential core, on the other hand,

allows for deviations of coalitions at any stage of the game, but once a coalition

deviates at some point, it must keep doing so from that time on. In the above

two concepts deviations are not required to be credible, i.e., they could be blocked

by some sub-coalition in the future. The weak sequential core is robust against

credible coalitional deviations. The latter means that deviations are immune to

deviations of sub-coalitions. The sub-coalition deviations can be themselves non-

credible. Habis and Herings (2010) provide a correction of the above definition of

weak sequential core.

Predtetchinski (2007) deals with infinite-horizon stationary cooperative games,

where at each moment the game is in one of a finite number of states, that de-

termines which instantaneous game is played at that moment. The states evolves

according to an exogenous Markov chain and it does not depend on past alloca-

tions. The author considers the classical core and a version of the strong sequential

core, and provides conditions for nonemptyness of the strong sequential core.

Hellman (2008) focuses on the bargaining set of dynamic cooperative games,

where the sequence of stage TU-games is exogenously specified.

Related results can be found in Gale (1978), where a concept of sequential core

is defined and is used to model lack of trust in a two-period economy. In this model

coalitions are allowed to deviate in the second period. Becker and Chakrabarti

(1995) consider infinite horizon capital allocation models and define recursive core

allocations, the ones where no coalition can improve upon its consumption stream

at any time given its accumulation of assets up to that period.

Koutsougeras (1998) introduces the notion of two-stage core, that takes into

account the possibility of temporary cooperation. Within each coalition agents

make future trades only if they are enforceable, i.e., a coalition may have a lim-
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ited horizon. Moreover a coalition blocks at some point in time only if it can

secure improvements for its members in any possible consequence of a deviation.

Predtetchinski, Herings, and Peters (2002); Predtetchinski, Herings, and Perea

(2006) use the concepts of strong and weak sequential core in the context of two-

period economies. Predtetchinski, Herings, and Peters (2004) apply the concept

of strong sequential core to a stationary exchange economy.

Petrosjan (1977, 1993) deals with a cooperative game induced by a (non-

cooperative) differential game and Petrosjan and Zaccour (2003) study the problem

of allocation over time of total cost incurred by countries in a cooperative game

of pollution reduction and compute the Shapley value of this game. These papers

are not about dynamic cooperative games but about a cooperative game induced

by non-cooperative game played over time.

There exists a whole literature on coalition formation, where stability of coali-

tions is considered under different aspects (see, e.g., Ray, 1989; Chwe, 1994; Xue,

1998; Ray and Vohra, 1999; Konishi and Ray, 2003; Diamantoudi and Xue, 2007;

Ray, 2007, and references therein). Typically this literature considers strategically

richer models than the one examined in this paper, so it is closer in spirit to non-

cooperative game theory. For instance the model considered by Konishi and Ray

(2003), which describes coalition formation as a truly dynamical process, considers

a state space, beliefs, a probabilistic structure, and equilibrium concepts.

Our notion of credible core can be related to the papers by Bernheim, Peleg,

and Whinston (1987); Bernheim and Whinston (1987) on coalition-proof Nash

equilibria.

In some of our results we resort to the concept of ε-core. This was introduced

in Shapley and Shubik (1966) to analyze situations where the core is empty. It

has been employed in different contexts by Wooders (1983); Shubik and Wooders

(1983a,b); Wooders and Zame (1984); Kovalenkov and Wooders (2001a,b, 2003,

2005), among others. In some of these papers a parametrized collection of co-

operative games is considered and an approximate core is computed, where the

goodness of the approximation depends on the parameters of the game. In par-

ticular, given the parameters π describing a collection of games and given a lower

bound n0 on the number of players in each game in the collection, Kovalenkov and

Wooders (2001b) obtain a bound ε(π, n0) so that, for any ε ≥ ε(π, n0), all games in

the collection with at least n0 players have nonempty ε-cores. Some of our results

have a similar flavor, except that for us the lower bound on the ε is zero and the
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quantity that guarantees the existence of the ε-core is the discount factor, rather

than the number of players.

The paper is organized as follows. In Section 2 we give a motivating example

based on the classical market games of Shapley and Shubik. The model is intro-

duced in 3 and the two first types of core solutions are given in Section 4. Section

5 provides characterizations of the non-emptyness of the ε-core when the discount

factor is sufficiently large. The credible core is discussed in Section 6 and the paper

ends with a section devoted to a few final remarks.

2 A market with externalities

To show a typical application of dynamic cooperative games consider n firms that

engage repeatedly in a market game. At any period each firm brings into the

market its own endowment and technology, that might depend on the firm’s pre-

vious allocation. The firms then share their endowments in order to produce the

maximal possible quantity. An important feature of the model is the existence

of a positive externality reflected in the knowhow of each firm. The production

function of each firm increases as the number of firms in the economy increases.

Formally, let N = {1, 2, . . . , n} be the set of firms that are capable of producing

a certain commodity using ` production factors. In the static version of the model,

when the input of production factors is y = (y1, . . . , y`) ∈ R`
+, firm i produces

e(n)ui(y), where ui is a concave function and e(n) is the externality factor which

is increasing with the number n of firms in the economy.

The relevance of the externality factor becomes clear in the dynamic model. An

under-treated coalition of firms might want to split off and form its own consortium.

By doing so, on one hand, as an independent consortium, it will be subject to a

smaller externality factor, since the number of cooperating firms is reduced. On

the other hand, it will have the full freedom to share the entire profit the way it

wishes.

