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Abstract. In the classical Bayesian persuasion model an informed
player and an uninformed one engage in a static interaction. The
informed player, the sender, knows the state of nature, while the
uninformed one, the receiver, does not. The informed player par-
tially shares his private information with the receiver and the latter
then, based on her belief about the state, takes action. This ac-
tion, together with the state of nature, determines the utility of
both players. We consider a dynamic Bayesian persuasion situa-
tion where the state of nature evolves according to a Markovian
law. In this repeated persuasion model an optimal disclosure strat-
egy of the sender should, at any period, balance between obtaining
high a stage payoff and disclosing information which may have neg-
ative implications on future payoffs. We discuss optimal strategies
under different discount factors and characterize when the asymp-
totic value achieves the maximal value possible.
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1. Introduction

The literature devoted to Bayesian persuasion studies optimal poli-
cies by which an informed agent, the sender, discloses information to an
uninformed agent, the receiver. Kamenika and Gentzkow [21] present
a case where a prosecutor, who is fully informed about the state of
nature, i.e., whether the suspect is guilty or innocent, wishes to per-
suade a judge, e.g., to convict the suspect of a crime. This is a static
scenario: upon the prosecutor’s disclosure, the judge takes a decision
and the game is over.

In this paper we study a dynamic model where the interaction be-
tween the sender, who has a commitment power, and the receiver,
evolves over time. At each stage the sender is informed about a ran-
domly chosen state of nature. The decision of how much information to
disclose to the receiver at each stage is at the sender’s discretion. The
latter publicly announces an information provision policy, to which he
is committed throughout. The receiver knows the details of this policy
and thus, when she receives a signal from the sender, she updates her
belief about the true state accordingly. She then takes action based
solely on her posterior belief. This action, together with the realized
state, determines not only her own payoff, but also that of the sender.
In short, in this dynamic signaling interaction, the sender is in charge
of the informational aspects of the interaction (talking), whereas the
receiver is in charge of acting. Neither may affect the evolution of the
realized states, which is entirely exogenous.

We assume that the evolution of states follows a Markov chain. The
dynamic of the receiver’s belief is governed by both the disclosure policy
of the sender and a Markov transition matrix. After observing the
signal sent by the sender, the receiver updates her belief according to
Bayes’ law. Due to the Markovian transition law, this updated belief
shifts to another belief. Since all terms are known to both players, the
nature of the shift from the prior belief to a posterior one is also known
to both.

When committing to an information provision policy, the sender
takes into account the resulting posterior belief of the receiver, which
has two effects. The first is on the action taken by the receiver and di-
rectly on his own stage payoff. In a dynamic setting, as discussed here,
there is also an effect on the belief over future states, and consequently
on future payoffs. The posterior resulting from a Bayesian updating
in one period is then shifted by the Markov transition matrix and be-
comes the initial belief in the next one. Balancing between these two,
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potentially contradicting effects, is the dynamic programming problem
faced by the sender.

In this paper we study the long-run optimal values that the sender
may achieve in the case of an irreducible and aperiodic Markov chain.1

This value depends on his discount factor. As in Aumann and Maschler
[7] and in Kamenika and Gentzkow [21], the optimal signaling strategy
follows a splitting scheme of beliefs in accordance with the concavifica-
tion of a certain function2. While in a static model this function is the
payoff function of the sender, here, this function takes into account the
underlying dynamics and combines present and future payoffs.

The first set of results deal with a patient sender. In this case the sta-
tionary distribution of the Markov chain plays a central role. The rea-
son is that in case the sender keeps mute, the receiver’s beliefs quickly3

become convergent to the stationary distribution.
We show that as the sender becomes increasingly patient,4 the opti-

mal values converge uniformly to a certain level, called the asymptotic
value. Moreover, this value cannot exceed the optimal level obtained in
the static (one-shot) case when the prior belief of the Markov chain is
its unique stationary distribution. One may ask under what conditions
this static optimal value can be obtained in the dynamic model. Our
main theorem provides a full characterization. In order to describe it
we introduce the notion of an M -absorbing set, where M is the irre-
ducible, aperiodic stochastic matrix governing the transitions of states
in the Markov chain.

A set C of beliefs is said to be M -absorbing, if whenever p ∈ C, the
belief pM can be decomposed as a convex combination of beliefs in C.
To better understand this notion, suppose that C is convex. This set
is M -absorbing if any point p in C is shifted by M to another point
in C, and this belief is further shifted to another point within C, etc.
Thus, the image of C (under the transformation M) remains in C.

Kamenika and Gentzkow [21] proved that when the prior distribution
is the stationary distribution πM of M , the static value is equal to the
concavification of the one-shot payoff function, evaluated at πM . This

1In a companion paper we examine, based on the current study, the general case.
2That is, the lowest concave function above a given function.
3At an exponential rate (see e.g., Theorem 4.9 in [28]).
4The method of treating patient players in not new to the literature of dynamic

interactions. Fudenberg and Maskin [15] introduced a Folk Theorem characterizing
the set of equilibria in a repeated game played by patient players. Typically in these
kind of games, it is impossible to provide a description of the value or of the set
of equilibria that correspond to a specific discount factor that is more informative
than that given by Bellman equation (see Abreu et. al. [1]).
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value is either the sender’s payoff function evaluated at πM , or obtained
by splitting πM . The latter means that (i) πM is expressed as a convex
combination of other beliefs, which are the posteriors induced by the
information the sender provides to the receiver, and (ii) these posteriors
guarantee the highest expected payoff the sender may obtain this way.
An optimal splitting method is effective when posteriors induce an
expected payoff that surpasses the sender’s payoff function evaluated at
the πM . From a geometric point of view, the combination of posteriors
that corresponds to the best split around πM generates a hyperplane
that touches the graph of the sender’s payoff function from above. This
is a tangent hyperplane that we call the central tangent, because it is
the supporting hyperplane to the graph of the concavification of the
sender’s payoff function at the stationary distribution πM .

The main theorem characterizes, in terms of the primitives of the
model, the conditions under which the asymptotic value is as high as it
can get (i.e., equals the static value at πM). The theorem asserts that
this occurs precisely when there is an M -absorbing set of beliefs over
which the central tangent supports (or in less formal words, touches)
the sender’s payoff function. The fact that this set is M -absorbing
is expressed in terms of the parameters of the dynamics, while the
condition that on this set the central tangent supports the sender’s
payoff function is expressed in terms of the sender’s preferences.

The importance of such M -absorbing sets of beliefs stems from two
factors. First, it consists of beliefs on which the sender’s payoff function
coincides with their values on the hyper plane, namely, the correspond-
ing payoffs are relatively high. Second, the shift of these belief by the
Markov chain keeps them within the M -absorbing set itself, enabling
a perpetual use of this set in order to obtain high payoffs.

The intuition of this result is as follows. Suppose first that the initial
belief is πM and furthermore, that C is an M -absorbing set of beliefs
on which the central tangent supports the sender’s payoff function. At
the first stage the sender splits πM to a set of posteriors in C in order
to obtain (in expectation) the optimal static value at πM . At this point
in time, the Markov chain comes into play. The shift of those beliefs
by M constitutes the set of receiver’s possible beliefs at the start of
the second stage. Due to the fact that C is M -absorbing, these beliefs
are within C, enabling the sender to split each one to beliefs that lie
within C. In other words, the posterior beliefs of the receiver at the
second stage also lie within C. This feature applies to all subsequent
stages as well.
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It turns out that this scheme guarantees that the sender will obtain
the optimal static value at πM in the entire future. Indeed, the pos-
teriors at any stage, generated by the sender’s messages and by the
Markov motion, actually define a split of πM that remains within C.
This is true because the expectation of the posterior beliefs at any
stage is equal to πM and moreover, any such split, being confined to
C, guarantees the static value at πM . Note that this splitting scheme
may be applied not only to πM , but also to any initial belief within the
boundaries of C.

Now suppose that the initial belief is not πM , nor within C. In
case the sender provides no information to the receiver, the receiver’s
beliefs are determined solely by the shifts of M . These beliefs become
closer and closer to πM , and this process is very fast. Now the splitting
strategy described above can be employed. The effect is twofold. First,
all the posteriors remain within C, and second, as time goes by, the
posteriors converge, in expectation, to πM . Both effects guarantee that
when the sender is patient enough, the time it takes for the initial
belief to get into C does not affect significantly the sender’s discounted
payoff in the entire interaction. Moreover, the payoffs in subsequent
stages are rather close to the static value at πM . We may therefore
conclude that when an M -absorbing set of beliefs on which the central
tangent supports the sender’s payoff function exists, the asymptotic
value achieves the highest level possible.

The other direction of the main theorem states that when such a set
does not exist, the asymptotic value is strictly below the optimal static
value at πM . In order to show this direction, we develop and use tools
and techniques adopted from the literature devoted to repeated games
with incomplete information (see Renault [33]).

The second type of results is non-asymptotic in nature. For a cer-
tain region around the stationary distribution we provide a closed-form
expression for the values corresponding to any level of patience. In the
case where this region includes a neighborhood of the stationary distri-
bution, we provide asymptotically effective5 two-sided bounds for the
values corresponding to any level of patience. Moreover, the effective-
ness of those bounds depends on the geometry and size of the described
neighborhood.

