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Abstract A new integral for capacities is introduced and characterized. It differs from
the Choquet integral on non-convex capacities. The main feature of the new integral is
concavity, which might be interpreted as uncertainty aversion. The integral is extended
to fuzzy capacities, which assign subjective expected values to random variables (e.g.,
portfolios) and may assign subjective probability only to a partial set of events. An
equivalence between the minimum over sets of additive capacities (not necessarily
probability distributions) and the integral w.r.t. fuzzy capacities is demonstrated. The
extension to fuzzy capacities enables one to calculate the integral also in cases where
the information available is limited to a few events.
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1 Introduction

In many economic activities individuals often face risks and uncertainties concerning
future events. The probabilities of these events are rarely known, and individuals are
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158 E. Lehrer

left to act on their subjective beliefs. Since the work of Ellsberg (1961), the
conventional theory based on (additive) expected utility has become somewhat contro-
versial, both on descriptive and normative grounds. There is a cumulative indication
that individuals often do not use regular (additive) subjective probability. Rather, they
exhibit what is referred to as an uncertainty aversion.1

Schmeidler (1989) proposed one of the most influential alternative theories to that of
additive subjective probabilities. In Schmeidler’s model, individuals make assessments
that fail to be additive across disjoint events. The expected value of utility with respect
to a non-additive probability distribution is defined according to the Choquet integral.
The decision maker chooses the act that maximizes the expected utility. Following
Choquet, a possible non-additive probability is referred to as a capacity.

Since Schmeidler’s breakthrough, the Choquet integral has been extensively used
in decision theory (see Gilboa 1987; Wakker 1989; Sarin and Wakker 1992). Dow
and Werlang (1992, 1994) applied the Choquet integral to game theory and finance.
Schmeidler (1986) and Groes et al. (1998) provided a few characterizations of the
Choquet integral.

Another prominent integral is the Sugeno (or fuzzy) integral (see Sugeno 1974).
It is expressed in maximum–minimum terms and it corresponds to the notion of the
median, rather than to that of the average. As opposed to the Choquet integral and the
one introduced here, the Sugeno integral does not coincide with the regular integral
when the capacity is additive.2

This paper presents a new integral with respect to capacities, which differs from
the Choquet integral on non-convex capacities. The new integral makes use of the
concavification of a cooperative game that appeared in Weber (1994) and later in
Azrieli and Lehrer (2007b). It is axiomatically characterized in two ways.

The key property of the new integral is concavity. This means that the sum of
the integrals of two functions is less than or equal to the integral of the sum. In the
context of decision under uncertainty this property might be interpreted as uncertainty
aversion.

Three more axioms are necessary in order to characterize the integral. The first
requires that when the underlying probability space consists of one point, the integral
coincides with the conventional integral. The second is an axiom of monotonicity
with respect to capacities. It states that an additive capacity P assigns to every subset
a value which is greater than or equal to that assigned by v, if and only if the integral
of any non-negative function with respect to P is greater than or equal to the integral
taken with respect to v.

The last axiom states that when integrating an indicator of a set S, the integral
depends only on the values that the capacity takes on the subsets of S. In other words,
the integral of an indicator of S does not depend on the values that the capacity ascribes
to any event outside of S.

1 A myriad of empirical evidence of choices, that are not consistent with conventional subjective probability
and expected utility, have been documented in the literature (see, Camerer and Weber 1992; Starmer 2000).
2 For further discussion of this issue the reader is referred to Murofushi and Sugeno (1991).
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In Sect. 9 we introduce an integral w.r.t. fuzzy capacities. Fuzzy capacities assign
subjective expected values to some, but not all, random variables (e.g., portfolios). In
particular, a fuzzy capacity may assign subjective probabilities only to some events
and not to all. The new integral aggregates all available information, and enables one
to calculate an average value also when there is partial information and the capacity
does not provide the likelihood of every possible event.

The integral w.r.t.fuzzy capacities is inspired by Azrieli and Lehrer (2007a) who
used the operational technique (concavification and alike) extensively and employed
it to investigate cooperative population games.

It turns out that a strong relation exists between the minimum over additive
capacities and the new integral. A full equivalence between the representation of
an order over random variables as a minimum over additive capacities3 and a repre-
sentation by the integral w.r.t. fuzzy capacities is shown in Sect. 9.

It might be that a capacity is specified over a subset of events and not over all
of them. The definition of fuzzy capacities also covers this case. That is, the integral
w.r.t. fuzzy capacities enables one to define the integral of a partially-specified capacity.
This is particularly important when the capacity is additive (i.e., a regular probability
distribution) and the decision maker is not informed of the probability of all events.

The paper is organized as follows. Section 2 presents the new integral and Sect. 3
illustrates it through a few examples including Ellsberg’s paradox. Section 4 compares
the new integral and Choquet integral. Example 3 is meant to convince the reader that
sometimes the new integral results in more intuitive decisions than those derived
from Choquet integral. This section also shows that the new integral is an extension of
Lebesgue integral. Section 5 provides the two characterization theorems whose proofs
appear in Sect. 6. Section 7 refers to capacities with large core where the new integral is
obtained as the minimum over the core’s members of the corresponding expectations.
Section 8 discusses first order stochastic dominance. Section 9 extends the integral
to fuzzy capacities. Final comments are found in Sect. 10. The first comment refers
to an example by Machina (2007), the second to risk measures and their relation to
the new integral, and the third comment is about the extension of the integral to large
spaces.

2 The new integral

A capacity is a function v that assigns a non-negative real number to every subset
of a finite set N (|N | = n) and satisfies (i) v(∅) = 0; and (ii) if S ⊆ T ⊆ N , then
v(S) ≤ v(T ). Such a capacity is said to be defined over N . A capacity P defined over
N is additive if for any two disjoint subsets S, T ⊆ N , P(S) + P(T ) = P(S ∪ T ).

A random variable over N is a function X : N → R. A random variable is
non-negative if X (i) ≥ 0 for every i ∈ N . The following definition introduces the
new integral. As will be discussed in Sect. 4.2, the definition is analogous to that of
Lebesgue integral.

3 See Gilboa and Schmeidler (1989) for the case of probability distributions.
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Definition 1 Let v be a capacity defined over N . Fix a non-negative random variable
X . Define,

cav∫
Xdv = min{ f (X)}, (1)

where the minimum is taken over all concave and homogeneous functions f : R
n+ →

R such that 4 f (1R) ≥ v(R) for every R ⊆ N .

Remark 1 Since the minimum of a family of concave and homogeneous functions
over R

n+ is concave and homogeneous, so is
∫ cav Xdv, as a function of X .