To make the model more realistic, we assume that the production functions

change over time and that, in order to keep the production ability, firms need

to invest every period in maintenance, which requires resources. These resources

come from the allocation of the firms in previous times, and whatever does not

go into maintenance, is used for dividends. Thus, the current production function

depends on yesterday’s allocation and the externality factor.
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For instance, suppose that the production function of firm i at time t is

uit(y) = e(k)γ1/(1+x
i
t−1)uit−1(y), (2.1)

where k is the number of firms in the consortium that i belongs to, xit−1 is the

allocation of firm i at time t− 1, and 0 < γ < 1 is the decay rate per period. Note

that γ1/(1+x
i
t−1) is increasing with xit−1 and therefore the greater the allocation at

time t− 1, the more efficient the firm at time t.

For the sake of simplicity assume that each firm is endowed anew at any time

with the same production factor basket, say yi. We are ready now to describe the

dynamic. If at time t firm i belongs to the consortium S, then it engages the stage

market game vSt defined by

vSt (T ) = max
{∑

i∈T

uit(z
i);

∑
i∈T

zi =
∑
i∈T

yi, zi ∈ R`
+

}
for every T ⊆ S, with k = |S| in (2.1).

3 Dynamic cooperative games

3.1 Dynamic of the game

Let N = {1, . . . , n} be the set of players. For any coalition S ⊆ N consider a

function vS : 2S → R+ with vS(∅) = 0. The function vS is called characteristic

function defined over S with the set S being the grand coalition of vS. An allocation

of vS is a vector xS ∈ RS that satisfies
∑

i∈S x
S(i) = vS(S) and xS(i) ≥ B, where

B is a uniform lower bound over all allocations. The reason for this lower bound is

primarily technical: with this lower bound the set of allocations becomes compact.

If we take B = 0, no inter-temporal loans are allowed, whereas, when B < 0 a

player can get less than her individually rational level at a certain stage, but then

she will be compensated in the future.

At any stage t a cooperative games over a grand coalition S is played. Both

the game and the grand coalition depend on the history up to that stage. The

players of the grand coalition S are getting at time t an allocation of the game

actually being played. The cooperative game of the subsequent period depends on

the current allocation.
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Formally, a dynamic cooperative game is played over a discrete set of periods.

The evolution of the system depends on the initial game, the allocation at every pe-

riod and the dynamic V , specified below. At stage 1 any coalition decides whether

to split off or not. If no coalition splits off, then the initial cooperative game vN1 is

played, and the allocation is xN1 . If S splits off, then the initial cooperative game

is vS1 and the allocation is xS1 . Note that the initial game is predetermined and is

beyond the control of the players, unless a sub-coalition wishes to split off.

Like in a static cooperative game we will use (different versions of) the core to

determine whether the grand coalition N is stable (in different senses), namely no

sub-coalition S has an incentive to split. In case a coalition S can advantageously

split, the grand coalition N is not stable, which makes the core empty. That is

why we do not need to specify what payoffs players in N \ S get or whether some

of them want to form a coalition of their own.

From period 2 on, the evolution is governed by V . The state of the system

is a pair (S;xS), where S is a coalition and xS is an allocation of S. As long as

no coalition splits off, the state is of the form (N ;xN); once a coalition S j N

deviates, the system turns to a state of the type (S;xS), and S remains fixed from

that stage on forever.

When the state at time t is (N ;xN), unless a deviation of S occurs, the game

played at time t + 1 is V (N ;xN), whose grand coalition is N . At this time the

allocation is xNt+1. However, if S deviates, the game played at time t+1 is V (S;xNS ),

where xNS is the allocation induced by xN to coalition S. At time t+1 the allocation

is xSt+1 and the subsequent game is V (S;xSt+1) whose grand coalition is S.

For the sake of simplicity we assume a Markovian structure of the game, where

the stage game played at time t depends on the allocation at time t − 1. More

complicated dynamics could be considered, for instance the game at time t could

depend on the whole past history. An interesting intermediate case is the one where

the game depends on some unidimensional function of the history, for instance on

the sum of the past allocations. Think for instance of a model of dynamic public

good provision, where every player contributes to a public good, whose level at

time t depends on the (discounted) sum of past contributions.

Up to Section 6, we assume that once a coalition deviates, it remains the grand

coalition forever and no further splitting off of sub-coalitions will take place. This

restriction corresponds to the first two types of core solutions, that are concerned

with long-term plans that prevent these kind of deviations.
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We also assume here that once a coalition deviates, there will be no way to

restore a full cooperation and to rebuild the grand coalition N . Such a possibil-

ity requires a much more complicated dynamic that would depend also on past

allocations of non-deviating members. In this paper we decide to keep matters as

simple as possible. This distinguishes our model from the literature on coalition

formation that we mentioned in the Introduction.

In our model a coalition S can deviate prior to time 1 and play the game vS1 .

We could as well assume that at time 1 for any S, V (N, xN0 )(S) = V (S, xN0 )(S),

and it will make no difference in the results. Note however, that in the motivating

example, when the grand coalition is N , the worth of S is typically different from

its worth when the grand coalition is S.

3.2 Discounting future payoffs

We assume throughout that all players have the same discount factor 0 < δ < 1.

Suppose that player i’s payoff at time t is xt(i). Her present normalized payoff is

x∗(i, δ) = (1− δ)
∞∑
t=1

δt−1xt(i).

We define for every T ⊆ N

x∗(T, δ) =
∑
i∈T

x∗(i, δ).

Therefore x∗(T, δ) is the sum of all individual allocations of T ’s members.

