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Abstract

We provide a full characterization of the set of value functions of Markov

decision processes.

1 Introduction

Markov decision processes are a standard tool for studying dynamic optimization

problems. The discounted value of such a problem is the maximal total discounted

amount that the decision maker can guarantee to himself. By Blackwell (1965),

the function λ 7→ vλ(s) that assigns the discounted value at the initial state s to

each discount factor λ is the maximum of finitely many rational functions (with

real coefficients). Standard arguments show that the roots of the polynomial in

the denominator of these rational functions either lie outside the unit ball in the

complex plane, or on the boundary of the unit ball, in which case they have
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multiplicity 1. Using the theory of eigenvalues of stochastic matrices one can

show that the roots on the boundary of the unit ball must be unit roots.

In this note we prove the converse result: every function λ 7→ vλ that is the

maximum of finitely many rational functions such that each root of the polynomials

in the denominators either lies outside the unit ball in the complex plane, or is a

unit root with multiplicity 1 is the value of some Markov decision process.

2 The Model and the Main Theorem

Definition 1 A Markov decision process is a tuple (S,A, r, q) where

• S is a finite set of states.

• A distribution µ ∈ ∆(S) according to which the initial state is chosen.1

• A = (A(s))s∈S is the family of sets of actions available at each state s ∈ S.

Denote SA := {(s, a) : s ∈ S, a ∈ A(s)}.

• r : SA→ R is a payoff function.

• q : SA→ ∆(S) is a transition function.

The process starts at an initial state s1 ∈ S, chosen according to µ. It then

evolves in discrete time: at every stage n ∈ N the process is in a state sn ∈ S,

the decision maker chooses an action an ∈ A(sn), and a new state sn+1 is chosen

according to q(· | sn, an).

A finite history is a sequence hn = (s1, a1, s2, a2, · · · , sn) ∈ H := ∪∞k=0(SA)k×S.

A pure strategy is a function σ : H → ∪s∈SA(s) such that σ(hn) ∈ A(sn) for

every finite history hn = (s1, a1, · · · , sn), and a behavior strategy is a function

σ : H → ∪s∈S∆(A(s)) such that σ(hn) ∈ ∆(A(sn)) for every such finite history.

The set of behavior strategies is denoted B. In other words, σ assign to every finite

history a distribution over A, which we call a mixed action. A strategy is stationary

1For every finite set X, the set of probability distributions over X is denoted ∆(X).
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if for every finite history hn = (s1, a1, · · · , sn), the mixed action σ(hn) is a function

of sn and is independent of (s1, a1, · · · , an−1). Every behavior strategy together

with a prior distribution µ over the state space induce a probability distribution

Pµ,σ over the space of infinite histories (SA)∞ (which is endowed with the product

σ-algebra). Expectation w.r.t. this probability distribution is denoted Eµ,σ.

For every discount factor λ ∈ [0, 1), the λ-discounted payoff is

γλ(µ, σ) := Eµ,σ

[
∞∑
n=1

λn−1r(sn, an)

]
.

When µ is a probability measure that is concentrated on a single state s we denote

the λ-discounted payoff also by γ(s, σ). The λ-discounted value of the Markov

decision process, with the prior µ over the initial state is

vλ(µ) := sup
σ∈B

γλ(µ, σ). (1)

A behavior strategy is λ-discounted optimal if it attains the maximum in (1).

Denote by V the set of all functions λ 7→ vλ(µ) that are the value function of

some Markov decision processes starting with some prior µ ∈ ∆(S). The goal of

the present note is to characterize the set V .

Notation 1 (i) Denote by F the set of all rational functions P
Q

such that each

root of Q is (a) outside the unit ball, or (b) a unit root2 with multiplicity 1.

(ii) Denote by MaxF the set of functions that are the maximum of a finite number

of functions in F .

The next proposition states that any function in V is the maximum of a finite

number of functions in F

Proposition 1 V ⊆MaxF .