Let v and w be two capacities. We say that v ≥ w if v(S) ≥ w(S) for every S ⊆ N .
The following lemma provides an explicit formula for the new integral.

Lemma 1 (i) For every non-negative X defined over N,

cav∫
Xdv = max

⎧⎨
⎩

∑
R⊆N

αRv(R);
∑
R⊆N

αR1R = X, αR ≥ 0

⎫⎬
⎭ . (2)

(ii)
∫ cav Xdv = minP is additive and P≥v

∫
XdP.

The proof of the lemma is based on the fact that, as a function of X ,
∫ cav Xdv is

concave. This is rather standard and is therefore omitted. Note that in Lemma 1 (ii) the
capacities P need not be probability distributions, nor do they satisfy P(N ) = v(N ).

Zhang et al. (2002) discussed expressions similar to that on the right-hand side of
Eq. (2) with a further restriction that all the sets are required to be mutually disjoint.
With this restriction the integral becomes analogous to a Riemann integral.

The sum
∑

R⊆N αR1R is a decomposition of X , if αR ≥ 0 for every R ⊆ N and∑
R⊆N αR1R = X . It is an optimal decomposition of X w.r.t. v if it is a decomposition

of X w.r.t. v and
∫ cav Xdv = ∑

R⊆N αRv(R). When talking about decompositions,
the reference to v will be often dropped.

3 Examples

Example 1 Let N = {1, 2, 3}, v(N ) = 1, v(12) = v(23) = 2
3 , v(13) = 1

4 and
v(i) = 0 for every i ∈ N . A function over N is a 3-dimensional vector. Consider
X = (1, 2, 1). Note that (1, 1, 0) + (0, 1, 1) is a decomposition of X . Furthermore, it
is an optimal decomposition of X :

∫ cav Xdv = 2
3 + 2

3 = 4
3 .

Example 2 (resolving Ellsberg paradox) Suppose that an urn contains 30 red balls and
60 other balls that are either green or blue. A ball is randomly drawn from the urn and
a decision maker is given a choice between the two gambles.

4 1R is the indicator of R: 1R = (11
R , . . . , 1n

R), where 1i
R equals 1 if i ∈ R and 0, otherwise.
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A new integral for capacities 161

Gamble X: to receive $100 if a red ball is drawn.
Gamble Y: to receive $100 if a green ball is drawn.

In addition, the decision maker is also given the choice between these
two gambles:

Gamble Z: to receive $100 if a red or blue ball is drawn.
Gamble W: to receive $100 if a green or blue ball is drawn.

It is well documented that most people strongly prefer Gamble X to Gamble Y and
Gamble W to Gamble Z. This is a violation of the expected utility theory.

There are three states of nature in this scenario: R, G and B, one for each color.
Denote by N the set containing these states. Each of the gambles corresponds to a real
function (a random variable) defined over N . For instance, Gamble X corresponds to
the random variable X , defined as X (R) = 100 and X (G) = X (B) = 0.

The probability of four events are known: p(∅) = 0, p(N ) = 1, p({R}) = 1
3

and p({G, B}) = 2
3 . The probability p is partially specified: it is defined only on a

sub-collection of events and not on all events. Although the new integral has been
introduced so far in relation to capacities defined over all events, the same idea may
be used for what will be later called fuzzy capacities (among which capacities that
may be defined only over a sub collection of events). This is explained here in order
to resolve Ellsberg paradox and will be elaborated on later in Sect. 9.

The integral of a function X is defined in a fashion similar to Eq. (1). When p
is defined only over familiar events, X is allowed to be written as a positive linear
combination of characteristic functions of familiar events only. Using only the four
familiar events, X is optimally decomposed as X = 100 · 1{R}. And thus,

∫ cav Xd p =
100· 1

3 . When doing the same for Y (the random variable that corresponds to Gamble Y),
one cannot obtain a precise decomposition of Y . The maximal non-negative function
which is lower than or equal to Y and can be written only in terms of the four familiar
events is 0 · 1N . The integral of Y is therefore equal to 0. Since, 100 · 1

3 > 0, X is
preferred to Y .

A similar method applied to Z and W yields: Z ≥ 100 ·1{R} and the right-hand side
is the greatest of its kind. Thus,

∫ cav Zd p = 100 · 1
3 , while W is optimally decomposed

as 100 · 1{G,B}. Therefore,
∫ cav W d p = 100 · 2

3 . Since 100 · 1
3 < 100 · 2

3 , Gamble W
is preferred to Gamble Z .

The intuition is that the decision maker bases her evaluation of unknown random
variables on known figures: the probabilities of the familiar events. Using simple
functions that can be expressed by these events, the decision maker approximates
from below any unknown random variable and the maximal simple function of this
kind in the one used by the new integral.

4 The new integral and Choquet integral

4.1 The new integral and Choquet integral

Let v be a capacity defined over N . The Choquet integral of non-negative X w.r.t. v,
denoted

∫ C Xdv, is defined by
∑n

i=1(Xσ(i)−Xσ(i−1))v(Ri ), where σ is a permutation
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over N that satisfies Xσ(1) ≤ · · · ≤ Xσ(n) and Ri = {σ(i), . . . , σ (n)} (X (σ (0)) = 0,
by convention).

Note that,

X =
∑

αi 1Ri , (3)

where αi = Xσ(i) − Xσ(i−1). Thus,
∑

αi 1Ri is a decomposition of X . This means that
a particular decomposition of X is used for the calculation of the Choquet integral. In
contrast, the new integral allows all possible decompositions, and as in the definition
of the Lebesgue integral (see next section), the one that achieves the maximum of the
respective summation is chosen.

This implies, in particular, that always
∫ C Xdv ≤ ∫ cav Xdv. Lovasz (1983) (see

also Azrieli and Lehrer 2007b) imply that
∫ C Xdv = ∫ cav Xdv for every X if and

only if v is convex (i.e., v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for every S, T ⊆ N ).
The next example demonstrates a case where the new integral results in a more

reasonable outcome than the Choquet integral.