Define a new characteristic function on N as follows.

v∗(S, δ) = max x∗(S, δ),

where the maximum is taken over all feasible histories of S-allocations: xS1 , x
S
2 , . . .

and xt(i) = xSt (i).

The dynamic game with discount factor δ will be denoted by (V, δ).
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4 The fair and stable core solutions

4.1 The fair core

There are two justifications for the definition of core in the classical model of

one-shot cooperative game. The first is fairness and the second is stability. An

allocation is in the core if any coalition obtains at least its worth. Behind this

justification lies an assumptions that a central planner has a full control on what

the players get, and once she makes up her mind regarding the split of the cake,

the players have no way to protest.

This kind of reasoning leads us to define what we call the ‘fair core’ first. A

sequence of allocations xN1 , x
N
2 , . . . is in the fair core if fore every coalition S the

present value of the shares of S exceeds the present value of the worths of S. It

is assumed that coalition S can do nothing about its future shares, which gives

the central planner the freedom to choose allocations without paying attention to

semi-strategic considerations like stability.

The definition of fair core is concerned solely with the following consideration:

it is fair to give coalition S allocations whose present value is no less than what

their present worth is.

Definition 4.1 (Fair core). (i) A sequence of N -allocations xN1 , x
N
2 , . . . is in the

fair core of (V, δ) if for every S ⊆ N

xN∗ (S, δ) ≥ (1− δ)
∞∑
t=1

δt−1V (N ;xNt−1)(S).

(ii) A sequence of N -allocations xN1 , x
N
2 , . . . is in the ε-fair core of (V, δ) if for

every S ⊆ N

xN∗ (S, δ) ≥ (1− δ)
∞∑
t=1

δt−1V (N ;xNt−1)(S)− ε.

If the core of the stage game at time t is nonempty, for every t, then the fair

core of (V, δ) is nonempty.

Example 4.2. It is possible for a game (V, δ) to have a nonempty fair core even

if for every t the core at the stage game is empty. Consider the four player games

u1 and u2, where u1(i) = 0 for every player i, u1(12) = u1(23) = u1(13) = 3,
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u1(123) = 4 and player 4 is dummy; game u2 is like the u1 where players 1 and 4

exchange their roles. The cores of u1 and u2 are empty.

Suppose that vN1 = u1, V (N ; (1, 3
2
, 3
2
, 0)) = u2 and V (N ; (0, 3

2
, 3
2
, 1)) = u1.

Suppose that xNt = (1, 3
2
, 3
2
, 0) when t is odd and xNt = (0, 3

2
, 3
2
, 1) when t is even.

The result is that u1 is played in odd times and u2 in even times.

When the discount factor δ is high, the average over time of stage games is

close to (u1 + u2)/2 and the discounted value of the stream of allocations is close

to (1
2
, 3
2
, 3
2
, 1
2
). Thus the sequence of payoffs (xNt )t is in the ε-fair core of (V, δ).

Definition 4.3 (Efficiency). A sequence of N -allocations xN1 , x
N
2 , . . . is efficient

in (V, δ) if

xN∗ (N, δ) ≥ v∗(N, δ).

That is, xN1 , x
N
2 , . . . is efficient if the present value of the grand coalition’s share

is the maximum available. Recall that the actual game is history dependent. While

any of the stage allocations could be locally efficient, it might reduce the size of

the cake in subsequent periods and thereby might hamper efficiency.

In the classical one-shot game the definition of allocation contains the require-

ment of efficiency. This is not the case in the dynamic game. The fair core is not

necessarily efficient, as demonstrated by the following example.

Example 4.4. Suppose that

v1(N ;S) =

1 S = N,

0 otherwise.

and, if the allocation xN is uniform (i.e., treats all players equally), then V (N ;xN) =

|xN |vN1 , where |xN | stands for the sum of the individual allocations of all players,

otherwise V (N ;xN) = 0. Call e1 = (1, 0, . . . , 0) ∈ RN the first vector of the stan-

dard basis and
−→
0 = (0, . . . , 0) ∈ RN the zero vector. The sequence of allocations

e1,
−→
0 ,
−→
0 , . . . is in the fair core: the first allocation e1 is in the core of the stage

game vN1 , but it is not uniform and therefore all subsequent games are identically

0. This sequence is in the fair core of (V, δ), but it is certainly not efficient.

Definition 4.5 (Efficient fair core). (i) A sequence of N -allocations xN1 , x
N
2 , . . .

is in the efficient fair core of (V, δ) if it is efficient and in the fair core of (V, δ).

(ii) A sequence of N -allocations xN1 , x
N
2 , . . . is in the ε-efficient fair core of (V, δ)

if it is efficient and in the ε-fair core of (V, δ).
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In the special case where the worth of the grand coalition is constant, that

is when the worth of the grand coalition in all stage games do not depend on

the history of allocation nor on the time, the fair core and the efficient fair core

coincide.

4.2 The stable core

The definition of the fair core does not make use of the entire structure of the

dynamic game. It uses only states of the type (N ;xN) and not of the type (S;xS),

where S $ N .

The second justification of the core involves stability considerations. An under-

treated coalition might deviate, create its own game, and improve its position by

reallocating its endowment. When a coalition S threatens to deviate, it shifts the

system to a state of the form (S;xS) and the dynamic then is governed by V (S; ·).
This is why referring just to states of the type (N ;xN) is insufficient and there is

a need to refer to states of the form (S;xS) for every coalition S.

Let xN1 , x
N
2 , . . . be a sequence of allocations. Define

xh∗(i, δ) = (1− δ)
∞∑
t=h

δt−1xt(i).