The closest paper to the present one is that of Renault et. al. [32]. It
deals with a specific type of Markov chains, homothetic ones, and with
a utility function which gives a fixed amount to the sender in a certain
region and zero in its complement. Renault et. al. [32] show that in

5That is, bounds whose difference is arbitrarily small for a patient enough sender.
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this model the optimal information provision policy is a greedy one
(starting from a certain random time period on). Namely, the sender’s
greedy policy instructs him to maximize his current stage payoff at any
time period, ignoring future effects of this policy. Peşki and Toikka [29]
refer to homothetic chains in the context of zero-sum stochastic games
when the underlying state evolves according to a Markov operator and
is being observed only by one player. Also closely related to our work
are the works of Ely [11] and Farhadi and Teneketzis [13], which deal
with a case where there are two states, whose evolution is described by a
Markov chain with one absorbing state. In these two works, the receiver
is interested in detecting the jump to the absorbing state, whereas the
sender seeks to prolong the duration of time until detection.

In a broader context, our paper can be ascribed to a vast growing
literature concerned with dynamic information design problems, specif-
ically with the analysis of situations in which the sender is required to
convey signals sequentially to a receiver, which he may base on his ad-
ditional private information. Without elaborating on the exact details
of their models, whose frameworks employ diverse methodologies, we
refer the reader to Mailath and Samuelson [25], Honryo [18], Orlov et
al. [27], Phelan [30], Lingenbrink and Iyer [24], Wiseman [37], Kolotilin
et al. [22], Athey and Bagwell [4], Arieli and Babichenko [2], Arieli
et al. [3], Au [5], Dziuda and Gradwohl [10], Escobar and Toikka [12],
Guo and Shmaya [35], Ganglmair and Tarantino [16], Guo and Shmaya
[17], and Augenblick and Bodoh-Creed [6] for an acquaintance with the
literature.

The mathematical innovation of the paper is the incorporation of
tools and techniques from the field of repeated games with incomplete
information [33]. We find it appropriate to refer the reader to works on
repeated games with incomplete information involving Markov chains,
particularly Renault [31], Hörner et al. [20], and Bressaud and Quas
[9]. Forges [14] surveys the close relationships between repeated games
with incomplete information and modern economic cornerstones such
as cheap talk and persuasion.

The paper is organized as follows. Section 2 presents the model and
an example by which we explain the notations, new concepts and the
main results. The asymptotic results as well as the main theorem are
provided in Section 3. Results related to non-asymptotic values are
given in Section 4. Section 5 provides a characterization of homothetic
matrices in terms of the asymptotic value. The proofs are given in
Section 6.
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2. The Model

Let K = {1, ..., k} be a finite set of states. Assume that (Xn)n≥1 is an
irreducible and aperiodic Markov chain over K with prior probability
p ∈ ∆(K) and a transition rule given by the stochastic matrix M . We
assume that (Xn)n≥1 are defined on the probability space (Ω,F ,P).

A sender is an agent who is informed at each time period n of the
realized value xn of Xn. Upon obtaining this information a sender
is prescribed to send a signal sn, from a finite set of signals S with
cardinality at least k.6

A receiver is an agent who, at any time period n, is instructed to
make a decision bn from a set of possible set of decisions B, assumed
to be a compact metric space. This decision may take into account the
first n signals s1, ..., sn of the sender.

The payoffs of the sender and the receiver at time period n are given
by the utilities v(xn, bn) and w(xn, bn), respectively, so that they depend
solely on the realized state xn and the decision bn. Both the sender and
the receiver discount their payoffs by a factor λ ∈ [0, 1). We denote
this game by Γλ(p). As in the models of Renault et al. [32], Ely [11],
and Farhadi and Teneketzis [13], the receiver obtains information only
through the sender.

A signaling strategy σ of the sender in Γλ(p) is described by a se-
quence of stage strategies (σn), where each σn is a mapping σn :
(K × S)n−1 × K → ∆(S). Thus, the signal sn sent by the sender at
time n is distributed by the lottery σn, which may depend on all past
states x1, ..., xn−1 and past signals s1, ..., sn−1 together with the current
state xn. Let Σ be the space of all signaling strategies.

A standard assumption in many Bayesian persuasion models is that
of commitment by the sender. That is, we assume that the sender
commits to a signaling strategy σ at the start of the game Γλ(p), and
makes it known to the receiver. The commitment assumption enables
the receiver to update her beliefs on the distribution of states (Xn)
based on the signals (sn) she receives from the sender. Formally, by
Kolmogorov’s Extension Theorem, each signaling strategy σ together
with (Xn)n≥1 induces a unique probability measure Pp,σ on the space

6This assumption is in place to make sure the sender can disclose (xn)n.
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Y = (K × S)N, determined by the laws

(1) Pp,σ(x1, s1, ..., xn, sn) =

(
p(x1)

n−1∏
i=1

Mxi,xi+1

)
×(

n∏
i=1

σi(x1, s1, ..., xi−1, si−1, xi)(si)

)
.

Thus, the posterior probability p`n the receiver assigns to the event
{Xn = `}, given the signals s1, ..., sn and the strategy σ, is given by
the formula

(2) p`n = Pp,σ (Xn = ` | s1, ..., sn) .

Set pn = (p`n)`∈K . A second key assumption of our model is that the
receiver’s decision at any time period n depends only on pn. Such an
assumption includes the natural situation in which the receiver seeks
to maximize her expected payoff based on her current belief (e.g., Re-
nault et al. (2015)). Denote by θ : ∆(K) → B the decision policy
of the receiver, that is, the mapping which depicts the decision of the
receiver as a function of her belief. As in previous related models, we
assume that the decision policy of the receiver is known to the sender.
The last assumption of our model is that the function u : ∆(K) → R
defined by u(q) =

∑
`∈K q

`v(`, θ(q)) is continuous. To summarize, our
assumptions imply that the signaling strategy σ of the sender deter-
mines his payoff at any time period n. Moreover, the total expected
payoff to the sender in Γλ(p) under the signaling strategy σ can now
be written as

(3) γλ(p, σ) := Ep,σ

[
(1− λ)

∞∑
n=1

λn−1u(pn)

]
,

where Ep,σ is the expectation w.r.t. Pp,σ. The value of the game Γλ(p)
is vλ(p) = supσ∈Σ γλ(p, σ).

Example 1. Each day Anna is producing one unit of a divisible good
and sells it to Bob. Anna is committed to sell to Bob any portion of
this good he desires. The quality of the good can be either high (state
H ) or low (state L). When Bob purchases the proportion x ∈ [0, 1],
at state L his utility w(L, x) equals 2− x2, while at state H his utility
w(H, x) is equal to 2− (1− x)2.

Suppose that Bob’s belief is (p, 1 − p), where p is the probability he
assigns to the state H. When deciding to purchase a proportion x of
Anna’s good, his expected utility is p(2− (1− x)2) + (1− p)(2− x2) =
−x2 + 2px + 2 − p. The maximum of this function is attained at p.
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Thus, when Bob’s belief is (p, 1 − p), he purchases the portion p of
Anna’s product and leaves a 1 − p to her. In particular, when Bob
assigns a probability of 1 to the quality of the good being high, he will
purchase the entire unit of it, as opposed to the case where he purchases
nothing in the case he assigns probability 1 to the quality being low.

As for Anna, when the state is H, her utility derives both from selling
the product to Bob and from self-consumption. Her utility from selling
is increasing linearly with the proportion p she sells: it is 0.5p. Her
utility from self-consumption is increasing linearly as long as 1 − p,
the proportion she is left with, is below 0.5. In this range her utility is
3.5(1− p). The point is that Anna cannot consume more than 0.5. At
this level she gets saturated, she obtains the maximal utility 1.75, but
she has to dump the leftover. The cost of dumping is increasing linearly
with the quantity being dumped. In order to dump (1−p)−0.5 = 0.5−p
she has to pay 2.5(0.5− p). To sum up, her total utility becomes

v(H, p) =

{
0.5p+ 1.75− 2.5(0.5− p), if p ≤ 0.5,
0.5p+ 3.5(1− p), if p > 0.5,

which is equal to 2− 3|p− 0.5|.
In case the state is L, Anna does not want to consume her product

and her total utility v(L, p), when Bob decides to purchase the propor-
tion p, combining sells and dumping equals p/10. In other words, the
net payoff increases linearly with the probability Bob assigns to the state
H and attains its maximum when Bob is convinced that the quality of
the good is high (p = 1). Notice that minp v(H, p) > maxp v(L, p),
meaning, in particular, that Anna always prefers her good to be of a
high quality.

We obtain that u((p, 1−p)) = pv(H, p)+(1−p)v(L, p) = p(2−3|p−
1
2
|) + (1 − p)p/10. The graph of u, which for the sake of convenience

is plotted as a function of p, is exhibited on the left panel of Figure 1.
Note that u is convex on the interval [0, 0.5] and concave on the in-
terval [0.5, 1]. This graph illustrates the short-term strategic incentives
of Anna. Indeed, the minimal possible stage payoff, 0, occurs when the
Anna reveals that the quality is low (corresponding to p = 0). A revela-
tion of the state H (corresponding to p = 1) would result in a payoff of
0.5. The maximal payoff for Anna, 1.045, is attained when p = 0.581.
As explained below (see Example 3), for that p the optimal signaling
strategy would instruct Anna to not reveal any information regarding
the realized state.
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In a dynamic model the amount of information revealed by the sender
is a result of an interplay between the one-shot payoff, u, and the tran-
sition law governing the evolution of future states. The tension between
these two factors is discussed in the rest of this paper.