Proof. By Blackwell (1965), for every λ ∈ [0, 1) there is a λ-discounted pure

stationary optimal strategy. Since the number of pure stationary strategies is

2Recall that a complex number ω ∈ C is a unit root if there exists n ∈ N such that ωn = 1.
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finite, it is sufficient to show that the function λ 7→ γλ(µ, σ) is in F , for every pure

stationary strategy σ. For every pure stationary strategy σ, every prior µ, and

every discount factor λ ∈ [0, 1), the vector (γλ(s1, σ))s1∈S is the unique solution of

a system of |S| linear equations3 in λ:

γλ(s, σ) = r(s, σ(s)) + λ
∑
s′∈S

q(s′ | s, σ(s))γλ(s
′, σ), ∀s ∈ S,

where r(s, σ(s)) :=
∑

a∈A(s) σ(a | s)r(s, a) and q(s′ | s, σ(s)) :=
∑

a∈A(s) σ(a |
s)q(s′ | s, a) are the multilinear extensions of r and q, respectively. It follows that

γλ(·, σ) = (I − λQ(·, σ(·)))−1 · r(·, σ(·)),

where Q(·, σ(·)) = Q = (Qs,s′)s,s′∈S is the transition matrix induced by σ, that

is, Qs,s′ = q(s′ | s, σ(s)). By Cramer’s rule, the function λ 7→ (I − λQ)−1 is a

rational function whose denominator is det(I − λQ). In particular, the roots of

the denominator are the inverse of the eigenvalues of Q. Since the denominator is

independent of s, it is also the denominator of γλ(µ, σ) =
∑

s∈S µ(s)γλ(s, σ).

Denote the expected payoff at stage n by xn := Eµ,σ[r(sn, σ(hn))], so that

γλ(µ, σ) =
∑∞

n=1 xnλ
n−1. Since |xn| ≤ maxs∈S,a∈A(s) |r(s, a)| for every n ∈ N, it

follows that the denominator det(I−λQ(·, σ(·)) does not have roots in the interior

of the unit ball and that all its roots that lie on the boundary of the unit ball have

multiplicity 1. Moreover, by, e.g., Higham and Lin (2011) it follows that the roots

that lie on the boundary of the unit ball must be unit roots.

The main result of this note is that the converse holds as well.

Theorem 1 A function w : [0, 1)→ R is in V if and only if it is the maximum of

a finite number of functions in F .

To avoid cumbersome notations we write f(λ) for the function λ 7→ f(λ). In

particular, λf(λ) will denote the function λ 7→ λf(λ).

We start with the following observation.

3The result is valid for every stationary strategy, not necessarily pure. We will need it only

for pure stationary strategies.

4



Lemma 1 If f, g ∈ V then max{f, g} ∈ V.

Proof. Let Mf = (Sf , µf , Af , rf , qf ) and Mg = (Sg, µg, Ag, rg, qg) be the Markov

decision processes that implement f and g respectively. To implement max{f, g},
define a Markov decision process that contains Mf , Mg, and an additional state

s∗, in which the decision maker chooses one of Mf and Mg. Formally, let M =

(Sf ∪ Sg ∪ {s∗}, A′, r′, q′) be a Markov decision process in which A′, r′, and q′

coincide with Af , rf , and qf (resp. Ag, rg, and qg) on Sf (resp. Sg), and in which in

the state s∗ the decision maker chooses whether to follow Mf or Mg, and the payoff

and transitions at that state are the expectation of the payoff and transitions at

the first stage in Mf (resp. Mg) according to µf (resp. µg):

A′(s∗) := (×s∈SAf (s))× (×s∈SAg(s))× {f, g},

and for every af ∈ ×s∈SAf (s) and every ag ∈ ×s∈SAg(s),

r′(s∗, (af , ag, x)) :=

{ ∑
s∈S µf (s)rf (s, af (s)) x = f,∑
s∈S µg(s)rg(s, af (s)) x = g.

q′(· | s∗, (af , ag, x)) :=

{ ∑
s∈S µf (s)qf (· | (s1,f , af (s))) x = f,∑
s∈S µg(s)qg(· | (s1,g, ag(s))) x = g.

The reader can verify that the value function of M at the initial state s∗ is

max{f, g}.

3 Degenerate Markov Decision Processes

As mentioned earlier, for every pure stationary strategy σ and every initial state s1,

the function λ 7→ γλ(s1, σ) is a rational function of λ. Since there is a λ-discounted

pure stationary optimal strategy, and since there are finitely many such functions,

it follows that the function λ 7→ vλ is the maximum of finitely many rational

functions, each of which is the payoff function of some pure stationary strategy.