The number xh∗(i, δ) represents the discounted value at time h of the shares that

player i receives at time h and on. In particular, x∗(i, δ) = x1∗(i, δ). Similarly,

define the game vh∗ (·, δ) as

vh∗ (S, δ) = max
∑
i∈S

xh∗(i, δ),

where the maximum is taken over all feasible sequences xN1 , x
N
2 , . . . x

N
h , z

S
h+1, z

S
h+2 . . .

that coincide with xN1 , x
N
2 , . . . up to h, the time when S decides to leave.

A sequence of allocations xN1 , x
N
2 , . . . is in the stable core if at any time h

the value of the shares of coalition S exceeds the value of what coalition S could

guarantee in autarky, meaning without being engaged with others.

Definition 4.6 (Stable core). (i) A sequence of N -allocations x1, x2, . . . is in

the stable core of (V, δ) if for every S ⊆ N and every h,

xh∗(S, δ) ≥ vh∗ (S, δ).
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(ii) A sequence of N -allocations xN1 , x
N
2 , . . . is in the ε-stable core of (V, δ) if for

every S ⊆ N and every h,

xh∗(S, δ) ≥ vh∗ (S, δ)− ε.

Remark 4.7. (a) Unlike the fair core, any history of N -allocations in the stable

core is efficient.

(b) The two notions of core are not necessarily co-variant with linear transforma-

tions. If V is co-variant with linear transformations, so are the two cores.

Example 4.8. It is possible for a game (V, δ) to have a nonempty stable core

even if for every t the core of the stage game is empty. Consider a set N =

{1, 2, . . . , 2k + 1}, and let

V (N ;xN)(S) =

xN(N) if |S| ≥ k + 1,

0 otherwise.

be xN(N) times a majority game, and let V (S;xS)(T ) = 2−|T |V (N ; ·)(T ) for every

S $ N .

The core of each stage game V (N ;xNt ) is empty, and so is the fair core of (V, δ),

whereas its stable core is not, regardless of the discount factor. The reason being

that when a coalition deviates, its future payoff declines rapidly. Coalitions will be

satisfied with shares that are strictly smaller than their worth, because deviation

does not promise a greater portion.

5 Non-emptyness of the core

5.1 Non-emptyness of the fair core

The following result applies to games where v(N ;xN)(N) is equal to xN(N) for

every allocation xN .

For the next definition we recall that the set of characteristic functions is a

vector space. Denote by ∆(d) the set of stage allocations of games where the

worth of the grand coalition is d. That is, ∆(d) = {xN ;xN(N) = d, xN(i) ≥ B

for every i ∈ N}. The set ∆(d) is obviously compact, which is the reason why we

impose the constraint that xN(i) ≥ B for every i ∈ N .

12



Let x ∈ ∆(d) be an allocation. We say that (y1, . . . , yk;α1, . . . , αk) is a split of

x, if

x =
k∑
j=1

αjyj, (5.1)

where αj ≥ 0,
∑k

j=1 αj = 1, and yj is an allocation j = 1, . . . , k. That is, x is

a convex combination of the allocations yj ∈ ∆(d) with αj being the respective

weights.

Definition 5.1. The convexification of V (N ; ·), denoted conv V (N ; ·), is a corre-

spondence defined as follows. Let x ∈ ∆(d) be an allocation. Then, conv V (N ;x) is

the set of all games that can be expressed as
∑k

j=1 αjV (N, yj), where (y1, . . . , yk;α1, . . . , αk)

is a split of x.

If V (N ; ·) is continuous, then conv V (N ;x) is closed and therefore, conv V (N ;x)

also contains all games of the form
∑∞

j=1 αjV (N ; yj), where x is expressed as an

infinite convex combination of allocations: x =
∑∞

j=1 αjyj.

Theorem 5.2. Consider a game where V (N, ·)(N) = d and V (N ; ·) is continuous.

Assume that for every coalition S, V (N ; ·)(S) is bounded. For every ε > 0 there

is 0 < δ0 < 1 such that for every δ ∈ (δ0, 1) the ε-fair core of (V, δ) is not empty if

and only if there exists x ∈ ∆(d) and v ∈ conv V (N ;x) such that x is in the core

of v.

Proof. Suppose first that for every ε > 0 there is 1 > δ0 > 0 such that for every

δ ∈ (δ0, 1) there is a sequence x1, x2, ... of allocations in the ε-fair core of (V, δ).

Denoting,

x = (1− δ)
∞∑
t=1

δt−1xt and u = (1− δ)
∞∑
t=1

δt−1V (N ;xt−1),

we have for every S ⊆ N ,

x(S) ≥ (1− δ)
∞∑
t=1

δt−1V (N ;xt−1)(S)− ε = u(S)− ε.

Here, V (N ;x0) denotes the initial game, v1.

13



Note that (1− δ)
∑∞

t=2 δ
t−1V (N ;xt−1) = u(S)− (1− δ)v1, and we obtain

x(S) ≥ u(S)− (1− δ)v1(S) + (1− δ)v1(S)− ε

= (1− δ)
∞∑
t=2

δt−1V (N ;xt−1) + (1− δ)v1(S)− ε

≥ (1− δ)
∞∑
t=2

δt−1V (N ;xt−1)− ε.

When δ is sufficiently close to 1, since V (N ; ·)(S) is bounded, we have

δ
1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)(S) >
1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)(S)− ε.

Thus,

x(S) ≥ (1− δ)
∞∑
t=2

δt−1V (N ;xt−1)− ε

= δ
1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)(S)− ε

≥ 1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)(S)− 2ε.