Figure 1. The graphs of u and (Cavu)

3. The Main Theorem

3.1. The Existence of Asymptotic Value. To state our first result
we need to introduce some notations. First, let πM be the unique
stationary distribution of M . Second, for any function g : ∆(K)→ R,
define the function (Cav g) by

(Cav g)(q) := inf{h(q) : h : ∆(K)→ R concave, h ≥ g}, ∀q ∈ ∆(K).

To showcase the Cav operator in action, we show the graph of (Cavu),
where u is that given in Example 1, on the right-hand panel of Figure
1.

Our first result reveals that the influence of p ∈ ∆(K) on the value
vλ(p) of a sufficiently patient sender, i.e., with λ close to 1, is negligible
compared to the influences of u and M . Moreover, as the patience level
λ gets closer to 1 the sequence of functions vλ(·) converges uniformly
on ∆(K). Formally, this result is stated as follows.

Theorem 1. There exists a scalar v∞ ∈ R, v∞ ≤ (Cavu)(πM), such
that for every ε > 0 there exists 0 < δ < 1 such that

(4) |vλ(p)− v∞| < ε, ∀λ > δ, ∀p ∈ ∆(K).
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As it turns out, the upper bound on v∞ described in Theorem 1 is
tight. In our next section we shall give a geometric criterion for this
upper bound to be attained. To do so we begin by introducing and
studying the notion of M -absorbing sets.

3.2. M-absorbing sets.

Definition 1. A non-empty set C ⊆ ∆(K) is said to be M -absorbing
if 7 qM ∈ conv(C) for every q ∈ C.

The intuition behind this choice of terminology is the following. Since
q 7→ qM is a linear operator, if C is M -absorbing, so is conv(C).
However, for conv(C) M -absorption exactly describes the situation
in which the image of conv(C) under M lies inside (is absorbed in)
conv(C). In a dual fashion, if C ⊆ ∆(K) is a closed convex M -
absorbing set, then since by Krein-Milman Theorem8 conv(ext(C)) =
C, we get that ext(C) is also M -absorbing. This implies, in partic-
ular, that since ∆(K) is M -absorbing, so is the set of its extreme
points (i.e., the set of all mass-point distributions). Lastly, note that
since conv(C1) ∪ conv(C2) ⊆ conv(C1 ∪ C2), if C1 and C2 are both
M -absorbing, then so is C1 ∪ C2.

Example 2. [Example 1, continued] Suppose that the quality of the
divisible good produced by Anna evolves on a day to day basis. This
variation may be caused by random effects, such as the quality of raw
material (which may depend on exogenous factors such as weather,
market dynamics, etc.). We model the random evolution by a Markov
transition rule, given by the stochastic matrix

(5) M =

(
0.1 0.9
0.6 0.4

)
.

Here, for instance, a day in which the quality of the good was high, will
be followed by a day with a low quality with probability 0.9. Also, it is
more likely than not (with probability 0.6) that a day with low quality
will be followed by one with high quality.

Note that the stationary distribution πM of M equals (0.4, 0.6) (which
corresponds to p = 0.4 in Figure 1). Also, we learn from Figure 1 that
the pair ((0.4, 0.6), (Cavu)((0.4, 0.6))) lies on the straight segment of
the graph of (Cavu) (see the right panel of Figure 1).

7conv(C) is the convex hull of the set C.
8ext(C) is the set of the extreme points of C, i.e., points in C that cannot be

expressed as a convex combination of two distinct points in C.
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Moreover, the set consisting of the points (0, 1) and (0.5, 0.5) (pre-
sented in Figure 1 as the points 0 and 0.5) is not M-absorbing. The
reason is that (0, 1) is mapped by M to (0, 1)M = (0.6, 0.4), which does
not lie in the convex hull of (0, 1) and (0.5, 0.5).

In order to enhance the intuition about M -absorbing sets, assume
that at any point q ∈ ∆(K) a football is passed in a straight line to
the point qM . The orbit generated by the football at q is the union of
line segments

⋃
n≥1[qMn−1, qMn], where [x, y] = {αx+ (1− α)y : 0 ≤

α ≤ 1}. When the set C is M -absorbing, the orbit generated by the
football with starting point at q ∈ C never exits conv(C).

We proceed with some basic examples of M -absorbing sets. The sim-
plest are the singleton {πM} and the entire set, ∆(K). To describe ad-
ditional examples, consider the `1-,`2-, and `∞-norms on ∆(K), denoted
by ‖q‖1 :=

∑
`∈K |q`|, ‖q‖2 :=

√∑
`∈K(q`)2 and ‖q‖∞ := max`∈K |q`|,

respectively, for q ∈ ∆(K). Denote by ‖M‖i the operator norm9 of M
w.r.t. the `i-norm, i ∈ {1, 2,∞}.

For every i ∈ {1, 2,∞} we have,

(6) ‖qM − πM‖i = ‖qM − πMM‖i ≤ ‖M‖i‖q − πM‖i.

It is known that ‖M‖∞ coincides with the largest `1-norm of a row of
M (see, e.g., Example 5.6.5 on p. 345 in [19]), and therefore ‖M‖∞ = 1.
Also,10 ‖M‖2 = ‖M‖∞ = 1. Thus, in view of (6), any ball (either open
or closed) w.r.t. to the `2 or `∞-norm centered at πM is M -absorbing.
Moreover, if M is doubly stochastic it is known that11 ‖M‖1 = 1 and
therefore in that case any ball (either open or closed) w.r.t. the `1-norm,
centered at πM , is also M -absorbing. See Figure 2.

In all the examples above the M -absorbing sets contain πM . This
is not a coincidence. Indeed, for every M -absorbing set C, the im-
age of conv(C) under the linear map M is also contained in conv(C).
Therefore, by Brouwer’s fixed-point theorem, M possesses a fixed point
in12 cl conv(C). As the only fixed point of M is πM , we deduce that
πM ∈ cl conv(C) for every M -absorbing set C.

9 ‖M‖i = max‖x‖i=1 ‖xM‖i.
10 This follows from the fact that ‖M‖2 coincides with the maximal singular

value of M (see, e.g., Example 5.6.6 on p. 346 in [19]).
11This follows from the fact that ‖M‖1 with the maximal `1-norm of a column

of M (see, e.g., Example 5.6.5 on p. 344–345 in [19])).
12cl conv(C) is the closure of conv(C).
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Figure 2. Absorbing sets.

We end the discussion on M -absorbing sets with the following propo-
sition whose content and proof (provided in Section 6) may enhance
the intuition about absorbing sets.

Proposition 1. Let C be an M-absorbing set. Then, C contains a
countable M-absorbing set.

3.3. The Main Theorem. To state our main result we begin with
a review of some basic concepts from the theory of concave functions.
First, for each g : ∆(K) → R let Graph[g] := {(q, g(q)) : q ∈ ∆(K)}.
Since (Cavu) is a concave function, Graph[(Cavu)] can be supported
at (πM , (Cavu)(πM)) by a hyperplane. We may parametrize each such
supporting hyperplane by a point in Rk as follows; first, for every z ∈ Rk

define fz : Rk → R by fz(x) := (Cavu)(πM) + 〈z, x− πM〉. Second, set

Λ := {z ∈ Rk : (Cavu)(q) ≤ fz(q), ∀q ∈ ∆(K)}.

As fz(πM) = (Cavu)(πM) for every z, the set Λ corresponds to all
supporting hyperplanes of Graph[(Cavu)] at (πM , (Cavu)(πM)). In
convex theory terminology, the set Λ is termed the supper gradient of
(Cavu) at πM . For every z ∈ Λ let

Az := {q ∈ ∆(K) : u(q) = fz(q)}.
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The set Az can thus be interpreted as the projection to the first k
coordinates of the intersection of Graph[u] with the supporting hyper-
plane to Graph[(Cavu)] at (πM , (Cavu)(πM)) parametrized by z. A
visualization of Az when k = 3 is given in Figure 3.

Figure 3. A visualization of Az for z ∈ Λ.

Proposition 2. We have the following:

(i) If Az contains an M-absorbing set for some z ∈ Λ, then v∞ =
(Cavu)(πM).

(ii) If v∞ = (Cavu)(πM), then for every z ∈ Λ, Az contains a
countable M-absorbing set.

Why M -absorbing sets contained in the Az’s are of importance? This
has to do with the control the sender has on the receiver’s beliefs.
Indeed, once a belief is in the convex hull of an M -absorbing subset
C ⊆ Az, z ∈ Λ, its shift under M , which describes the evolution of
the posterior in one time period, also lies in conv(C). At this point
in time the sender may send messages that would induce posteriors
within C, and in particular in Az. As (Cavu) is an affine function
on conv(Az) (see Lemma 4 in Section 6), the weighted average of the
values of (Cavu) evaluated at these posteriors, is equal to the value of
(Cavu) at πM .

In the main theorem we summarize the results of Theorem 1 and
Proposition 2. This theorem characterizes when patient senders can
obtain a value close to the maximum possible, the upper bound stated
in Theorem 1.
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Theorem 2. The following statements are equivalent:

(i) For every ε > 0 there exists 0 < δ < 1 such that

(4) |vλ(p)− v∞| < ε, ∀λ > δ, ∀p ∈ ∆(K).

(ii) There exists z ∈ Λ such that Az contains an M-absorbing set.
(iii) For every z ∈ Λ, Az contains a countable M-absorbing set.

Note that this characterization is stated in terms of the primitives
of the model: u and M . Moreover, it unravels the sensitivity of a
patient sender to the interrelationships between u and M , as the sets
Az, z ∈ Λ, are fully determined by the former, whereas M -absorbing
sets are clearly determined by the latter. An interesting question that
arises naturally in this context is how sensitive is a patient sender to
such interrelationships. Assume, for instance, that Az does not contain
an M -absorbing set for some z ∈ Λ. Can one quantify the difference
between (Cavu)(πM) and v∞ in terms of u and M?