Example 3 Let N = {1, 2, 3, 4}. The capacity v is defined as the minimum of pro-
bability distributions as follows. Denote p1 = ( 1

8 , 1
8 , 1

4 , 1
2 ), p2 = ( 1

2 , 1
8 , 1

8 , 1
4 ), p3 =

( 1
8 , 1

2 , 1
4 , 1

8 ), p4 = ( 1
8 , 1

4 , 1
2 , 1

8 ) and p5 = ( 1
8 , 1

2 , 1
8 , 1

4 ). For every S ⊆ N define
v(S) = min1≤i≤5 pi (S). Thus, v( j) = 1

8 for every j = 1, 2, 3, 4, v(12) = v(13) =
v(23) = v(14) = 1

4 , v(34) = v(24) = 3
8 , v(S) = 1

2 if |S| = 3 and v(N ) = 1.
Consider X = (0, 1, 2, 3) and Y = (1, 0, 2, 3). X and Y differ in the values of

the first two coordinates. While X assigns the value 0 to the first state and 1 to the
second, Y assigns the value 1 to the first state and 0 to the second. The Choquet
integral of X coincides with that of Y :

∫ C Xdv = ∫ C Y dv = 1
2 + 3

8 + 1
8 = 1. On

the other hand, the valuations of X and Y by the new integral differ. Since X =
(0, 1, 0, 1) + 2(0, 0, 1, 1),

∫ cav Xdv = 3
8 + 2 · 3

8 = 9
8 . Moreover,

∫ cav Y dv = 1. In
particular,

∫ cav Xdv >
∫ cav Y dv.

Recall that X and Y differ only on the first two coordinates. State 2 is more likely
than state 1 in the sense that for every S that does not contain these states, v(S ∪{1}) ≤
v(S ∪ {2}), with a strict inequality when S = {4}. It therefore seems reasonable to
evaluate X more than Y , as implied by the new integral and not by the Choquet integral.
Technically speaking, the reason why

∫ cav Xdv >
∫ cav Y dv is that {2, 4} and {1, 4}

take part in the optimal decompositions of X and Y , respectively, andv(2, 4) > v(1, 4).
Since both integrals are homogeneous,

∫ cav 10
9 Y dv = ∫ C 10

9 Y dv = 10
9 . A decision

maker whose preferences are determined by the Choquet integral, would prefer 10
9 Y

to X , while a decision maker whose preferences are determined by the new integral,
would prefer X to 10

9 Y .

The following proposition generalizes this example and provides a new characte-
rization of convex capacities.

Proposition 1 Let v be a capacity. Then, v is convex if and only if for every non-
negative X and Y ,

∫ cav Xdv ≥ ∫ cav Y dv whenever
∫ C Xdv ≥ ∫ C Y dv.

The proof is postponed to the Appendix.
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4.2 The new integral as an extension of Lebesgue integral

The Lebesgue integral of functions over general probability spaces is defined in a
fashion similar to that of (2). For the sake of explanation consider functions over the
interval [0, 1]. A function f is simple if it can be written as f = ∑k

i=1 αi 1Ri , where
Ri is a measurable set in [0, 1] and αi ∈ R. For a simple function, the integral of f
with respect to a measure µ is defined as

∑k
i=1 αi

∫
1Ri dµ = ∑k

i=1 αiµ(Ri ). And
for a non-negative function f it is defined as

∫
f dµ := sup

{∫
h dµ; h is simple and h ≤ f

}
.

Lemma 1 (i) implies that the definition of
∫ cav Xdv is similar to this definition.

5 Characterization

In this section we characterize the new integral. In what follows
∫

Xdv should be
thought of as a function from pairs (X, v) to the real numbers. The goal is to find a
set of plausible properties of such a function that characterizes it uniquely as the new
integral.

The first property is a weak version of an axiom, called “Accordance for Additive
Measures”, that appears in Groes et al. (1998). They required that if v is additive, then∫

Xdv is a regular integral. Here, the axiom is restricted to the case where N is a
singleton.

Singleton Accordance for Additive Measures (SAAM): If |N | = 1, then
∫

1N dv =
v(N ).

The following property states that the integral is co-variant with a positive linear
re-scaling.

Homogeneity (HO): For any v, X and β ≥ 0,
∫

β Xdv = β
∫

Xdv.
The next axiom is the paramount property of the new integral. In order to explain

it consider a situation where a bet of one dollar on horse i yields two dollars if horse
i wins the race. A vector $ 1

2 X (i), i = 1, . . . , n, of bettings [i.e., X (i) on horse i] will
be referred to as a bet. The bet 1

2 X corresponds to the variable X , which represents
the prizes corresponding to all possible horse winnings. Suppose that the gambler’s
assessments about the likelihood of all possible winnings is given by a capacity (non-
additive probability) v. The integral of X attempts to capture the notion of “expected”
return from the bet 1

2 X when the probability considered is v.
Suppose now that X and Y are two bets and β ∈ (0, 1). Then, β 1

2 X , (1 − β) 1
2 Y

and β 1
2 X + (1 − β) 1

2 Y are also bets. The decision maker tries to evaluate the bet
β 1

2 X + (1 −β) 1
2 Y . By splitting it into the bets, β 1

2 X and (1 −β) 1
2 Y he can ensure an

“expected” return of
∫

β Xdv+∫
(1−β)Y dv. By splitting β 1

2 X+(1−β) 1
2 Y differently

the gambler might guarantee even a higher “expected” return. The particular split into
β 1

2 X and (1−β) 1
2 Y ensures that the “expected” return from the bet β 1

2 X +(1−β) 1
2 Y

[i.e.,
∫

β X + (1 − β)Y dv] is at least
∫

β Xdv + ∫
(1 − β)Y dv.

123



164 E. Lehrer

The following concavity axiom captures this idea.

Concavity (CAV): For any v, X , Y and β ∈ (0, 1),
∫

β X + (1−β)Y dv ≥ ∫
β Xdv +∫

(1 − β)Y dv.
The next axiom refers to two capacities, one of which is additive. It states that P

is additive and P ≥ v, if and only if the integral w.r.t. to P is greater than or equal to
that w.r.t. v. It implies that the integral is monotonic with respect to the capacity in the
restrictive sense that if P is additive and it is greater than v, then the integral of any
non-negative X w.r.t. P is at least as high as the integral of the same X taken w.r.t. v.
Furthermore, the axiom requires that if P is not greater than v (meaning that there is
S such that v(S) > P(S)), then there is a non-negative function whose integral w.r.t.
v is greater than that w.r.t. P .

Monotonicity w.r.t. capacity (M): For every additive P , P ≥ v if and only if
∫

XdP ≥∫
Xdv for every non-negative X .
Let S be a subset of N . The sub-capacity vS is a capacity defined over S: vS(T ) =

v(T ) for every T ⊆ S. The next axiom requires that the integral of the indicator of the
subset S with respect to v is equal to the integral with respect to vS , the sub-capacity
restricted to S. It suggests that the integral of a function depends on the values that v

takes on the subset of N over which the function is not vanishing.
The following axiom equates two integrals: one w.r.t. v over the domain N , and

another w.r.t. vS over a restricted domain, S.