Define

x′ =
1− δ
δ

∞∑
t=2

δt−1xt.

If δ is sufficiently large, for every S, |x(S)− x′(S)| < ε, and therefore,

x′(S) ≥ 1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)(S)− 3ε.

In other words, x′ is in the 3ε-core of the game

1− δ
δ

∞∑
t=2

δt−1V (N ;xt−1)

which is a (infinite) convex combination of the games V (N ;xt−1), t = 2, . . . , each

14



with the weight

δt−1
1− δ
δ

= δt−2(1− δ)

and is therefore in conv V (N ;x′) (because x′ is a convex combination of xt−1’s with

the weights δt−2(1− δ), t = 2, 3, . . . ).

Since ε is arbitrary, from compactness and continuity of V (N ; ·), we conclude

that there exists v ∈ conv V (N ;x) such that x is in the core v, as desired.

We now assume that there is a vector x ∈ ∆ such that x is in the core of v ∈
conv V (N ;x). By definition of conv V (N ;x), there is a split (y1, . . . , yk;α1, . . . , αk)

of x such that

α1V (N ; y1) + · · ·+ αkV (N ; yk) = v. (5.2)

Fix an ε > 0. For δ large enough one can divide the set of periods into k disjoint

sets T 1, . . . , T k in a way that for every j = 1, . . . , k,

αj = (1− δ)
∑
t∈T j

δt−1 (5.3)

(see for instance, Fudenberg and Maskin (1986)).

At time 1 set v1 as an arbitrary game where v1(N) = d. And in general, for

t ∈ T j define xt = yj. In words, over the time periods in the set T j the allocation

is yj and the game that follows is V (N ; yj). Note that since V (N ; yj)(N) is fixed

and equal to d, for every i = 1, . . . , k, yi is an allocation of V (N ; yj) (because

yi ∈ ∆(d)). By construction and (5.1) the present value of allocations is x.

On the other hand, the present value of all the stage games is

(1−δ)v1+
k∑
j=1

(1−δ)
∑

t∈T j ,t6=1

δt−1V (N ;xt−1) = (1−δ)v1+
k∑
j=1

(1−δ)

 ∑
t∈T j ,t6=1

δt−1

V (N ; yj).
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Let j0 be such that 1 ∈ T j0 . Using (5.3) we obtain for every coalition S,

(1− δ)v1(S) +
k∑
j=1

(1− δ)
∑

t∈T j ,t6=1

δt−1V (N ;xt−1)(S)

= (1− δ)v1(S) +
k∑
j=1

αjV (N ; yj)(S)− (1− δ)V (N ; yj0)(S)

≤ (1− δ)v1(S) +
k∑
j=1

αjV (N ; yj)(S).

As V (N ; ·) is continuous, V (N ;x)(S) is bounded and therefore, when δ is suffi-

ciently close to 1, (1 − δ)v1(S) < ε for every coalition S. Thus, the present value

for every coalition S satisfies,

(
(1− δ)v1 +

k∑
j=1

(1− δ)
∑

t∈T j ,t 6=1

δt−1V (N ;xt−1)
)

(S) ≤ v(S) + ε.

Since x is in the core of v, the sequence x1, x2, . . . is in the ε-fair core of the

dynamic game V N with the discount factor δ.

Example 5.3. Let N = {1, 2, 3} and let ei be the i-th vector of the standard basis

in R3, that is, its i-th coordinate is 1 and the others are 0. Define V (N, ei) to be

the additive game where v(j) = 1/2 for j 6= i and v(i) = 0, which we denote as

p−i. When x = (x1, x2, x3) is such that xi ≤ 4/5 for every i ∈ N , then V (N, x) is

the simple majority game (i.e., V (N, xN0 )(S) = 1 iff |S| ≥ 2). Moreover V (N, ·) is

extended to the whole simplex in a continuous fashion, keeping V (N, ·)(N) = 1.

Note that in all the games involved, the feasible allocations are elements of the

simplex {(x1, x2, x3) : xi ≥ 0,
∑

i x
i = 1}.

Let v1, the initial game, be the simple majority game. Set, x1 = e1, x2 = e2 and1

xt = et(mod 3). The dynamic induces: v2 = V (N, x1) = p−1, v3 = V (N, x2) = p−2,

and vt = V (N, x2) = p−(t−1)(mod 3). It turns out that when t > 1 the core of vt is

non-empty. However, if the allocation at time t is the unique core allocation of vt,

the next stage-game is the majority game, whose core is empty.

It is easy to check that x1, x2, . . . is in the ε-fair core for discount factors

large enough. To see that the dynamical game satisfies the sufficient condition

1Here, 3k(mod 3) = 3.
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of Theorem 5.2, consider x = (1/3, 1/3, 1/3). Let v be the additive game with

weights 1/3 assigned to each player. Note that

(a) x is in the core of v;

(b)
∑3

i=1
1
3
ei is a split of x and

(c) v =
∑3

i=1
1
3
p−i =

∑3
i=1

1
3
V (N, ei).

Thus the sufficient condition of Theorem 5.2 is satisfied.

Let M be a closed set of allocations. For a vector x define convM V (N ;x) as

conv V N(x) was defined, with the extra condition that the allocations yj are in

convM . That is, convM V (N ;x) is the set all games that can be expressed as∑k
j=1 αjV (N ; yj), where (y1, . . . , yk;α1, . . . , αk) is a split of x and yj ∈ convM ,

j = 1, . . . , k.