Example 3. [Example 2, continued] Consider again the matrix M in
Eq. (5) and recall that πM equals (0.4, 0.6). For the function u given
in Example 1 the set Az consists of the two points (0, 1) and (0.5, 0.5)
in ∆(K) (corresponding to the points 0 and 0.5 in Figure 1) for every
supporting hyperplane z ∈ Λ. Since this set is not M-absorbing, we
conclude by Theorem 2 that for a sufficiently patient sender the value
is strictly less than (Cavu)(πM). However, if

(8) M =

(
1/2 1/2
1/6 5/6

)
,

then πM = (0.25, 0.75). Therefore, as Az = {(0, 1), (0.5, 0.5)} coincides
with the set of extreme points of the ball of radius 0.25 w.r.t. the `∞-
norm around πM , we deduce that Az is M-absorbing for every z ∈ Λ.
Thus, Theorem 2 ensures that the value vλ(p) of a sufficiently patient
sender (i.e., when λ is close to 1) is close to (Cavu)(πM) = 0.512.

Under both transition matrices, the maximal payoff possible is ob-
tained at p = 0.581. This point is located in the region where u is equal
to (Cavu). The proof of Lemma 1 in Section 6 shows that at this point
the sender has no incentive to alter the prior belief of the receiver. He
therefore reveals no information to the latter. Such a result holds for
any continuous u and any point p on which u agrees with (Cavu).
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4. Additional Results: A Non-Asymptotic Approach and a
Strong Law

4.1. The value vλ for every λ. As it turns out, the case where v∞ =
(Cavu)(πM) encompasses information about the behavior of vλ across
all λ ∈ [0, 1). To showcase this, we begin by recalling that as any
union of M -absorbing sets is also M -absorbing, by Proposition 2, if
v∞ = (Cavu)(πM), one may associate with each z ∈ Λ a maximal
(w.r.t. inclusion) M -absorbing set Bz ⊆ Az. Set D :=

⋃
z∈Λ conv(Bz)

(see Figure 4).

Figure 4. A visualization of D.

In our next theorem we give an exact formula for vλ(p) for all p ∈ D
and all λ ∈ [0, 1) in the case where v∞ = (Cavu)(πM). Therefore, the
case v∞ = (Cavu)(πM) is not of a mere asymptotic nature, but rather
reveals the full information regarding vλ for any discount factor λ on
the domain D ⊆ ∆(K). However, outside of D, the exact behavior of
vλ, even in the case v∞ = (Cavu)(πM), remains an open problem.

Theorem 3. Assume that v∞ = (Cavu)(πM). Then, if p ∈ clD we
have

(9) vλ(p) = (Cavu)
(
(1− λ)p (Idk − λM)−1

)
, ∀λ ∈ [0, 1),
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where Idk is the k × k identity matrix.

This theorem implies that if v∞ = (Cavu)(πM) and the prior proba-
bility is πM , then for every discount factor the value equals (Cavu)(πM).
Formally,

Corollary 1. Assume that v∞ = (Cavu)(πM). Then, vλ(πM) =
(Cavu)(πM) for every λ ∈ [0, 1).

Let us now give some intuition regarding the formula given in The-
orem 3. First, recall that the sum of an infinite geometric series with
common ratio r ∈ [0, 1) and scale factor 1 equals 1/(1 − r). As M is
stochastic, we will argue in the proof of Theorem 3 that we apply a
matrix version of the formula for the sum of an infinite geometric series
so that

(1− λ)p (Idk − λM)−1 = (1− λ)
∞∑
n=1

λn−1pMn−1.

Moreover, as the proof section shows (e.g., Eq. (15)), for any signal-
ing strategy σ and prior belief p ∈ ∆(K) we have that Ep,σpn =
pMn−1. Roughly speaking, the proof of Theorem 3 is divided into
two parts. In the first, we come up with a signaling strategy σ that
exploits the M -absorbing property of the conv(Bz)’s. On the sets
conv(Bz) the stage payoffs achieve their maximal possible value, shown
to be equal to (Cavu)(pMn−1) for n ≥ 1. The second part connects
(1 − λ)

∑∞
n=1 λ

n−1 (Cavu)(pMn−1) with the formula given in Eq. (9).
Such an argument is valid on D, because (Cavu) is an affine function
on each conv(Bz), z ∈ Λ. The extension of the result to clD follows
by continuity arguments.

It turns out that whenever v∞ = (Cavu)(πM), the geometric struc-
ture of the set D around the point πM may be utilized to derive two-
sided bounds on vλ(p) for every discount factor λ ∈ ∆(K). Let

nD(p) := min{n ≥ 0 : pMn ∈ clD};
nD(p) is the first time the orbit {pMn}n≥0 visits the set clD. Assume
now that πM is in the interior13 of clD. By the Convergence Theorem
for Markov chains (e.g., Theorem 4.9 in [28]) pMn → πM , implying
that nD(p) is finite, for every p ∈ ∆(K).14

13int(clD) is the interior of clD.
14nD(p) can be bounded uniformly (over all p ∈ ∆(K)) from above by

cdlog2 r
−1
D e, where c > 0 is a constant (which may depend on M) and rD :=

sup{r > 0 : B`1(πM , r) ⊆ clD}, where B`1(πM , r) is the ball of radius r (w.r.t. the
`2-norm) centered at πM (see, e.g., Eq. (4.34) in Section 4.5 in [28]).
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This geometric property has an important behavioral implication.
The sender may keep mute (i.e., disclose no private information) for
nD(p) periods (until the first time the receiver’s belief is in clD). Once
the receiver’s belief is in clD, the sender plays optimally from that
time period on. Since, by Theorem 3, we can quantify the payoff for
the optimal strategy at any point in clD for any discount factor λ, the
described strategy leads to the following theorem, providing two-sided
bounds on vλ(p) for every discount factor λ.

Theorem 4. Assume that v∞ = (Cavu)(πM) and that πM ∈ int(clD).
Then, for every p ∈ ∆(K) and every λ ∈ [0, 1) we have the following
bounds:

(10) (1− λ)

nD(p)∑
n=1

λn−1u(pMn−1) ≤ vλ(p)− Iλ(p)

≤ (1− λ)

nD(p)∑
n=1

λn−1(Cavu)(pMn−1),

where

Iλ(p) := λnD(p)(Cavu)
(
(1− λ)pMnD(p) (Idk − λM)−1

)
.

Example 4. [Example 3, continued] Consider again the matrix M in
Eq. (8) and recall that πM = (0.25, 0.75). For the function u given in
Example 1 we have that Bz = Az for all z ∈ Λ. In words, the set
of points in ∆(K) that correspond to the points where the hyperplane
touches the graph of u, namely (0, 1) and (0.5, 0.5), is M-absorbing.
Thus, clD = D = conv(Az) = [(0, 1), (0.5, 0.5)]. Since (Cavu) on
D equals the linear function determined by the points (0, 1, 0) and
(0.5, 0.5, 1.05) (in R3), we have that (Cavu)((p, 1 − p)) = 2.05p for
every p ∈ [0, 0.5]. A simple operation on matrices implies that

(Id2 − λM)−1 =
3

(λ− 3)(λ− 1)

(
1− 5λ/6 λ/2
λ/6 1− λ/2

)
.

This formula, coupled with Theorem 3, yields the following formula for
vλ over the range D:

(11) vλ((p, 1− p)) =
2.05 (3(λ− 1)p− λ/2)

λ− 3
, ∀p ∈ [0, 0.5].

As for points (p, 1− p) 6∈ D, (p, 1− p)M ∈ D, implying that nD((p, 1−
p)) = 1 for every p ∈ (0.5, 1]. Since u = (Cavu) on this range, when
the initial prior is p ∈ (0.5, 1], at the first period the sender discloses
no information and the payoff is u((p, 1 − p)). At the second period,
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the belief shifts to (p, 1− p)M which is in D. Now one may apply the
formula (11) to obtain,

(12) vλ((p, 1− p)) = (1− λ)u((p, 1− p)) + λvλ((p, 1− p)M) =

(1− λ)u((p, 1− p)) + λ
2.05 ((λ− 1)p− 1/2)

λ− 3
, ∀p ∈ (0.5, 1].

Figure 5 illustrates the behavior of vλ((p, 1 − p)) for different values
of p ∈ (0, 1). Two phenomena are demonstrated here. First, as stated
in Theorem 2, for every prior p the values vλ converge to (Cavu)(πM)
as λ tends to 1. Second, as stated in Corollary 1, vλ(πM) is constant
across λ.

Figure 5. The graphs of vλ((p, 1− p)) for different val-
ues of p.

4.2. A Strong Law. The next result is concerned with convergence
in the strong sense, namely with the Pp,σ-almost-surely behavior of the
random variable limλ→1−(1 − λ)

∑∞
n=1 λ

n−1u(pn) for a specific prior p
and a strategy σ. The weak-type of convergence employed so far is
concerned with the limit of the expectations. In contrast, the next
theorem deals with the almost-surely convergence of the payoff, cor-
responding to a sender interested in the payoffs he actually obtains.
These are the payoffs he truly gets along realized paths, not just their
expected values.
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As it turns out, finite M -absorbing sets can be used to deduce a
strong law for the distribution of limλ→1−(1−λ)

∑∞
n=1 λ

n−1u(pn) when
v∞ = (Cavu)(πM).