Independence of irrelevant events (IIE): For every S,
∫

1Sdv = ∫
1SdvS .

Theorem 1 (First Characterization) The integral
∫

Xdv satisfies (SAAM), (CAV),
(HO), (M), and (IIE) if and only if

∫
Xdv = ∫ cav Xdv for every non-negative X.

The following axiom requires only one of the two implications contained in (M).
Weak monotonicity w.r.t. capacity (WM): For every additive P , if P ≥ v, then∫

XdP ≥ ∫
Xdv for every non-negative X .

Schmeidler (1986) and Groes et al. (1998) employ the indicator property which is
a strong version of the following axiom. They required that

∫
1Sdv = v(S).

Weak Indicator property (WIP): For every S,
∫

1Sdv ≥ v(S).

Theorem 2 (Second characterization) The integral
∫

Xdv satisfies (SAAM), (CAV),

(HO), (WM), and (WIP) if and only if
∫

Xdv = ∫ cav Xdv for every non-negative X.

Remark 2 Properties (SAAM), (HO), (M), (IIE) and (WIP) are also shared by the
Choquet integral.

6 The proof of the Theorems

Proof of Theorem 1 The fact that
∫

Xdv satisfies (SAAM), (CAV), (HO), (M), and
(IIE) is easy to check. As for the inverse direction, (M) implies5 that for every additive

5 In fact, at this point the ‘only if’ direction of (M) suffices.
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capacity P that satisfies P ≥ v,
∫

XdP ≥ ∫
Xdv. Thus, minP≥v

∫
XdP ≥ ∫

Xdv.
Lemma 1 (ii) implies that

∫ cav Xdv ≥ ∫
Xdv. (CAV) and (HO) imply that

∫
Xdv

is concave and homogeneous. As a function of X ,
∫ cav Xdv is the smallest concave

function that is greater than or equal to v. Thus, it remains to show that
∫

1Sdv ≥ v(S)

for every S ⊆ N .
We proceed by induction on the size of S. For S such that |S| = 1, (IIE) and

(SAAM) imply
∫

1SdvS = ∫
1Sdv = v(S). Assume that

∫
1Sdv ≥ v(S) for every

S ⊆ N with |S| < � and we prove it for S of size �.
Fix S ⊆ N with |S| = �, let � be the set of all non-negative variables X : N → R

such that X (i) = 0 for every i /∈ S and
∑

i∈S X (i) = 1 and define φ(X) = ∫ cav XdvS .
Due to (CAV) the function φ defined over � is concave.

Assume to the contrary that φ(1S/|S|) = ∫
1S/|S|dvS = ∫

1S/|S|dv < v(S)/|S|
[the second equality is due to (IIE)]. Then, there is a linear function g(X) defined on �

that supports the graph of φ at 1S/|S|. This function has the form, g(X) = 〈a, X〉+b,
with 〈·, ·〉 being the inner product, a = (a(i))i∈S ∈ R

|S| and b ∈ R. The fact that
g is a supporting function at 1S/|S| means that g(X) ≥ φ(X) for every X ∈ � and
g(1S/|S|) = φ(1S/|S|).

Define P(i) = a(i) + b. Note that since
∑

i∈S X (i) = 1 for every X ∈ �,
g(X) = 〈P, X〉. By the induction hypothesis, for every i ∈ S, φ(1{i}) ≥ v({i}) ≥ 0.

Since, P(i) = g(1{i}) ≥ φ(1{i}) we obtain P(i) ≥ 0 for every i ∈ S. Thus,
one may refer to P as an additive capacity defined over S. This capacity satisfies
g(X) = ∫

XdP ≥ φ(X) for every non-negative X . By (IIE) and the induction hy-
pothesis, P(T )/|T | = g(1T /|T |) ≥ φ(1T /|T |) = ∫

1T /|T |dvS = ∫
1T /|T |dvT =∫

1T /|T |dv ≥ v(T )/|T | for every non-empty strict subset T of S. As for S itself,
P(S)/|S| = g(1S/|S|) = φ(1S/|S|), which is by assumption strictly smaller than
v(S)/|S| = vS(S)/|S|. Therefore, P is greater than or equal to vS on every strict
subset T of S, while P(S) < vS(S). In particular, P �≥ vS .

The axiom6 (M) ensures that there is X defined over S such that
∫

XdvS >
∫

XdP .
By (HO) X �= 0 and it can be assumed without loss of generality that X ∈ �. This
contradicts

∫
XdP = g(X) ≥ φ(X) = ∫

XdvS for every X ∈ �. �
Proof of Theorem 2 The first part of the proof of Theorem 1 uses (SAAM), (CAV),
(HO), and only (WM). The second part is devoted to showing what (WIP) explicitly
assumes. One therefore obtains Theorem 2. �

7 Minimum over the core

The capacity v has a large core (Sharkey 1982) if and only if for every S ⊆ N and for
every additive capacity Q that satisfies v ≤ Q, there is P in the core of v such that
P ≤ Q. The capacity v is exact (Schmeidler 1972) if and only if for every S ⊆ N ,
there is P in the core7 of v such that P(S) = v(S). If v is convex, then v has a large
core (see Sharkey 1982) and if v has a large core and each of its sub-capacities has a

6 At this point the “if” part of (M) is being used.
7 The core of v consists of all additive capacities P such that P ≥ v and P(N ) = v(N ).
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non-empty core, then it is exact (see, Azrieli and Lehrer 2007b). No two of these three
notions are equivalent.

The connection between the largeness of the core and the integral is provided in
the following statement.

Proposition 2 (Azrieli and Lehrer 2007b) v has a large core if and only if

cav∫
Xdv = min

P in the core of v

∫
XdP (4)

for every non-negative X.

Proposition 2 implies that a decision maker that uses a capacity with a large
core and

∫ cav Xdv to evaluate a random variable X abides to the model of Gilboa
and Schmeidler (1989). In this model, preference orders over random variables are
represented by a minimum over a compact and convex set of probability distributions.
When v has a large core the compact and convex set of probability distributions is the
core of v.

Azrieli and Lehrer (2007b) show that

Corollary 1

cav∫
X + cdv =

cav∫
Xdv +

cav∫
cdv =

cav∫
Xdv + c · v(N )

for every non-negative X and a constant c if and only if v has a large core.