Theorem 5.4. Consider a game where V (N ; ·) is continuous and bounded. For

γ > 0 denote Mγ = {x; V (N ;x)(N) > supy V (N ; y)(N) − γ}. For any ε > 0 the

efficient ε-fair core of a game V (N ; ·) is not empty for δ large enough if and only

if for every γ sufficiently small there exists x and v ∈ convMγ V (N ;x) such that x

is in the γ-core of v.

The proof is similar to the proof of Theorem 5.2 and is therefore omitted.

5.2 Non-emptyness of the stable core

Recall that V (S;xS) is the stage game played with S as the grand coalition after a

stage in which the allocation was xS. We now assume that V (S;x)(T ) depends on

xS(T ) =
∑

i∈T xi for every S that contains T in a continuous and monotonically

increasing fashion. In particular, the worth of coalition T ⊆ S at time t depends

only on its total share at time t − 1. For every coalition T and time t, we define

U t
T (c), inductively. U1

T (c) = V (S;x)(T ), where x(T ) = c. Note that this is well

defined, as V (S;x)(T ) depends solely on x(T ). Then, U t
T (c) = U1

T (U t−1
T (c)). Define

fT (c) to be the limit of U t
T (c). Due to continuity this limit exists. Thus, it satisfies

fT (c) = fT (fT (c)). That is, fT (c) is a fixed point of U1
T and of fT .

We further assume that fT (c) is finite for every T and c, which in equivalent

to assuming that either the set of fixed points of U1
T is unbounded or U1

T (x) < x
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for x sufficiently large.2

Let x be an allocation of v1 and define the characteristic function ux as follows:

ux(T ) = fT (x(T )) for every coalition T .

Lemma 5.5. For every ε > 0 there exists a time m such that for every c ≤ v1(N),

T ⊆ N and an allocation x of v1 with x(T ) = c, |ux(T ) − U t
T (c)| < ε for every

t ≥ m.

Proof. Fix ε > 0 and a coalition T . Denote by F the set of fixed points of

V (S;x)(T ) in the interval [0, v1(N)]. Let B be a finite subset of F having the

property that for every a ∈ F there is b ∈ B such that |a−b| < ε. Since V (S;x)(T )

is continuous and monotonically increasing in x(T ), fT is monotonically increasing.

Thus, fT (a) ∈ [b1, b2], for every a ∈ [b1, b2] with b1, b2 ∈ B. Moreover, the distance

|fT (a)− U t
T (a)| is decreasing with t. Denote by A(b) the set of all points that are

absorbed to b ∈ B. That is, A(b) = {a : fT (a) = b}.
For every b ∈ B, there is time mb such that |b − U t

T (a)| < ε for every t ≥ mb

and a ∈ A(b). Let mT = max{mb : b ∈ B}. Thus, for every a ∈ [0, v1(N)], either

a ∈ A(b) for some b ∈ B, in which case |fT (a)−U t
T (a)| = |b−U t

T (a)| < ε for every

t ≥ mT , or |a − fT (a)| ≤ |U t
T (a) − fT (a)| < ε for every t. Since there are finitely

many coalitions, m = max{mT : T ⊆ N} satisfies the assertion of the lemma.

Theorem 5.6. Consider a game where V (S;x)(T ) is continuously determined by

x(T ) in an increasingly monotonic fashion. Assume furthermore, that V (N ;x)(N) =

v1(N) = 1 when x(N) = v1(N). Then, the two following statements are equivalent:

(i) For any ε > 0 there is δ0 < 1 such that for every δ ∈ [δ0, 1) the ε-stable core

of a game (V, δ) is not empty.

(ii) For every ε > 0 there exists an allocation x of v1 such that the ε-core of ux

is not empty.

Before we proceed to the proof of this theorem, we need an auxiliary result.

Let a1, a2, . . . be a bounded sequence of numbers. For any integer h denote, ah,δ∗ =

(1− δ)
∑∞

t=h δ
t−hat. The proof of Theorem 5.6 uses the following lemma.

2The function U1
T is continuous and monotonic. In case the set of the fixed points of U1

T is
unbounded, every non-fixed point of U1

T is between two fixed points. The set of fixed points of U1
T

is closed, and therefore for every non-fixed point of U1
T , say c, there are two closest fixed point,

one above c and one below it. The sequence U t
T (c) then converges to one of the two (depending

on whether U t
T (c) > c or U t

T (c) < c). If, however, the set of fixed points of U1
T is bounded,

then the sequence U t
T (c) diverges to infinity in case U t

T (c) > c asymptotically. In case U t
T (c) < c

asymptotically, the sequence U t
T (c) is decreasing and fT (c) is finite.
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Lemma 5.7. For every δ < 1 large enough and every bounded sequence of numbers

a1, a2, . . . such that {ah,δ∗ }h has an accumulation point a ≥ 0, and every γ > 0 there

is a time h such that ah > a− γ, while ah∗ < a+ γ.

Proof. For every h1 < h2,

ah1,δ∗ = (1− δ)
h2−1∑
t=h1

δt−h1at + (1− δ)

(
1−

∞∑
t=h2

δt−h

)
ah2,δ∗ . (5.4)

We assume that the sequence a1, a2, . . . is bounded by M ≥ 1. Since a is an

accumulation point, there are h1 < h2 such that

h2−1∑
t=h1

δt−h1 > 1− γ

2M
and |ah,δ∗ − a| <

γ

2
, for h = h1, h2.

We consider the greatest h, h1 ≤ h ≤ h2 such that ah ≥ a − γ. There exists

such h because if all h between h1 and h2 satisfy ah < a− γ, then

ah1∗ <
(

1− γ

2M
)(a− γ

)
+

γ

2M
M < a− γ

2
,

which contradicts the choice of h1.