Theorem 5. Assume that Az contains a finite M-absorbing set C for
some z ∈ Λ. Then, there exist an M-absorbing subset Q ⊆ C and a
strategy σ ∈ Σ such that for every p ∈ conv(Q) it holds that

(13) lim
λ→1−

(1− λ)
∞∑
n=1

λn−1u(pn) = (Cavu)(πM), Pp,σ-a.s.

Moreover, if πM ∈ int(Q), then Eq. (13) holds for every p ∈ ∆(K).

In words, under the assumptions of Theorem 5, for almost every infi-
nite sequences of realizations (x1, x2, ...) of the Markov chain (Xn)n≥1,
if the sender is patient enough, then by following σ he can guarantee
himself a payoff close to (Cavu)(πM).

5. When the Main Theorem Holds for every u:
Homothety.

The previous results shed light on the connection between M and u.
Specifically, the main theorem characterizes when v∞ = (Cavu)(πM)
in terms of M and u. A natural question arises as to when this result
holds for a fixed M and for every u. To answer this question, we need
to introduce the notion of a homothety.

Definition 2. A linear map ψ : Rk → Rk is said to be a homothety
with respect to the pair (v, β) ∈ Rk× [0, 1) if ψ maps each point x ∈ Rk

into the point βx+ (1− β)v. The point v is called the center and β is
called the ratio.

It is clear that when ψ is a homothety with respect to (v, β), the
point v is a fixed point of ψ. Moreover, ψ reduces the distance from
any point x to v by a factor of β. When v ∈ int(∆(K)), or equiva-
lently15 |supp(v)| = k, and β ∈ [0, 1), the matrix Mψ defined by the
homothety ψ is an irreducible aperiodic stochastic matrix. In partic-
ular, the stationary distribution of M is v. Therefore, we shall say
that an irreducible aperiodic stochastic matrix M is a homothety if
the mapping φ : x 7→ xM is a homothety of Rk with center πM and
ratio β, for some β ∈ [0, 1).

When a stochastic matrix is a homothety, the transition from one
state to another follows this law: each state stays unchanged with

15For any measure µ defined on a finite probability space, we denote by supp(µ)
its support, i.e., the set of elements to which µ assigns a positive probability.
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probability 1 − β and moves according to the distribution v to other
states with probability β.

We proceed by describing an interesting class of M -absorbing sets
of a homothety M . A set E ⊆ ∆(K) is said to be star shaped around
p ∈ ∆(K) if [p, q] ⊆ E for every q ∈ E. In words, assume that an
observer is located at the point p ∈ ∆(K). Then E is star shaped
around p if the line of sight, [p, q], to any point q ∈ E lies entirely in E.
Assume now that E is star shaped around πM . If M is a homothety,
then qM ∈ [πM , q) ⊆ E ⊆ conv(E) for every q ∈ E. Hence, when M
is a homothety, every star shaped set around any πM is M -absorbing.

Let M be irreducible and aperiodic. Our next result gives a char-
acterization of when M is a homothety in terms of v∞. To make the
result transparent, note that, by Theorem 1, v∞ is constant on ∆(K),
and as such it is simply a function of u and M . In our new characteri-
zation we let u vary over the space of all continuous functions defined
on ∆(K), and so v∞ also varies accordingly.

Theorem 6. M is a homothety if and only if v∞ = (Cavu)(πM) for
every continuous function u.

6. Proofs

We start this section by reviewing the notion of a split, a cornerstone
in the field of Bayesian persuasion. This can be described informally as
follows: Given a lottery X over K with law p ∈ ∆(K), to which extent
can the sender manipulate (split) p using his signals. The answer,
given by Blackwell (1951) and Aumann and Maschler (1995), is that
for every choice of distributions q1, ..., q|S| ∈ ∆(K) and convex weights

(αi)
|S|
i=1 ∈ ∆(S) such that

∑|S|
i=1 αiqi = p, the sender can correlate his

lottery over signals, Y , with the lottery X, so that on the event that
si ∈ S is chosen (having marginal probability αi) the posterior belief
over states becomes qi. This lottery Y will obey the rule

(14) P(Y = si |X = `) =
αiq

`
i

p`
, ∀i = 1, ..., |S|,∀ ` ∈ K.

Let us denote by Sp the set of splits at p. Formally,

Sp =

{
{(qi, αi)}|S|i=1 : qi ∈ ∆(K) ∀i, (αi)

|S|
i=1 ∈ ∆(S), s.t.

|S|∑
i=1

αiqi = p

}
.

As in [32], the dynamic decision problem faced by the sender can
reformulated as a Markov decision problem (MDP). For the sake of
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completeness we briefly describe the structure of this MDP. The state
space is ∆(K), and the action set at a state q ∈ ∆(K) consists of all
possible splits at q, i.e., Sq. The payoff associated with the state q and

the action {(qi, αi)}|S|i=1 ∈ Sq is
∑|S|

i=1 αiu(qi).
In order to describe the transition rule, denote by yn the state at

time n, while the initial state is y1 = p. Recall that the posterior belief
after observing n − 1 messages, namely, at the end of the (n − 1)’th
stage of the game Γλ(p), is pn−1. Due to the underlying Markovian
dynamics, the receiver’s belief at the start of stage n (before obtaining
the n’th signal from the sender) is pn−1M . We set yn = pn−1M . Now
assume that at this stage (i.e., n) of the game the sender uses the split

{(qi, αi)}|S|i=1 ∈ Syn : yn =
∑
αiqi. This implies that the posterior pn

(after observing also the n-th message) is equal to the result of this
split: qi with probability αi. The belief at the start of stage (n+ 1) is
therefore qiM with probability αi. We set yn+1 = qiM with probability

αi. Stated differently, the state yn and the action {(qi, αi)}|S|i=1 ∈ Syn de-
termine the stochastic transition to yn+1: yn+1 = qiM with probability
αi, namely, yn+1 = pnM .

The transition rule, together with the fact that any split {(qi, αi)}|S|i=1

of a given q ∈ ∆(K) has mean q (i.e.,
∑|S|

i=1 αiqi = q) implies that
the sequence of posteriors (pn) of the receiver satisfies the following
important distributional law16:

(15) Ep,σ (pn+1 | pn) = pnM, ∀n ≥ 1.

Consequently, Ep,σ pn+1 = (Ep,σp1)Mn = pMn for every n ≥ 1. In
particular, if p = πM , then EπM ,σ pn = πM for every n ≥ 1.

By reducing the problem to MDP and applying the dynamic program
principle (e.g., Theorem 2.20 in [36]) we obtain the following recursive
formula for vλ(p):

(16) vλ(p) = sup
{(qi,αi)}i∈Sp

{
(1− λ)

|S|∑
i=1

αiu(qi) + λ

|S|∑
i=1

αivλ(qiM)

}
.

Consider the operator φ : ∆(K) → ∆(K) defined by φ(q) = qM .
Since |S| ≥ k, Carathéodory’s Theorem (see, e.g., Corollary 17.1.5 in

16In the literature, when T is a mapping from a space to itself this law is referred
to as a T -martingale (see, e.g., Neyman and Kohlberg [26]). An integrable sequence
of random variables (ξn)n≥1 is called a T -martingale if E(ξn+1 | ξn) = T (ξn). Ney-
man and Kohlberg [26] provide sufficient conditions for different forms of conver-
gence of the sequence (ξn/n), whenever (ξn) is a T -martingale. In the current
context T (q) = qM .
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[34]) implies that the expression on right-hand side of Eq. (16) equals
(Cav {(1− λ)u+ λvλ ◦ φ})(p). Thus the following key relation holds:

(17) vλ(p) = (Cav {(1− λ)u+ λ (vλ ◦ φ)})(p).
In particular, this shows that the function vλ : ∆(K) → R is concave
for every λ. As φ is linear, vλ◦φ is also concave. Then, by the definition
of Cav, we infer from Eq. (17) the inequality

(18) vλ(p) ≤ (1− λ)(Cavu)(p) + λ(vλ ◦ φ)(p).

Since the sender can always decide to not reveal any information at p,
i.e., to choose the split {(qi, αi)}i ∈ Sp, where qi = p for all i = 1, ..., |S|,
and thereafter play optimally in the game Γλ(pM), we also have that
vλ(p) ≥ (1− λ)u(p) + λ(vλ ◦ φ)(p). The latter combined with Eq. (18)
gives the following result:

Lemma 1. Assume that p ∈ ∆(K) satisfies u(p) = (Cavu)(p). Then,
for any λ ∈ [0, 1), the optimal signaling strategy σλ in Γλ(p) would
instruct the sender to reveal no information at p.

We move on with the goal of proving Theorem 1. As it turns out,
this requires classical tools and techniques from the field of repeated
games with incomplete information [33]. We begin by introducing, for
every N ∈ N and p ∈ ∆(K), the N -stage game ΓN(p) over the strategy
space Σ with payoff given by the formula

(19) γN(p, σ) = Ep,σ

(
1

N

N∑
n=1

u(pn)

)
.

The value of ΓN(p) will be denoted by vN(p). Standard continuity and
compactness based arguments (see, e.g., Theorem 2.14 on p. 15 in [36])
show that vN(p) = maxσ∈Σ γN(p, σ).

The following proposition establishes a number of fundamental prop-
erties of vN(p) which will play an important role in our future proofs.