When the decision maker follows a pure stationary strategy, we are reduced

to a Markov decision process in which there is a single action in each state. This

observation leads us to the following definition.
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A Markov decision process is degenerate if |A(s)| = 1 for every s ∈ S. When

M is a degenerate Markov decision process we omit the reference to the action in

the functions r and q. A degenerate Markov decision process is thus a quadruple

(S, µ, r, q), where S is the state space, µ is a probability distribution over S, r :

S → R, and q(· | s) is a probability distribution for every state s ∈ S.

Denote by VD the set of all functions that are payoff functions of some degen-

erate Markov decision process. Plainly, VD ⊆ V . To prove Theorem 1, we first

prove that degenerate Markov decision processes implement all functions in F .

Theorem 2 F ⊆ VD.

Theorem 2 and Lemma 1 show that MaxF ⊆ V , and together with Proposition

1 they establish Theorem 1. The rest of the paper is dedicated to the proof of

Theorem 2.

3.1 Characterizing the set VD
The following lemma lists several properties of the functions implementable by

degenerate Markov decision processes.

Lemma 2 For every f ∈ VD we have

a) af(λ) ∈ VD for every a ∈ R.

b) f(−λ) ∈ VD.

c) λf(λ) ∈ VD.

d) f(cλ) ∈ VD for every c ∈ [0, 1].

e) f(λ) + g(λ) ∈ VD for every g ∈ VD.

f) f(λn) ∈ VD for every n ∈ N.
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Proof. Let Mf = (Sf , µf , rf , qf ) be a degenerate Markov decision process

whose value function is f .

To prove Part (a), we multiply all payoffs in Mf by a. Formally, define a

degenerate Markov decision process M ′ = (Sf , µf , r
′, qf ) that differs from M only

in its payoff function: r′(s) := arf (s) for every s ∈ Sf . The reader can verify that

the value function of M ′ at the initial state s1,f is af(λ).

To prove Part (b), multiply the payoff in even stages by −1. Formally, let Ŝ

be a copy of Sf ; for every state s ∈ Sf we denote by ŝ its copy in Ŝ. Define a

degenerate Markov decision process M ′ = (Sf∪Ŝ, µf , r′, q′) with initial distribution

µf (whose support is Sf ) that visits states in Ŝ in even stages and states in Sf in

odd stages as follows:

r′(s) := rf (s), r′(ŝ) := −rf (s), ∀s ∈ Sf ,
q′(ŝ′ | s) = q′(s′ | ŝ) := qf (s

′ | s), ∀s, s′ ∈ Sf ,
q′(s′ | s) = q′(ŝ′ | ŝ) := 0, ∀s, s′ ∈ Sf .

The reader can verify that the value function of M ′ is f(−λ).

To prove part (c), add a state with payoff 0 from which the transition prob-

ability to a state in Sf coincides with µ. Formally, define a degenerate Markov

decision process M ′ = (Sf ∪ {s∗}, µ′, r′, q′) in which µ′ assigns probability 1 to s∗.

r′ coincides with rf on Sf , while r′(s∗) := 0. Finally, q′ coincides with qf on Sf ,

while at the state s∗, q′(s1 | s∗) := µ(s1). The value function of M ′ is λf(λ).

To prove part (d), consider the transition function that at every stage, moves

to an absorbing state4 with payoff 0 with probability 1 − c, and with probability

c continues as in M . Formally, define a degenerate Markov decision process M ′ =

(Sf ∪ {s∗}, µ, r′, q′) in which µ coincides with µf , r
′ and q′ coincide with rf and qf

on Sf , r
′(s) := 0, and q′(s∗ | s∗) := 1 (that is, s∗ is an absorbing state), and

q′(s∗ | s) := 1− c, q′(s′ | s) := cqf (s
′ | s), ∀s, s′ ∈ Sf .

The value function of M ′ at the initial state s1,f is f(cλ).

4A state s ∈ S is absorbing if q(s | s, a) = 1 for every action a ∈ A(s).
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To prove Part (e), we show that 1
2
f + 1

2
g is in VD and we use part (a) with

a = 2. The function 1
2
f+ 1

2
g is the value function of the degenerate Markov decision

process in which the prior chooses with probability 1
2

one of two degenerate Markov

decision processes that implement f and g. Formally, let Mg = (Sg, µg, rg, qg)

be a degenerate Markov decision process whose value function is g. Let M =

(Sf ∪ Sg, µ′, r′, q′) be the degenerate Markov decision process whose state space

consists of disjoint copies of Sf and Sg, the functions r′ (resp. q′) coincide with rf

and rg (resp. qf and qg) of Sf (resp. Sg, and the initial distribution is µ′ = 1
2
µf+ 1

2
µg.