As for ah∗ , (5.4) applied to h = h1 and to h2 implies that

ah,δ∗ = (1− δ)
h2−1∑
t=h

δt−hat + (1− δ)

(
1−

∞∑
t=h2

δt−h

)
ah2,δ∗

≤ (1− δ)ah + (1− δ)
h2−1∑
t=h+1

δt−h(a− γ) + (1− δ)

(
1−

∞∑
t=h2

δt−h

)
(a+ γ/2).

When δ is large enough, (1− δ)ah < γ/2. Thus, ah,δ∗ ≤ γ/2 + δ(a+ γ/2) ≤ a+ γ,

as desired.

Proof of Theorem 5.6. We assume without loss of generality that v1(N) = 1. We

prove that (i) implies (ii). We assume that for any ε > 0 the ε-stable core of (V, δ)

is not empty for δ sufficiently large. Fix ε > 0 and assume that 1− ε < δ.

Let m be the one guaranteed by Lemma 5.5 and ε. Suppose that the discount

factor δ is large enough so the total payoff of any coalition during m periods could

not exceed ε.
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Let x1, x2, . . . be in the ε-stable core of (V, δ) and let x∗ be an accumulation

point of the sequence xh∗ = xh∗(δ) = (1 − δ)
∑∞

t=h δ
t−hxt, h = 1, 2. . . . (it exists

because, by assumption, the sequence of allocations is bounded).

By assumption, x1(N) = x2(N) = . . . . We will show that x∗ is in the 5ε-core

of ux∗ . If not, then there is a coalition T such that x∗(T ) < ux∗(T ) − 5ε. In

particular, x∗(T ) is not a fixed point of fT . Since for every time h, xh∗ is an average

of xh, xh+1, . . . , we have that x(N) := xh∗(N) = V (N, xt)(N) = v1(N) (the last

equality is by assumption) for every period t, implying that x∗ is an allocation of

v1.

Since the set of fixed points of fT is closed, and x∗(T ) is not a fixed point of

fT , one can find β > 0 such that

xh∗(T ) > x∗(T )− β implies fT (xh∗(T )) ≥ fT (x∗(T )). (5.5)

The reason is that when xh∗(T ) is not a fixed point of fT , there is an open

interval around xh∗(T ), whose points have all the same range as xh∗(T ). That is,

fT is fixed around xh∗(T ). Thus, there is β > 0 such that xh∗(T ) > x∗(T ) − β

implies fT (xh∗(T )) = fT (x∗(T )). In case xh∗(T ) > x∗(T ), then by monotonicity

fT (xh∗(T )) ≥ fT (x∗(T )) and therefore, (5.5).

Applying Lemma 5.7 to the sequence x1(T ), x2(T ), . . . and the accumulation

point x∗(T ), we obtain that for γ = min(β, ε), there is a time h such that

xh(T ) > x∗(T )− γ and xh∗(T ) < x∗(T ) + γ. (5.6)

In words, the instantaneous payoffs of coalition T at time h is greater than x∗(T )−
γ, while the present value of coalition T ’s payoff at time h+1 is less than x∗(T )+γ.

We now describe a deviation of coalition T . At time h+ 1 coalition T deviates

and plays the game V (T, xh(T )). From time h+ 2 on, any allocation of the stage-

game is fine. After m periods the worth of the coalition T in the stage-game, is by

Lemma 5.5, close to uxh(T ) up to ε. Since the first m periods after h contribute

at most ε to the entire present value of coalition T , the payoff (discounted to time

h+ 1) for T due to the deviation is at least uxh(T )− 2ε.

By (5.6), xh(T ) > x∗(T )− γ ≥ x∗(T )− β. Because of (5.5), uxh(T ) ≥ ux∗(T ).

Thus, due to the deviation, the payoff of coalition T is at least ux∗(T )− 2ε. How-

ever, the sequence x1, x2, . . . is in the ε-stable core of (V, δ), and therefore, by

deviating coalition T cannot get more than ε beyond the originally planned payoff
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(xh+1
∗ (T )). Thus,

ux∗(T )− 2ε ≤ xh+1
∗ (T ) + ε. (5.7)

Again from (5.6) we have xh∗(T ) < x∗(T ) + γ ≤ x∗(T ) + ε. Thus,

xh+1
∗ (T ) ≤ xh∗(T ) + ε ≤ x∗(T ) + 2ε. (5.8)

The first inequality of (5.8) is due to the fact that 1 − δ < ε (as assumed at

the beginning of the proof) and xh(T ) ≤ v1(N) = 1. Hence, by (5.7) and (5.8),

ux∗(T )− 2ε ≤ xh+1
∗ (T ) + ε ≤ x∗(T ) + 3ε. It implies that ux∗(T )− 5ε ≤ x∗(T ). This

is a contradiction, and therefore x∗ is the 5ε-core of ux∗ .

The proof that (ii) implies (i) is relatively easy and is therefore omitted.

Remark 5.8. Assertion (ii) of Theorem 5.6 states that for every ε > 0 there

exists an allocation x of v1 such that the ε-core of ux is not empty. Due to lack of

continuity it is impossible to conclude that there exists an allocation x of v1 such

that the core of ux is not empty. This is so because when a sequence of allocations

of v1, say (xk)k (each in the ε-core of the respective uxk), is converging to x, there

is no guarantee that uxk converges to ux.