Remark 3 It is important to note that when the capacity v has a large core Corollary 1
enables one to extend the domain of the integral from the non-negative variables to
all variables. Let v be a capacity with a large core and let X be any random variable.
Then, there is a constant c such that X + c is non-negative. One may then define

∫
Xdv =

∫
X + cdv − cv(N ).

Capacities with a large core are important to decisions under uncertainty primarily
when the decision maker is partially informed of the true distribution (see Lehrer 2006).
In Example 2 the decision maker is informed only of two events: the probability of
Red is 1

3 , and the probability of Green or Blue is 2
3 . Thus, the decision maker ought

to take a decision having only a partial information about the underlying distribution.
In a more general setting, for instance when the distribution of the balls in Ellsberg’s

urn is dynamic, the decision maker might be informed only of the expectation of some
random variables. Suppose, for instance, that the green balls multiply once a day, and
the decision maker should take a decision at the second day. The probability of Red
is no longer 1

3 . In fact, at the second day the decision maker knows the probability of
no non-trivial event.
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A simple calculation shows that the decision maker can deduce that at the second
day the expectation of the random variable (1, 1

6 , 0) (i.e., the one that takes the values
1, 1

6 , 0 on Red, Green and Blue, respectively) is 1
3 .

In general, the decision maker might be informed of the expectation of every random
variable in a set Y . That is, the decision maker is informed of E(Y ) for every Y ∈ Y ,
where E(·) is the expectation with respect to the real distribution, P. It should be
emphasized that the real distribution P is not fully revealed to the decision maker;
the latter is informed only of the expectations of some, but not all, random variables.
Note that a random variable Y ∈ Y might be an indicator variable, in which case the
decision maker is informed of the probability of the corresponding event.

A conservative decision maker would like to use the partial information he obtained
in order to get an estimation of the probability of all events. The lower bound of the
probability of an event S is then,

v(S) = max

{∑
Y

αY E(Y );
∑

Y

αY Y ≤ 1S, αY ∈ R and Y ∈ Y
}

.

The capacity v has a large core and is typically not convex.
The analogous statement of Proposition 2 for the Choquet integral is due to

Schmeidler (1986). He showed that v is convex if and only if

C∫
Xdv = min

P in the core of v

∫
XdP

for every non-negative X .

8 First order stochastic dominance and concavity

Let (v, N ) be a capacity, and X , X ′ be two non-negative functions over N . We say
that X ′ (first order) stochastically dominates X w.r.t. v, denoted X ′ �v X , if for every
number t , v(X ′ ≥ t) ≥ v(X ≥ t).

The Choquet integral is monotonic w.r.t. stochastic dominance. That is, if X ′ �v X ,
then

∫ C X ′dv ≥ ∫ C Xdv.

Example 4 Let N = {1, 2, 3}, v(N ) = 1, v(12) = v(13) = 3
4 , v(23) = 1 and v(i) =

0 for every i ∈ N . Consider X = (1, 1, 1) and X ′ = (0, 6
5 , 6

5 ).
∫ cav Xdv = 5

4 , while∫ cav X ′dv = 6
5 . In this example X ′ �v X and nevertheless,

∫ cav X ′dv <
∫ cav Xdv.

�
Example 4 shows that

∫ cav is not monotonic w.r.t. stochastic dominance. The ques-
tion arises whether there is a reasonable integral which is monotonic w.r.t. stochastic
dominance and concave [i.e., satisfies (CAV)] at the same time. The following example
shows that there is no homogeneous (non-trivial) integral which possesses these two
properties.
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Example 5 Let N = {1, 2, 3}, v(S) = 1 if |S| ≥ 2 and otherwise, v(S) = 0. If |S| =
2, then 1S �v 1N , and if the integral

∫ · dv is monotonic w.r.t. stochastic dominance,
then

∫
1Sdv ≥ ∫

1N dv. However, 1N = ∑
S; |S|=2

1
2 1S , and if

∫ · dv is concave

and homogeneous, then
∫

1N dv ≥ ∑
S; |S|=2

1
2

∫
1Sdv ≥ 3

2

∫
1N dv. Therefore, an

homogeneous integral cannot be both, monotonic w.r.t. stochastic dominance and
concave, unless

∫
1N dv ≤ 0.

The set N can be thought of as a state space and the function 2
3 1N can be thought of

as a portfolio that ensures a payoff of 2
3 at any state. However, 2

3 1N can be decomposed
as an average of three portfolios: 2

3 1N = ∑
S; |S|=2

1
3 1S . Thus, if each of the portfolios

1S , |S| = 2 (i.e., a payoff of 1 is guaranteed if a state in S is realized) is selected with
probability 1

3 , then, on average, a payoff of 2
3 is guaranteed at any state. The idea

behind concavity is that the value of 2
3 1N should be at least the average of the values

of the portfolios forming it. That is,
∫ cav 2

3 1N dv ≥ ∑
S; |S|=2

1
3

∫ cav
1Sdv. �

9 An integral w.r.t. a fuzzy capacity

9.1 Fuzzy capacity

Let I = [0, 1]n be the unit square. For every a ∈ I let |a| be the sum of its coordinates.
Any subset of N can be identified with its indicator, which is an extreme point of I .
For every (x1, . . . , xn) and (y1, . . . , yn) in I we say that (x1, . . . , xn) ≥ (y1, . . . , yn)

if xi ≥ yi , i = 1, . . . , n. A function f over a subset of I is said to be monotonic if
for every X, Y in the range of f , X ≥ Y implies f (X) ≥ f (Y ). Thus, a capacity is a
monotonic function v defined over the extreme points of I and v(0, . . . , 0) = 0. The
notion of capacity is extended here as follows:

Definition 2 (1) The pair (v, A) is a fuzzy capacity if (1, . . . , 1) ∈ A ⊆ I , v : A →
R+ is monotonic, continuous, and there is a positive K such that v(a) ≤ K |a|
for every a ∈ A.

(2) (P, A) is an additive fuzzy capacity if there are non-negative constants, p1, . . . , pn ,
such that for every a = (a1, . . . , an) ∈ A, P(a) = ∑n

i=1 ai pi .

While a capacity v assigns values (subjective probabilities) to events, a fuzzy
capacity assigns values (subjective expected value) to random variables. The data-
base of an agent might enable her to evaluate the expected values of some random
variables (e.g., portfolios, bets) and not of others. Furthermore, it might enable her
to assess the probability of some but not of all events. The set of variables about
which the agent has firm assessments is represented by A. Note that A might contain
only points of the form 1S , where S ⊆ N . In this case v is a partially-specified non-
additive probability: it evaluates only the probability of events, and not necessarily all
of them.