The value function of M is 1
2
f + 1

2
g.

To prove Part (f), we space out the Markov decision process in a way that stage

k of the Markov decision process that implements f becomes stage 1+(k−1)n, and

the payoff in all other stages is 0. Formally, Let M ′ = (Sf ×{1, 2, · · · , n}, µ′, r′, q′)
be a degenerate Markov decision process where µ′ = µf and

q′((s, k + 1) | (s, k)) := 1 k ∈ {1, 2, . . . , n− 1}, s ∈ S,
q′(· | (s, n)) := qf (s) s ∈ S,
r′((s, 1)) := rf (s) s ∈ S,

r′((s, k)) := 0 k ∈ {2, 3, . . . , n}, s ∈ S.

The value function of M ′ with the prior µ′ is f(λn).

Lemma 3 a) Every polynomial5 P is in VD and if f ∈ VD, then P · f is also

in VD.

b) Let P and Q be two polynomials. If 1
Q
∈ VD then P

Q
∈ VD. In particular, if

Q′ divides Q and 1
Q
∈ VD then 1

Q′ ∈ VD.

c) If Q is a polynomial whose roots are all unit roots of multiplicity 1, then
1
Q
∈ VD.

5Throughout the paper, whenever we refer to a polynomial we mean a polynomial with real

coefficients.
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Proof. Part (a) follows from Lemma 2(a,c,e) and the observation that any constant

function a is in VD, which holds since the constant function a is the value function

of the degenerate Markov decision process that starts with a state whose payoff is

a and continues to an absorbing state whose payoff is 0.

Part (b) follows from Part (a).

We turn to prove Part (c). The degenerate Markov decision process with a

single state in which the payoff is 1 yields payoff 1
1−λ , and therefore 1

1−λ ∈ VD. By

Lemma 2(f) it follows that 1
1−λn ∈ VD, for every n ∈ N. Let n be large enough

such that Q divides 1− λn. The result now follows by Part (b).

To complete the proof of Theorem 2 we characterize the polynomials Q that

satisfy 1
Q
∈ VD. To this end we need the following property of VD.

Lemma 4 If f, g ∈ VD then f(λ)g(λc) ∈ VD for every c ∈ (0, 1).

Proof. The proof of Lemma 4 is the most intricate part of the proof of Theorem

1. We start with an example, that will help us illustrate the formal definition of

the degenerate MDP that implements f(λ)g(λc).

Let Mf and Mg be the degenerate Markov decision processes that are depicted

in Figure 1 with the initial distributions µf (sf ) = 1 and µg(s1,g) = 1, in which the

payoff at each state appears in a square next to the state. Denote by f and g the

value functions of Mf and Mg, respectively.

1
2

1
2

4
5

1
2

1
2

1
5

sf

s′fs′′f

MDP Mf

2

1

3

s1,g s2,g s3,g

MDP Mg

1 2 3

Figure 1: An example of two MDP’s.

Consider the degenerate Markov decision process M depicted in Figure 2, where

c ∈ (0, 1) and the initial state is s1,g.
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s1,g
s2,g

s3,g
c c c

(1−c) 2(1−c) 3(1−c)

1
2

1
2

4
5

1
2

1
2

1
5

1−c
5

4(1−c)
5

s1,f

s′1,fs′′1,f

2 3

1

1
2

1
2

4
5

1
2

1
2

1
5

1−c
5

4(1−c)
5

s2,f

s′2,fs′′2,f

4 6

2

1
2

1
2

4
5

1
2

1
2

1
5

1−c
5

4(1−c)
5

s3,f

s′3,fs′′3,f

6 9

3

Figure 2: The degenerate MDP M .

The MDP M is composed of one copy of Mg, and for every state in Sg it contains

one copy of Mf . It starts at s1,g, the initial state of Mg. Then, at every stage,

with probability c it continues as in Mg, and with probability (1 − c) it moves to

a copy of Mf . In case a transition to a copy of Mf occurs, the new state is chosen

according to the transitions qf (· | sf ). This induces a distribution similar to that

of the second stage of Mf .