6 The credible core

The third type of core we are about to define is close in spirit to subgame per-

fect equilibrium in the theory of non-cooperative games. A dissatisfied coalition

may deviate at any time in which future allocations guarantee less than it can do

alone. Hence, stability conditions must be preserved not only at the beginning of

the game, but throughout the entire game. But when creating its own game, a

coalition, say S may face a threat from one of its sub-coalitions, say T . The game

established by T may depend on the entire history of allocations, starting from the

grand coalition allocation at the beginning of game, continuing with S-allocation

and ending with allocations of its own.

The game may start with the grand coalition, run this way for a while and

only then coalition S1 may decide to deviate, run for a while and then coalition

S2 may deviate etc. Thus, histories now consist of xS1
1 , x

S2
2 , . . . , x

St
t , where S1 = N

and the sequence of S` is decreasing (w.r.t. inclusion). A history xS1
1 , x

S2
2 , . . . , x

St
t

is feasible if at any time t, xStt is an allocation of the stage game V St(x
St−1

t−1 ).
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A central planner has an allocation policy, denoted σ, that associates with

any time and any possible instantaneous game an allocation. In other words, the

central planner has a full contingency plan as to how the available cake should be

split at any point in time. Formally, the allocation policy σ is such that σ(xStt ) is

an allocation of the game V (St+1;x
St
t ).

After any history of allocations, xS1
1 , x

S2
2 , . . . , x

St
t , an allocation policy σ deter-

mines uniquely a continuation stream of allocations: xStt+1 = σ(xStt ), xStt+2 = σ(xStt+1),

etc. We denote this continuation by Cσ(xS1
1 , x

S2
2 , . . . , x

St
t ).

Definition 6.1 (Credible core). An allocation policy σ is in the credible core

with discount factor δ of (V, δ) if for every history xS1
1 , x

S2
2 , . . . , x

St
t the sequence

Cσ(xS1
1 , x

S2
2 , . . . , x

St
t ) of allocations is in the stable core of V (St+1;x

St
t ).

A similar idea has been used in a non-cooperative context by Bernheim et al.

(1987); Bernheim and Whinston (1987). These authors consider Nash equilibria

that are immune from deviations not just of single players but also of coalitions.

Not every deviation is acceptable, though: a deviation of some coalition has to be

in turn immune from deviations of sub-coalitions.

The main result of this section shows that a form of the one-deviation principle

holds for the credible core. This principle goes back to Blackwell (1965) and has

been widely used in extensive form noncooperative games. Recently Vartiainen

(2008) applied it in the study of coalition formation in a cooperative context.

Definition 6.2. A coalition S $ St has a profitable one-deviation after the history

xS1
1 , x

S2
2 , . . . , x

St
t from σ, if there is an allocation xSt+1 of V (S;xStt ) such that the

present value for coalition S of the sequence that starts at xSt+1 and continues with

Cσ(xS1
1 , x

S2
2 , . . . , x

St
t , x

S
t+1) is greater than the present value for S of the planned

sequence Cσ(xS1
1 , x

S2
2 , . . . , x

St
t ).

Theorem 6.3 (The one-deviation principle). An allocation policy σ is in the cred-

ible core if and only if after every history xS1
1 , x

S2
2 , . . . , x

St
t and for every S ( St

there is no profitable one-deviation.

Proof. The ‘only if’ direction is trivial. For the ‘if’ part, assume that after every

history xS1
1 , x

S2
2 , . . . , x

St
t and for every S ( St there is no profitable one-deviation.

Suppose that there is a coalition S ( St that has a profitable deviation after

the sequence xS1
1 , x

S2
2 , . . . , x

St
t . Denote the gain by a > 0. By continuity we may

assume that this deviation consists of finite number stages. Consider the shortest
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deviation of S after xS1
1 , x

S2
2 , . . . , x

St
t that guarantees a gain of at least a. This

deviation is xSt+1, . . . , x
S
t+`. It implies that the deviation xSt+1, . . . , x

S
t+`−1 guarantees

S less than a, meaning that the single deviation of S to xSt+` after the entire history

xS1
1 , x

S2
2 , . . . , x

St
t , x

S
t+1, . . . , x

S
t+`−1 makes a positive gain for S. This shows that there

is no profitable one-deviation, as this direction of the theorem claims.

Note that the theorem does not say that when the allocation policy σ is in the

credible core, the instantaneous allocations are in the respective stage game.

Remark 6.4. Theorem 6.3 holds also under a richer non-Markovian dynamic,

where V depends on the entire history of allocations and not only on the last

allocation.

7 Final remarks

We close the paper with some additional comments.

More on the non-emptyness of the core

Consider a game where V (N ; ·)(N) is constant. In addition assume that for every

coalition S, V (N ; ·)(S) is bounded. The ε-stable core with discount factor δ is not

empty if and only if the core of v∗(·, δ) is non-empty.

No-short assumption

Throughout the paper we assumed that the stage allocation, xSt , satisfies two

assumptions. First, the allocation of player i is at least her v(i), that is, xSt (i) ≥ B,

and second, xSt is locally efficient, that is, xSt (S) = vSt (S). This assumption assumes

that the inter-temporal transfers are limited. That is B might be well below vt(i)

at a certain moment, but since the overall payoff in the entire dynamic game needs

to be individually rational, the instantaneous payoffs need to be sometimes higher

than the stage IR level. The technical advantage of these assumptions is that the

set of possible allocations at any stage is compact.

Random games

We analyze games where the instantaneous game depends deterministically on

the history. The issue of stochastic dynamic game where the stage games are
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endogenously determined remains open for further studies.
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