The integral aggregates all available information, including individual assessments
of the likelihood of events and expected values of variables, into a comprehensive
picture. Upon observing the comprehensive picture the agent might re-evaluate the
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likelihood of events or the expected values she assigns to random variables and change
her mind.

Similar to the definition in Sect. 2 we define the integral of a non-negative X w.r.t.
a fuzzy capacity (v, A). Let L be the set of all concave, monotonic and homogeneous
functions f : R

n+ → R such that f (a) ≥ v(a) for every a ∈ A. The integral w.r.t.
(v, A) is defined as8

cav∫
Xdv = min

f ∈L
f (X),

for every non-negative X . The minimum of all concave, monotonic and homogeneous
functions is well defined and possesses the same properties. Similarly to Lemma 1
one obtains,

cav∫
Xdv = max

{
k∑

i=1

αiv(ai )

}
, (5)

where the maximum is taken over all ai ∈ A, αi ≥ 0, i = 1, . . . , k that satisfy∑k
i=1 αi ai ≤ X . Denote by coneA the convex cone generated by A. That is, coneA =

{∑αi ai ; ai ∈ A and αi ≥ 0}. Note that in Eq. (5)
∑k

i=1 αi ai is allowed to be less
than or equal to and not necessarily equal to X as in Lemma 1. Inequality is allowed
since coneA might be a strict subset of R

n+. Note also that if (P, A) is additive, then∫ cav XdP = ∫
XdP (the regular integral of X ) for every X ∈ coneA.

Example 6 Let N = {1, 2}. Thus, I = [0, 1] × [0, 1]. Define the fuzzy capacity
(v, A) as follows: A = {(1, 1), ( 1

2 , 1
4 )}, v(1, 1) = 1 and v( 1

2 , 1
4 ) = 1

3 . Consider
X = (1, 3

4 ). X = 1
2 (1, 1) + ( 1

2 , 1
4 ) and this is an optimal decomposition of X . Thus,∫ cav Xdv = 1

2 · 1 + 1
3 = 5

6 . Now let Y = (2, 3). Y = (2, 3) ≥ 2(1, 1) while 2(1, 1)

attains the maximum of the right-hand side of Eq. (5). Therefore,
∫ cav Y dv = 2.

Example 2 revisited Ellsberg’s paradox was analyzed in Example 2. In order to phrase
this analysis in terms of fuzzy capacities, let N = {R, G, B}. Thus, I = [0, 1]3, the
three dimensional unit cube. Set A = {(1, 1, 1), (1, 0, 0), (0, 1, 1)} and v(1, 1, 1) =
1, v(1, 0, 0) = 1

3 and v(0, 1, 1) = 2
3 . Let X be (100, 0, 0). Since 100(1, 0, 0) is an

optimal decomposition of X ,
∫ cav Xdv = 100 · 1

3 . Also define, Y = (0, 100, 0) the
right-hand side of Eq. (5) is attained by 0(1, 1, 1), and therefore,

∫ cav Y dv = 0.

The core of (v, A) (see also9 Aubin 1979; Azrieli and Lehrer 2007a) consists of
all the additive fuzzy capacities P such that P(1, . . . , 1) = v(1, . . . , 1) and for every
a ∈ A, P(a) ≥ v(a). The fuzzy capacity (v, A) is exact if for every a ∈ A there is P
in the core of v such that P(a) = v(a).

8 The set A is dropped from the notation.
9 Both referred to the special case where A = I .
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9.2 Minimum over additive capacities and the integral

Let P be a compact set of additive capacities defined over the extreme points of I .
Denote the fuzzy capacity (vP , I ) as follows:

vP (a) = min
P∈P

∫
adP for every a ∈ I. (6)

Remark 4 For any compact set of additive capacities, P , denote by convP the convex
hull of P . For any a ∈ A, the value vconvP (a) is attained at an extreme point of convP ,
which is in P . Therefore, vP = vconvP .

The following example illustrates the main idea demonstrated in this section.

Example 7 Let N = {1, 2, 3} and consider the set P which consists of the probability
distributions P1 = ( 1

2 , 1
4 , 1

4 ), P2 = ( 1
4 , 1

2 , 1
4 ) and P3 = ( 1

4 , 1
4 , 1

2 ). Denote by w the
capacity vP restricted to A = {1S; S ⊆ N }. Thus,10 w(N ) = 1 and w(S) = |S| 1

4
for |S| ≤ 2. In this case for every non-negative X , minP∈P EP (X) = ∫ cav Xdw.

Now consider P4 = ( 2
16 , 7

16 , 7
16 ) and P ′ = {P1, P2, P3, P4}. Denote by u the

capacity vP ′ restricted to A. Thus, u(N ) = 1, u(S) = 1
2 if |S| = 2, u(1) = 1

8 , and
u(2) = u(3) = 1

4 . In order to show that minP∈P ′ EP (X) �= ∫ cav Xdu for some non-
negative X , consider X = ( 3

5 , 2
5 , 0). On one hand, minP∈P ′ EP (X) = 1

4 , and on the
other,

∫ cav Xdu = 1
5 u(1, 0, 0) + 2

5 u(1, 1, 0) = 1
5

1
8 + 2

5
1
2 = 9

40 < 1
4 . In other words,

in order to get equality between
∫ cav XdvP ′ and minP∈P EP (X), one cannot restrict

oneself to A.
We enlarge A: let A′ = A∪{( 3

5 , 2
5 , 0), ( 3

5 , 0, 2
5 )}. Define the fuzzy capacity (w′, A′)

as follows: it coincides with u on A, and w′( 3
5 , 2

5 , 0) = w′( 3
5 , 0, 2

5 ) = 1
4 . For every

non-negative X we obtain, minP∈P ′ EP (X) = ∫ cav Xdw′. For instance, let X =
( 3

5 , 1
5 , 1

5 ). minP∈P ′ EP (X) = EP4(X) = 2
16

3
5 + 7

16
1
5 + 7

16
1
5 = 1

4 and
∫ cav Xdw′ =

1
2w′( 3

5 , 2
5 , 0) + 1

2w′( 3
5 , 0, 2

5 ) = 1
4 .

The information embedded in P ′ cannot be compressed into a capacity defined only
over the extreme points of I (i.e., to subsets on N ). The values of w′ over the points
( 3

5 , 2
5 , 0) and ( 3

5 , 0, 2
5 ) are necessary. On the other hand, the values of w′ on A′ are

sufficient to provide all the information needed to obtain minP∈P EP (X) through the
integral.