The payoff in each of the copies of Mf is the product of the payoff in Mf times

the payoff of the state in Mg that has been assigned to that copy. The payoff in

each state sg ∈ Sg is (1 − c)rg(sg) times the expected payoff in the first stage of

Mf .

Thus, each state in sg ∈ Sg serves three purposes (see Figure 2). First, it is a

regular state in the copy of Mg. Second, once a transition from Mg to a copy of

Mf occurs (at each stage it occurs with probability (1 − c)), it serves as the first

stage in Mf . Finally, once a transition from sg to a copy of Mf occurs, the payoffs

in the copy are set to the product of the original payoffs in Mf times rg(sg).

We now turn to the formal construction of M . Let f, g ∈ VD and let Mf =

(Sf , µf , rf , qf ) (resp. Mg = (Sg, µg, rg, qg)) be the degenerate Markov decision pro-

cess that implements f (resp. g). Define the following degenerate Markov decision

process M = (S, µ, r, q):

• The set of states is S = (Sg × Sf ) ∪ Sg. In words, the set of states contains
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a copy of Sg, and for each state sg ∈ Sg it contains a copy of Sf .

• The initial distribution is µg:

µ(sg) = µg(sg), ∀sg ∈ Sg, µ(sg, sf ) = 0, ∀(sg, sf ) ∈ Sg × Sf .

• The transition is as follows:

– In each copy of Sf , the transition is the same as the transition in Mf :

q((sg, s
′
f ) | (sg, sf )) := qf (s

′
f | sf ), ∀sg ∈ Sg, sf , s′f ∈ Sf ,

q((s′g, s
′
f ) | (sg, sf )) := 0, ∀sg 6= s′g ∈ Sg, sf , s′f ∈ Sf .

– In the copy of Sg, with probability c the transition is as in Mg, and with

probability (1 − c) it is as in Mf starting with the initial distribution

µf :

q(s′g | sg) := cqg(s
′
g | sg), ∀sg, s′g ∈ Sg,

q((sg, sf ) | sg) := (1− c)
∑
s′f∈Sf

µ(s′f )qf (sf | s′f ), ∀sg ∈ Sg, sf ∈ Sf ,

q((s′g, sf ) | sg) := 0 ∀sg 6= s′g ∈ Sg, sf ∈ Sf .

• The payoff function is as follows:

r(sg) := (1− c)rg(sg)
∑
sf∈Sf

µf (sf )rf (sf ), ∀sg ∈ Sg,

r(sg, sf ) := rg(sg)rf (sf ), ∀sg ∈ Sg, sf ∈ Sf .

We will now calculate the value function of M . Denote by

Eµf [rf ] :=
∑
sf∈Sf

µf (sf )rf (sf )

the expected payoff in Mf at the first stage and by R the expected payoff in Mf

from the second stage and on. Then f(λ) = Eνf [rf ] + λR.

11



At every stage, with probability c the process remains in Sg and with probability

(1−c) the process leaves it. In particular, the probability that at stage n the process

is still in Sg is cn−1, in which case (a) the payoff is (1−c)rg(sn)Eµf [rf ], and (b) with

probability (1 − c) the process moves to a copy of Mf , and the total discounted

payoff from stage n+ 1 and on is R. It follows that the total discounted payoff is

∞∑
n=1

cn−1λn−1
(
(1− c)rg(sn)Eµf (rf ) + (1− c)λrg(sn)R

)
= (1− c)

∞∑
n=1

cn−1λn−1rg(sk)f(λ)

= (1− c)g(cλ)f(λ).

The result follows by Lemma 2(a).

Lemma 5 Let ω ∈ C be a complex number that lies outside the unit ball.6

a) If ω ∈ C \ R then 1
(ω−λ)(ω−λ)

∈ VD.

b) If ω ∈ R then 1
(ω−λ)

∈ VD.

Proof. We start by proving part (a). For every complex number ω ∈ C \ R
that lies outside the unit ball there are three natural numbers k < l < m and three

nonnegative reals α1, α2, α3 that sum up to 1 such that 1 = α1ω
k + α2ω

l + α3ω
m.

Consider the degenerate Markov decision process that is depicted in Figure 3.