Proposition 4. We have the following:

(i) vN : ∆(K)→ R is concave for every N ∈ N.
(ii) For every N ∈ N, the function vN : ∆(K) → R is Lipschitz

(w.r.t. the `1-norm) with constant ‖u‖∞.
(iii) The sequence {NvN(πM)}N is sub-additive.
(iv) The sequence {vN(πM)}N converges.
(v) The sequence {vbN (πM)}N is non-increasing for every b ∈ N.
(vi) For every N ∈ N and every p ∈ ∆(K),

(20) vN+1(q) =

(
Cav

{ 1

N + 1
u+

N

N + 1
(vN ◦ φ)

})
(p).
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Proof of Proposition 4. The proof of (i) uses the following neat classical
argument. Let q1, q2 ∈ ∆(K) and α ∈ (0, 1) such that p = αq1 + (1 −
α)q2. Prior to the start of ΓN(p), the sender writes a computer program
Z which draws either the digit 1 or 2 according to a random lottery.
This lottery, denoted also by Z, is dependent of X1, and independent
of (Xn)n≥2. The conditional laws are given as follows:

(21) P(Z = 1 |X1 = `) = 1− P(Z = 2 |X1 = `) =
αq`1
p`
, ∀` ∈ K.

Then, at the first stage the sender sends a messenger17 to collect on
his behalf the realized value of X1, type it into his program Z, and
then tell him the output of the program. If the outcome of Z is 1
(2), the sender plays his optimal strategy in Γ(q1) (Γ(q2)). We now
argue that this strategy would guarantee him αvN(q1) + (1− α)vN(q2)
in ΓN(p). Indeed, the latter follows by Bayes’ law, which implies that
the outcome of the program is 1 (resp., 2) with probability α (resp.,
1 − α) and that the posterior distribution of X1 is q1 (resp., q2). The
last argument required to depict the situation in which the sender faces
ΓN(q1) (resp., ΓN(q2)) based on the message of the messenger is that
after hearing the message (1 or 2), the sender must ask the messenger
to inform him of the value of X1 that was realized.

For the proof of (ii), let us observe that by conditioning on the out-
come of X1 one has for every σ ∈ Σ that

(22) γN(p, σ) =
∑
`∈K

p` Ep,σ

(
1

N

N∑
n=1

u(pn)

∣∣∣∣X1 = `

)
.

Since the distribution of the sequence (pn) given the outcome of X1,
depends only on σ and M , and not on p, we have that the function

p 7→ Ep,σ
(

1
N

∑N
n=1 u(pn) |X1 = `

)
is constant for any ` ∈ K. Thus, by

the triangle inequality, for every p, q ∈ ∆(K) and σ ∈ Σ it holds that

|γN(p, σ)− γN(q, σ)| ≤
∑
`∈K

|p` − q`|

∣∣∣∣∣Ep,σ
(

1

N

N∑
n=1

u(pn)

∣∣∣∣X1 = `

)∣∣∣∣∣
≤ ‖u‖∞

∑
`∈K

‖p− q‖1.

(23)

As ΓN(p) can be viewed as a finite game in extensive form, it admits a
normal-form game description, and thus (ii) is a consequence from the

17The messenger cannot be the receiver.
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following basic inequality: for every two zero-sum matrix games A and
B of equal dimensions, |val(A)− val(B)| ≤ ‖A−B‖∞.

We move on to (iii). For every σ ∈ Σ and every N,L ∈ N, the
(N + L)’th stage game payoff γN+L(πM , σ) equals

(24)
N

N + L
EπM ,σ

[
1

N

N∑
n=1

u(pn)

]
+

L

N + L
EπM ,σ

[
1

L

N+L∑
n=N+1

u(pn)

]
.

As the belief of the receiver at the start of the (N + 1)’st time period,
prior to obtaining the signal sN+1, equals pNM , we may bound the
latter from above by

(25)
N

N + L
vN(πM) +

L

N + L
EπM ,σ [vL(pNM)] .

By Jensen’s inequality applied for the functions {vN}, which are known
to be concave by (i), in conjunction with the fact that at the initial
belief πM , all the steps of the sequence (pn) have expectation πM , we
obtain that the latter is at most
(26)

N

N + L
vN(πM) +

L

N + L
vL(EπM ,σ(pNM)) = NvN(πM) + LvL(πM).

Since this holds for every σ, we conclude that (N + L)vN+L(πM) ≤
NvN(πM) + LvL(πM), which completes the proof of (iii).

The proof of (iv) can be deduced directly from (iii) based on a basic
result from analysis which states that if {an} is a sub-additive sequence,
then {an/n} converges. Next, by a repeated use of (iii) we see that if
L divides N, then

(27) NvN(πM) ≤ (
N

L
−1)vN

L
−1(πM)+LvL(πM) ≤ · · · ≤ N

L
(LvL(πM)).

Therefore, vN(πM) ≤ vL(πM), which is sufficient to prove (v). Lastly,
by the dynamical programming principle for Markov decision problems
(e.g., Theorem 2.17 in [36]) we have for any N ∈ N and any p ∈ ∆(K):
(28)

vN+1(p) = sup
{(qi,αi)}i∈Sp

{
1

N + 1

|S|∑
i=1

αiu(qi) +
N

N + 1

|S|∑
i=1

αivN(qiM)

}
.

As |S| ≥ k, Carathéodory’s Theorem (see, e.g., Corollary 17.1.5 in [34])
shows that the expression on the right-hand side of Eq. (16) equals(
Cav { 1

N+1
u+ N

N+1
vN ◦ φ}

)
(p), thus proving item (vi). Note that item

(vi) gives an alternative (partial) proof of item (i), as it shows that
vN(·) is concave for any N ≥ 2. �
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We are now ready to prove Theorem 1.

Proof of Theorem 1. By items (i) and (vi) of Proposition 4 and the
definition of the Cav operator, for any N ≥ 1 and p ∈ ∆(K) we have
that

(29)
1

N + 1
min
∆(K)

u+
1

N + 1
(vN ◦ φ)(p) ≤ vN+1(p)

≤ 1

N + 1
max
∆(K)

u+
N

N + 1
(vN ◦ φ)(p).

Set v(p) := lim infn→∞ vn(p) and v̄(p) := lim supn→∞ vn(p). Eq. (29)
implies that v(p) = v(pM) and v̄(p) = v̄(pM) for every p ∈ ∆(K).
Moreover, by item (ii) of Proposition 4, both v and v̄ must be Lips-
chitz (w.r.t. the `1-norm) with the constant ‖u‖∞. In particular these
functions are continuous at πM . Hence, by Convergence Theorem for
Markov Chains (e.g., Theorem 4.9 in [28]), pMn → πM . We obtain
that

(30) v(p) = v(pM) = · · · = v(pMn)→ v(πM) as n→∞,
implying that v is constant on ∆(K). Similarly, it follows that v̄ is
constant on ∆(K). Since by item (iv) of Proposition 4 v(πM) = v̄(πM),
we obtain that v̄ = v = v(πM). We conclude that for every p ∈ ∆(K),
vN(p)→ v∞ as N →∞, where v∞ = v(πM).

We claim that {vN(·)} converges uniformly to v∞. Indeed, take a
finite ε-net {q1, ..., qJ} in ∆(K) w.r.t. the `1-norm. In other words, for
every p ∈ ∆(K) there exists a j(p) ∈ {1, ..., J} such that ‖p− qj(p)‖1 ≤
ε. Since {vN(·)} converge to v∞ and R is complete, there exists an
R ∈ N such that |vL(qj)− vN(qj)| ≤ ε for every j = 1, ..., J , and every
N,L ≥ R. By employing item (ii) of Proposition 4 we obtain that for
every N,L ≥ R and every p ∈ ∆(K) it holds

|vL(p)− vN(p)| ≤ |vL(p)− vL(qj(p))|
+ |vL(qj(p))− vN(qj(p))|+ |vN(qj(p))− vN(p)|

≤ ‖u‖∞ε+ ε+ ‖u‖∞ε.

(31)

Hence, letting L → ∞ we obtain that |vN(p) − v∞| ≤ (1 + 4‖u‖∞)ε
for each p ∈ ∆(K) and every N ≥ R, which proves our claim. By a
uniform Tauberian theorem for Markov decision problems over Borel
state spaces (e.g., Theorem 1 and discussion in Section 6 in Lehrer and
Sorin [23]), we get that vλ(·) converges to v∞ uniformly as λ→ 1−.

Finally, we show that v∞ ≤ (Cavu)(πM). Indeed, for any σ ∈ Σ,
Jensen’s inequality shows that the expected payoff at any time period
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n satisfies

(32) EπM ,σu(pn) ≤ EπM ,σ(Cavu)(pn) ≤ (Cavu)(EπM ,σ pn)

= (Cavu)(πM),

implying that vλ(πM) ≤ (Cavu)(πM) for every λ ∈ [0, 1). Hence,
v∞ ≤ (Cavu)(πM), as desired. �

As the first step towards the proof of Proposition 2 and Theorems 3
and 4, we show the following basic lemma.

Lemma 4. For every z ∈ Λ we have

(i) Cavu(q) = fz(q) for every q ∈ conv(Az).
(ii) Let (αi)

m
i=1, αi > 0 for every i,

∑
i αi = 1 and (qi)

m
i=1 ∈ ∆(K)

such that
∑

i αiqi = πM . If
∑

i αiu(qi) = (Cavu)(πM), then
qi ∈ Az for every i.