The following lemma (stated without a proof) connects between the minimum over
a set of capacities and exactness.

Lemma 2 If for any P, P ′ ∈ P , P(1, . . . , 1) = P ′(1, . . . , 1), then vP is exact.

Recall that in Gilboa and Schmeidler (1989) the minimum is taken over a compact
and convex set of probability distributions. It turns out that in the current context
the representation as a minimum over additive capacities (not necessarily probability

10 In this example we identify a subset of N with its indicator.
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distributions) and the representation as an integral w.r.t. a fuzzy capacity are equivalent.
Formally,

Proposition 3 (1) Let P be a compact set of additive capacities. Then,

cav∫
XdvP = min

P∈P

∫
XdP

for every non-negative X. Furthermore, if P is either finite or a polygon, then
there is a fuzzy capacity (v, A) with A being finite such that minP∈P

∫
XdP =∫ cav Xdv.

(2) For every fuzzy capacity (v, A), if (v, A) is Lipschitz (i.e., there is a constant
L > 0 such that for every a, a′ ∈ A, |v(a) − v(a′)| ≤ L‖a − a′‖2), then there
is a compact and convex set of additive capacities (not necessarily probability
distributions), P , such that

cav∫
Xdv = min

P∈P

∫
XdP.

Moreover, if (v, A) is exact, then P(1, . . . , 1) = P ′(1, . . . , 1) for every P, P ′ ∈
P .

The proof11 is rather standard and is therefore omitted.
The following example shows that in Proposition 3(2) the Lipschitz condition is

necessary.

Example 8 Let I = [0, 1]2 and v(x, y) = √
xy. The fuzzy capacity (v, I ) is concave.

However, at the boundary point (0, 1) there is no supporting hyper-plane to the graph
of v. Therefore, there is no (non-trivial) additive capacity P such that P(0, 1) =
v(0, 1) = 0 and at the same time P(x, y) ≥ v(x, y) = √

xy for every (x, y) ∈ I .

However, for every (a, b) ∈ I with a, b > 0 let P(a,b) = 1
2 (

√
b
a ,

√
a
b ). On one hand,

P(a,b)(a, b) = √
ab = v(a, b) and on the other, P(a,b)(x, y) = 1

2

√
b
a x + 1

2

√
a
b y ≥√

xy = v(x, y) for every (x, y) ∈ I . In other words, P(a,b) corresponds to a supporting
hyper-plane of the graph of v at the point (a, b). Finally notice that

cav∫
(0, 1)dv = v(0, 1) = 0

= inf
a, b > 0 and

(a, b) → (0, 1)

√
a

b
= inf

a, b > 0 and
(a, b) → (0, 1)

P(a,b)(0, 1).

In this case the infimum cannot be replaced by a minimum. The reason is that v does
not satisfy the Lipschitz condition stated in Proposition 3(2).

11 It is based on the fact that any concave function over a compact and convex set D, that can be extended
as a concave function to an open set that contains D, is the minimum of all its supporting linear functions.
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10 Final comments

10.1 Tail-separability

The Choquet expected utility model does not satisfy the sure-thing principle but it
retains a reminiscence of it, called tail-separability (see Machina 2007). The latter
means that the preference order between two acts that coincide on the lowest (or
highest) reward remains unchanged if the size of this reward changes while staying
the lowest (or highest). In other words, if two acts coincide on a tail event (where the
reward is either the lowest or the highest) and they change over this tail event (while
staying such), then the preference order between them does not change.

Machina (2007) introduces a variation of Ellsberg’s urn which poses conside-
rable difficulty for Choquet expected utility model. This difficulty arises due to tail-
separability. Expected utility model based on the concave integral presented here does
not satisfy tail-separability and may resolve the difficulty demonstrated by Machina’s
example (see Lehrer 2007).

10.2 Relations with risk measurement

The quest for concave or convex and homogenous functionals has been a theme of
extensive research in the last years. A functional ρ is a coherent risk measure if it is
sub-additive, homogenous of degree 1 [e.g., satisfies (HO)], monotonic (as in 11.1.3
below) and satisfies translation invariance, that is

ρ(X + c) = ρ(X) − c (7)

for every constant c. Coherent risk measures defined over bounded random variables
have been introduced by Artzner et al. (1998) and axiomatized by Delbaen (2002).
They can be typically represented by the maximum of minus the expectations with
respect to priors in a set P . That is,

ρ(X) = max
P∈P

EP (−X), (8)

where P is a set of priors.
Let P be an additive probability distribution. A coherent risk measure is P-law

invariant if two random variables that have the same cumulative distribution functions
w.r.t. P share the same risk measure. Kusuoka (2001) characterized the risk measures
that are P-law invariant when P is non-atomic. It turns out that these measures are
also monotonic with second order stochastic dominance. Leitner (2005) showed that
Kusuoka’s representation actually characterizes all coherent risk measures that are
monotonic with second-order stochastic dominance.

There are a few similarities and differences between the existing analysis of risk
measures and the current discussion on the concave integral. Risk measures analysis
requires the functional to be convex and translation invariant (Eq. (7)) means that the
risk measure of an asset translated by a constant is the risk measure of the asset minus
the constant. Here, the integral is concave and translation invariance means that the
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integral of an asset translated by a constant is the integral of the asset plus that constant
(as in Corollary 1). These differences can be easily reconciled.

Instead of considering the integral itself, one should consider minus the integral,
which becomes a convex function. Corollary 1 implies that v, with v(N ) = 1, has a
large core if and only if − ∫ cav Xdv is a coherent risk measure.

As for fuzzy capacities, Eqs. (6) and (8), combined with Lemma 2 and Gilboa
and Schmeidler (1989) imply that ρ(X) is a coherent risk measure if and only if
ρ(X) = − ∫ cav Xdv with v being an exact fuzzy capacity and v(1, . . . , 1) = 1. It
implies that when v with v(1, . . . , 1) = 1 is not exact − ∫ cav Xdv is not a coherent
risk measure. This is so because it does not satisfy translation invariance.

The studies of Kusuoka (2001) and Leitner (2005) assume an underlying additive
probability distribution, while the underlying capacity here is typically non-additive.
Finally, Sect. 8 deals with first order stochastic dominance while Kusuoka’s represen-
tation respects second order stochastic dominance.

10.3 Extension to general spaces

In this paper N is assumed to be finite. However, the integral can be generalized, using
precisely the same Eq. (1), to any space. This is done in Lehrer and Teper (2007).