That is, the set of states is Sf := {s1, s2, · · · , sm}, the payoff function is

r(sm) := 1, r(sj) := 0, 1 ≤ j < m,

and the transition function is

q(sm−k+1 | sm) := α1, q(sm−l+1 | sm) := α2, , q(s1 | sm) := α3,

q(sj+1 | sj) = 1, 1 ≤ j < m.

6For every complex number ω, the conjugate of ω is denoted ω.
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α1α2α3

s1 s2 smsm−k+1sm−l+1

10000000000

Figure 3: The degenerate MDP in the proof of Lemma 5.

The discounted value satisfies

vλ(sj) = λvλ(sj+1), 0 ≤ j < m,

vλ(sm) = 1 + λ
(
α1vλ(sm−k+1) + α2vλ(sm−l+1) + α3vλ(s1)

)
.

It follows that

vλ(sm) = 1
1−α1λk−α2λl−α3λm

.

Hence, this function is in VD. Since ω is one of its roots, by Lemma 3(b) we obtain

that 1
(ω−λ)(ω−λ)

∈ VD, as desired.

We turn to prove part (b). Let ω be a real number with ω > 1. By Lemma

3(b) 1
1−λ is in VD. By Lemma 2(d), 1

1− λ
ω

∈ VD, and by Lemma 2(a), 1
ω−λ ∈ VD.

When ω < −1, by Lemma 2(a,b), 1
ω−λ ∈ VD.

4 The Proof of Theorem 2

Let Q 6= 0 be a polynomial with real coefficients whose roots are either outside the

unit ball or unit roots with multiplicity 1. To complete the proof of Theorem 2

we prove that 1
Q
∈ VD. Denote by Ω1 the set of all roots of Q that are unit roots,

by Ω2 the set of all roots of Q that lie outside the unit ball and have a positive

imaginary part, and by Ω3 the set of all real roots of Q that lie outside the unit

ball. If some roots have multiplicity larger than 1, then they appear several times

in Q2 or Q3.

For i = 1, 3 denote Qi =
∏

ω∈Ωi
(ω − λ) and set Q2 =

∏
ω∈Ω2

(ω − λ)(ω − λ);

when Ωi = ∅ we set Qi = 1. Then Q = Q1 · Q2 · Q3. If Ω1 6= ∅, then by Lemma

3(c) we have 1
Q1
∈ VD. Otherwise Q1 = 1, in which case, 1

Q1
∈ VD by Lemma 3(a).
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Fix ω ∈ Ω2 and let c ∈ R be such that 1 < c < |ω|. Since ω
c

lies outside

the unit ball, Lemma 5(a) implies that gω(λ) := 1

(ω
c
−λ)(ω

c
−λ)

is in VD. By Lemma

4(a), gω(1
c
· λ) · 1

Q1
= c2

(ω−λ)(ω−λ)
· 1
Q1
∈ VD. By Lemma 2(a), 1

(ω−λ)(ω−λ)
· 1
Q1
∈ VD.

Applying successively this argument for the remaining roots in Ω2, one obtains

that 1
Q2
· 1
Q1
∈ VD.

To complete the proof we apply a similar idea to ω ∈ Ω3. Fix ω ∈ Ω3 and let

c ∈ R be such that 1 < c < |ω|. By Lemma 5(b), 1
ω
c
−λ ∈ VD and again by By

Lemma 4(a) and Lemma 2(a), 1
(ω−λ)

· 1
Q2
· 1
Q1
∈ VD. By iterating this argument for

every ω ∈ Ω3 one obtains that 1
Q3
· 1
Q2
· 1
Q1
∈ VD, as desired.

5 Final Remark

The set V contain all value functions of MDP’s in which the state at the first stage

is chosen according to a probability distribution µ. One can wonder whether the

set of implementable value functions shrinks if one restricts attention to MDP’s

in which the first stage is given; that is, µ assigns probability 1 to one state. The

answer is negative: the value function of any MDP in which the initial state is

chosen according to a probability distribution (prior) can be obtained as the value

function of an MDP in which the initial state is deterministic. Indeed, let M be

an MDP with a prior. One can construct M ′ by adding to M an initial state s′ in

which the payoff is the expected payoff at the first stage of M and the transitions

are the expected transitions after the first stage of M . We applied a similar idea

in the proof of Lemma 1.
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