Proof of Lemma 4. Let q ∈ conv(Az). Take (qi) ∈ Az and convex
weights (αi) such that q =

∑
i αiqi. Since Cavu is concave and qi ∈ Az,

we have
(33)

(Cavu)(q) ≥
∑
i

αi(Cavu)(qi) ≥
∑
i

αiu(qi) =
∑
i

αifz(qi) = fz(q),

where the last equality follows from the fact that fz is affine. Since
by the definition of Λ we have (Cavu)(q) ≤ fz(q) for every q ∈ ∆(K),
we have shown (i). For (ii) assume that there exists qi0 /∈ Az. Then
u(qi0) < fz(qi0), and since αi0 > 0 and z ∈ Λ, we have
(34)

(Cavu)(πM) =
∑
i

αiu(qi) <
∑
i

αifz(qi) = fz(πM) = (Cavu)(πM).

We reached a contradiction. �

Next we prove the following proposition, which demonstrates the
special advantages of M -absorbing subsets of Az for z ∈ Λ.

Proposition 5. Assume that for some z ∈ Λ, the set Az admits an
M-absorbing subset C. Then,

(35) vλ(p) = (Cavu)
(
λp (Idk − λM)−1

)
, ∀λ ∈ [0, 1),

for every p ∈ conv(C), where Idk is the k-dimensional identity matrix.

Proof of Proposition 5. We show that Eq. (35) holds via a two-sided in-
equality. First, by applying the Jensen’s inequality in the same fashion
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as in Eq. (32), we get that, for every σ ∈ Σ and every λ ∈ [0, 1),

γλ(p, σ) ≤ (1− λ)
∞∑
n=1

λn−1(Cavu)(Ep,σ pn)

= (1− λ)
∞∑
n=1

λn−1(Cavu)(pMn−1)

≤ (Cavu)

(
(1− λ)

∞∑
n=1

λn−1pMn−1

)
,

(36)

where the last inequality is due to the concavity of (Cavu). Next, since
M is a stochastic matrix, we have the following well-know formula (e.g.,
Theorem 2.29 in [36]):

(37) (1− λ)
∞∑
n=1

λn−1pMn−1 = λp (Idk − (1− λ)M)−1, ∀λ ∈ [0, 1).

A combination of Eqs. (36) and (37) yields that vλ(p) is at most
(Cavu) ((1− λ)p (Idk − λM)−1) for every p ∈ conv(C) and every λ ∈
[0, 1).

Let us now show that the opposite inequality holds as well. We start
by defining for each q ∈ ∆(K) the set SCq ⊆ Sq by

(38) SCq := {{(qi, αi)}|S|i=1 : qi ∈ C ∀i = 1, ..., |S|}.

Since |S| ≥ k, Carathéodory’s Theorem shows that SCq 6= ∅ whenever

q ∈ conv(C). Consider now the strategy σC defined as follows: at
each n ≥ 1, if pn−1 = q ∈ conv(C), σC will chose an element in
SCqM ; otherwise, if pn−1 = q ∈ ∆(K) \ conv(C), then σC will chose
some element in Sq. As p ∈ conv(C), and conv(C) is M -absorbing,
we have that under the strategy σC , supp(pn) ⊆ C for every n ≥ 1.
Indeed, we show this by induction on n. For n = 1, since p ∈ conv(C),
supp(p1) ⊆ C by the definition of σC . Assume now that supp(pn) ⊆ C
for some n ≥ 1. Since C is M -absorbing, supp(pnM) ⊆ conv(C), and
thus by the definition of σC we see that supp(pn+1) ⊆ C as well. The
latter, coupled with C ⊆ Az implies that the discounted payoff under
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σC can be computed as follows:

γλ(p, σ
C) = (1− λ)

∞∑
n=1

λn−1Ep,σC [u(pn)]

= (1− λ)
∞∑
n=1

λn−1Ep,σC [fz(pn)]

= (1− λ)
∞∑
n=1

λn−1fz
(
Ep,σC pn

)
= (1− λ)

∞∑
n=1

λn−1fz
(
pMn−1

)
= fz

(
(1− λ)

∞∑
n=1

λn−1pMn−1

)

= (Cavu)

(
(1− λ)

∞∑
n=1

λn−1pMn−1

)
.

(39)

where we note that the third and fifth equalities hold because fz is
affine, and the last equality is a consequence of item (i) of Lemma 4.
Hence, in view of (37), we have shown that (Cavu) ((1− λ)p (Idk − λM)−1)
is not greater than vλ(p), as needed. �

We proceed with the proof of Proposition 2.

Proof of Proposition 2. Assume that C is an M -absorbing subset of Az
where z ∈ Λ. Let q ∈ conv(C). First, by Proposition 5,

vλ(q) = (Cavu)
(
(1− λ)q (Idk − λM)−1

)
, ∀λ ∈ [0, 1).

Next, since qMn → πM as n→∞, we have that (1/n)
∑n

`=1 qM
`−1 →

πM as n → ∞. Thus, by a Tauberian Theorem (see, e.g., Theorem
3.1. in [36]) we obtain that (1−λ)

∑∞
n=1 λ

n−1qMn−1 → πM as λ→ 1−.
Hence, from the identity (37) we obtain that (1− λ)q (Idk − λM)−1 →
πM as λ → 1−. Moreover, since (Cavu) is continuous on ∆(K), it
must be continuous at πM . A combination of the above arguments
with Theorem 1 yields

(40) v∞ = lim
λ→1−

vλ(q) = lim
λ→1−

(Cavu)
(
(1− λ)q (Idk − λM)−1

)
= (Cavu)(πM),

thus proving item (i) of Proposition 2.
Let us continue with item (ii). Assume that v∞ = (Cavu)(πM). We

have (i) limN→∞ vN(πM) = (Cavu)(πM), (ii) vN(πM) ≤ (Cavu)(πM)
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for every N (by Eq. (32)) and (iii) {vbN (πM)}N is non-increasing for ev-
ery b ∈ N (by item (v) of Proposition 4). A combination of (i), (ii), and
(iii) shows that vN(πM) = (Cavu)(πM) for every N . Let σN be an op-
timal strategy in ΓN(πM). Denote by (pNn )n the sequence of posteriors
induced by σλ and the prior probability πM . By Jensen’s inequality,
EπM ,σN [u(pNn )] ≤ (Cavu)(πM) for every n. Hence, as γN(πM , σ

N) =
(Cavu)(πM), we obtain that EπM ,σN [u(pNn )] = (Cavu)(πM) for every
n = 1, ..., N . Fix λ ∈ (0, 1). We see that

(41) γλ(πM , σ
N) ≥ (1− λ)

N∑
n=1

λn−1(Cavu)(πM)− λN‖u‖∞

for every N ≥ 1. Letting N → ∞ we get vλ(πM) ≥ (Cavu)(πM).
Since by Eq. (32) the opposite inequality holds as well, we deduce that
vλ(πM) = (Cavu)(πM). Therefore, there exists a strategy σλ such
that γλ(πM , σ

λ) = (Cavu)(πM). Denote the sequence of posteriors
induced by σλ and the prior probability πM by (pλn)n. By Jensen’s
inequality, EπM ,σλ [u(pλn)] ≤ (Cavu)(πM), and we therefore obtain that
EπM ,σλ [u(pλn)] = (Cavu)(πM) for every n. Moreover, as supp(pλn) is
finite and EπM ,σλ pλn = πM for every n, item (ii) of Lemma 4 implies that
supp(pλn) ⊆ Az for every z ∈ Λ and every n. Set C :=

⋃
n≥1 supp(pλn).

We have C ⊆ Az for every z ∈ Λ. Moreover, as the set of signals S of
the receiver is finite, C is a countable union of finite sets, and thus is
countable.

We claim that C is M -absorbing. Indeed, if q ∈ C, then there exists
an n such that pλn = q with positive probability. Since EπM ,σλ(pn+1 | pλn =
q) = qM , we obtain that qM ∈ conv(supp(pλn+1)) ⊆ conv(C). To sum-
marize, C is a countable M -absorbing subset of Az for every z ∈ Λ, as
desired. �

We can now complete the proofs of Theorems 3 and 4.

Proofs of Theorems 3 and 4. By Proposition 2, the sets Bz, z ∈ Λ, are
well defined (i.e., non-empty). As they are M -absorbing, we can apply
Proposition 5 to any point p ∈ conv(Bz) to get the result of Theorem
3 for any p ∈ D. The result extends to any p ∈ clD by the continuity
of the functions18 vλ(·), (Cavu), and q 7→ (1− λ)q (Idk − λM)−1.

As for the proof of Theorem 4, if the sender does not use his private
information along the first nD(p) time periods, and then plays optimally

18The functions vλ(·) are continuous for every λ as one might prove in similar
fashion to the proof of item (ii) of Proposition 4 that vλ(·) is Lipschitz (w.r.t. the
`1-norm) with constant ‖u‖∞.
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from time nD(p) + 1 and on, he guarantees

(1− λ)

nD(p)∑
n=1

λn−1u(pMn−1) + λnD(p)vλ(pM
nD(p)).

As pMnD(p) ∈ clD, Theorem 3 ensures that λnD(p)vλ(pM
nD(p)) = Iλ(p),

thus proving the left hand side of Eq. (10). On the other hand, by using
Jensen’s inequality for both Cavu and vλ, we see that for every σ ∈ Σ
and p ∈ ∆(K)

γλ(p, σ) ≤ (1− λ)

nD(p)∑
n=1

λn−1Cavu(pMn−1) + λnD(p)vλ(pM
nD(p)),

and thus, since λnD(p)vλ(pM
nD(p)) = Iλ(p) by Theorem 3, we obtain

the right-hand side of Eq. (10). �

Proof of Corollary 1. By Proposition 2, the sets Bz, z ∈ Λ, are well de-
fined (i.e., non-empty). As they are M -absorbing, πM ∈ cl conv(Bz) ⊆
clD for any z ∈ Λ. Thus, the result follows from Theorem 3 and the
fact that, by Eq. (37),

λπM(Idk − (1− λ)M)−1 = (1− λ)
∞∑
n=1

λn−1πMM
n−1 = πM .