11 Appendix

11.1 Properties

Properties of the new integral that are not mentioned explicitly in the axioms are
listed in this section. Proofs will be provided only to the non-obvious properties. In
what follows X and X ′ are non-negative functions over N , or equivalently, points in
R

n+.

11.1.1 Continuity

∫ cav Xdv is continuous in both, X and v.

11.1.2 Monotonicity w.r.t. capacities

If v ≥ v′, then
∫ cav Xdv ≥ ∫ cav Xdv′ for every non-negative X . Note that this property

is not implied by axiom (M) that refers only the case where the greater capacity is
additive.

11.1.3 Monotonicity w.r.t. functions

If X ≥ X ′, then
∫ cav Xdv ≥ ∫ cav X ′dv.
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11.1.4 Characteristic functions

By definition, for every S ⊆ N ,
∫ cav

1Sdv ≥ v(S). If
∫ cav

1Sdv > v(S), then there
are scalars αi > 0 and Ri which are proper subsets of N , i = 1, . . . , k , such that∫ cav

1Sdv = ∑k
i=1 αiv(Ri ) and

∫ cav
1Ri dv = v(Ri ), i = 1, . . . , k.

11.1.5 Totally balanced capacity

Bondareva–Shapley theorem (see Bondareva 1962; Shapley 1967) implies that for any
R ⊆ N , the core of the sub-capacity vR is not empty if and only if

∫ cav
1Rdv = v(R).

Thus,
∫ cav

1Rdv = v(R) for every R ⊆ N if and only if the capacity is totally balanced
(i.e., the core of each of its sub-capacities is not empty).

11.1.6 The integral and the totally balanced cover

Let S ⊆ N . Define the capacity vS as follows: vS(R) = v(R) if R �= S and vS(S) =∫ cav
1Sdv. Then,

∫ cav Xdv = ∫ cav XdvS . Thus, increasing the value of the capacity
from v(S) to

∫ cav
1Sdv would not change the integral.

Let v be a capacity. Define the capacity Bv as follows: Bv(S) = ∫ cav
1Sdv for

every S ⊆ N . The capacity Bv is the totally balanced cover of v. Then,
∫ cav Xdv =∫ cav XdBv for every non-negative X .

11.1.7 The integral and the maximum of a function

It might be that
∫ cav Xdv > max(X). However, X can be expressed as a positive linear

combination of (characteristic) functions whose integral is between their minimum and
their maximum. Furthermore,

Lemma 3 (i)
∫ cav Xdv ≤ max(X) for every non-negative X if and only if

Bv(N ) ≤ 1.
(ii) If v(N ) = 1, then

∫ cav Xdv ≤ max(X) for every non-negative X if and only if
the core of v is non-empty.

The proof is deferred to the second part of the Appendix.

11.1.8 The integral and the minimum of a function

As stated in Sect. 4, the new integral is always greater than or equal to the Choquet
integral. When v(N ) = 1,

∫ C Xdv ≥ min(X), and therefore
∫ cav Xdv ≥ min(X).

11.1.9 Piecewise linearity

∫ cav Xdv is piecewise linear in X . That is, the set R
n+ can be divided into finitely many

closed cones F1, . . . , F� such that
∫ cav Xdv is linear in each one: for every X, X ′ ∈ Fi ,∫ cav X + X ′dv = ∫ cav Xdv + ∫ cav X ′dv.
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11.1.10 Local additivity

The previous property implies that
∫ cav Xdv is locally additive. That is, every X is

included in an open cone, say UX , such that for every X ′ ∈ UX ,
∫ cav X + X ′dv =∫ cav Xdv + ∫ cav X ′dv. (It is not true that for every X ′, X ′′ ∈ UX ,
∫ cav X ′ + X ′′dv =∫ cav X ′dv + ∫ cav X ′′dv.)

11.1.11 Minimum over a set of capacities

Let C be a set of capacities. Denote m(C)(S) = infv∈C v(S) for every S ⊆ N . It
turns out that for every C,

∫ cav Xdm(C) ≤ minv∈C
∫ cav Xdv. However, if C is the

set of all additive capacities that are greater than or equal to v, then
∫ cav Xdm(C) =

minv∈C
∫ cav Xdv.

11.2 Proofs

Proposition 1 Let v be a capacity. Then, v is convex if and only if for every non-
negative X and Y ,

∫ cav Xdv ≥ ∫ cav Y dv whenever
∫ C Xdv ≥ ∫ C Y dv.

Proof If v is convex, then
∫ cav Xdv = ∫ C Xdv for every non-negative X . Conversely,

if v is not convex, then in particular v is not identically 0. Moreover, by Lovasz (1983,
Proposition 4.1, p. 249) there is a non-negative X such that

∫ cav Xdv �= ∫ C Xdv. Since∫ cav Xdv ≥ ∫ C Xdv,
∫ cav Xdv >

∫ C Xdv. By the definition of the new integral,
there is S ⊆ N such that

∫ cav
1Sdv = v(S) > 0. There is a constant c > 0 such

that
∫ cav Xdv >

∫ cav c1Sdv >
∫ C Xdv. Since

∫ cav c1Sdv = ∫ C c1Sdv, we obtain,∫ cav Xdv >
∫ cav c1Sdv and

∫ C c1Sdv >
∫ C Xdv, as desired. �

Lemma 3 (i)
∫ cav Xdv ≤ max(X) for every non-negative X if and only if

Bv(N ) ≤ 1.
(ii) If v(N ) = 1, then

∫ cav Xdv ≤ max(X) for every non-negative X if and only if
the core of v is non-empty.

Proof (i) Suppose first that Bv(N ) ≤ 1 and suppose to the contrary that there is
a non-negative X such that

∫ cav Xdv > max(X). Since the integral is homo-
geneous, it can be assumed without loss of generality that max(X) = 1. In
particular, 1N ≥ X . By monotonicity w.r.t. functions,

∫ cav
1N dv ≥ ∫ cav Xdv

and therefore,
∫ cav

1N dv > 1. However,
∫ cav

1N dv = ∫ cav
1N dBv = Bv(N ).

Thus, Bv(N ) > 1, which contradicts the assumption.
Conversely, suppose that

∫ cav Xdv ≤ max(X) for every non-negative X . It
implies in particular that

∫ cav
1N dv ≤ 1. However,

∫ cav
1N dv = Bv(N ), which

implies that Bv(N ) ≤ 1.
(ii) When v(N ) = 1, Bv(N ) ≤ 1 means that Bv(N ) = v(N ), which by Bondareva–

Shapley theorem (see Bondareva, 1962; Shapley 1967) is equivalent to the non-
emptiness of the core.

�
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