�

We move on to Theorem 5.

Proof of Theorem 5. Let C = {q1, ..., qr}. Since C is M -absorbing,
we can assign for each i = 1, ..., r a distribution αi ∈ ∆(C) so that
qiM =

∑r
j=1 α

i
jqj. Moreover, by Carathéodory’s Theorem, we can

choose αi so that |supp(αi)| ≤ k for every i. Define the r×r matrix W
by Wi,j := αij; W is a stochastic matrix. Also, define the r × k matrix

P by Pi,` := q`i , where i ∈ {1, ..., r} and ` ∈ K. We have the following
algebraic relation:

(42) PM = WP.

Let R be a communicating class of W whose states are recurrent
(see, e.g., Lemma 1.26 in [28]). Denote by WR the restriction of the
matrix W to the set of states ` ∈ R. The |R| × |R| matrix WR is
clearly stochastic. Moreover, since R is a communication class, WR is
also irreducible. Next, let us denote by PR the k × |R| matrix with
entries (PR)i,` := q`i , where i ∈ R and ` ∈ K. It follows from Eq. (42)
that

(43) PRM = WRPR.
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As WR is stochastic, Eq. (43) thus implies that the set Q = {qi}i∈R is
M -absorbing.

Consider the following strategy σ ∈ Σ. If p ∈ conv(Q), split p into k
elements of Q according to some prior µp ∈ ∆(Q). Otherwise, ignore
private information and send the fixed signal s0 ∈ S. Assume that
pn = q for some n ≥ 1. If q /∈ conv(Q), the sender ignores his private
information and sends the fixed signal s0 ∈ S. Next, if q ∈ conv(Q)\Q,

σ instructs the sender to choose a split from SQqM (see Eq. (38) for the

definition of SQqM).

Finally, if q = qj ∈ Q, σ instructs the sender to split qM into
{(qi, wji )}i∈R, where (wj1, ..., w

j
|R|) is the j’th row of WR. Note that

such a split is available to the sender because each row in W contains
at most k non-zero elements, and k ≤ |S|.

It follows from the definition of σ that for each p ∈ conv(Q), the
sequence of posteriors (pn) follows a Markov chain over the state space
Q with initial probability µp and transition rule given by the stochastic
matrix WR. Since the latter is irreducible, we may employ the Ergodic
Theorem for Markov chains (e.g., Theorem C.1 in [28]) to obtain that

(44) lim
N→∞

1

N

N∑
n=1

u(pn) =

|R|∑
i=1

νiu(qi), Pp,σ-a.s.

where ν = (νi)
|R|
i=1 is the unique stationary distribution of WR. Fur-

thermore, since Q ⊆ Az, we have that

(49)

|R|∑
i=1

νiu(qi) =

|R|∑
i=1

νifz(qi) = fz

 |R|∑
i=1

νiqi

 = (Cavu)(

|R|∑
i=1

νiqi),

where the last equality follows from item (i) of Lemma 4. Next, by
multiplying by ν from the left both sides of Eq. (43) we obtain

(45) νPRM = νWRPR = νPR,

which together with the uniqueness of πM implies that νPR = πM .

However, as πM = νPR =
∑|R|

i=1 νiqi, we deduce that

(46) lim
N→∞

1

N

N∑
n=1

u(pn) = (Cavu)(πM), Pp,σ-a.s.

Therefore, by a Tauberian theorem (see, e.g., Theorem 3.1. in [36]),

(47) lim
λ→1−

(1− λ)
∞∑
n=1

λn−1u(pn) = (Cavu)(πM), Pp,σ-a.s.
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Finally, assume that πM ∈ int(conv(Q)). Then, since M is irreducible
and aperiodic, pMN ∈ conv(Q) for some finite time period N for every
p ∈ ∆(K). Then, by the definition of σ, we see that Eq. (46) holds for
every p ∈ ∆(K) and thus so does Eq. (47). �

The proof of Proposition 1 may enhance the intuition about absorb-
ing sets.

Proof of Proposition 1. By Carathéodory’s Theorem (see, e.g., Corol-
lary 17.1.5 in [34]), to each q ∈ C we can assign k distributions
w1(q), ..., wk(q) ∈ C such that qM ∈ conv({w1(q), ..., wk(q)}. Define a
correspondence ξ : C → 2C by ξ(q) = {w1(q), ..., wn(q)}. In particular,
qM ∈ ξ(q). The countable set A(q) :=

⋃∞
n=1 ξ

n−1(q) is M -absorbing
for every q ∈ C, where ξn−1 is the (n − 1)-fold composition of ξ with
itself. Indeed, let w ∈ A(q), and let n ≥ 1 be such that w ∈ ξn−1(q).
By the definition of ξ we have that wM ∈ conv(ξ(w)) ⊆ conv(ξn(q)) ⊆
conv(A(q)), as desired. �

We end the proof section with the proof of Theorem 6.

Proof of Theorem 6. Suppose that M is a homothety and let us fix19

u ∈ C(∆(K)). Since u is continuous, Carathéodory’s Theorem (see,
e.g., Corollary 17.1.5 in [34]) implies that there exist points q1, ..., qm ∈
∆(K), m ≤ k, and positive convex weights (αi)

m
i=1 such that πM =∑m

i=1 αiqi and (Cavu)(πM) =
∑m

i=1 αiu(qi). Hence, by item (ii) of
Lemma 4, qi ∈ Az for every i and every z ∈ Λ. Therefore, πM ∈
conv(Az) for every z ∈ Λ, and since conv(Az) is convex, we see that
conv(Az) is star shaped around πM . Hence, since M is a homothety
we get that conv(Az) is M -absorbing for any z ∈ Λ. By the definition
of an M -absorbing set, Az must also be M -absorbing for any z ∈ Λ.
By Proposition 2, we deduce that v∞ = (Cavu)(πM), proving the first
direction of Theorem 6.

Suppose now that v∞ = (Cavu)(πM) for every u ∈ C(∆(K)). For
each i ∈ K, let ei ∈ ∆(K) be the Dirac measure concentrated on the
i’th coordinate of Rk. Fix i ∈ K and consider for each n ≥ 1 the
vector eni = πM + (πM − ei)/n. Clearly, πM ∈ [ei, e

n
i ] for all n. Next,

as πM ∈ int(∆(K)), there exists Ni such that eni ∈ ∆(K) for every
n ≥ Ni. For each n ≥ Ni we define ui,n : ∆(K)→ R by

(48) ui,n(q) := 1−max{‖q − ei‖2, ‖q − eni ‖2}.
Clearly, ui,n ∈ C(∆(K)). By its definition we have that ui,n(q) = 1
for q ∈ {ei, eni } and ui,n(q) < 1 for q ∈ ∆(K) \ {ei, eni }. Next, we

19We denote by C(∆(K)) the space of continuous real-valued functions defined
on ∆(K).
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have that (Cavu)(πM) = 1 and that 0 ∈ Λ (for Λ corresponding to
u = ui,n), because the hyperplane f0(x) = (Cavu)(πM) = 1 for all
x ∈ Rk, supports (Cavu) at πM . As A0 = {ei, eni }, Proposition 2
shows that {ei, eni } contains an M -absorbing subset. However, as M
has a unique stationary distribution πM /∈ {ei, eni }, we get that neither
{ei} nor {eni } is M -absorbing. Therefore, {ei, eni }must be M -absorbing
for every n ≥ Ni. In particular, eiM ∈ (ei, e

n
i ] for every n ≥ Ni. Since

eni → πM as n → ∞, we obtain that eiM ∈ (ei, πM ]. Thus, as i was
arbitrary, we have shown that for each i ∈ K there exists βi ∈ [0, 1)
such that eiM = βiei + (1− βi)πM . Since q →Mq is a linear operator,
to prove that M is a homothety is suffices to show that βi = βj for all
i 6= j ∈ K.

The proof now bifurcates according to the dimension of ∆(K). First,
let us assume that k = 2. Since M is irreducible, there exists a unique
α ∈ (0, 1) such that πM = αe1 + (1− α)e2. We have

πMM = (αe1 + (1− α)e2)M

= α(e1M) + (1− α)(e2M)

= α(β1e1 + (1− β1)πM) + (1− α)(β2e2 + (1− β2)πM).

(49)

By plugging πM = αeq + (1 − α)e2 into the last expression in Eq.
(49) and using simple algebraic manipulations, we get that the convex
weight ρ of e1 in the convex decomposition of πMM with respect to e1

and e2 equals

αβ1 + α2(1− β1) + (1− α)(1− β2)α.

However, as πM = πMM , we must have that ρ = α. After some further
simple algebraic manipulations, one gets that the equality ρ = α is
equivalent to β1 − β2 = α(β1 − β2). As α ∈ (0, 1), we obtain that
β1 = β2, thus proving that M is a homothety whenever k = 2.

Next, let k ≥ 3. Assume that βi < βj for some i 6= j ∈ K. Define v =
(ei + ej)/2. Since |supp(v)| = 2, whereas |supp(πM)| = k ≥ 3, we have
that πM 6= v. Consider for each n ∈ N the vector vn = πM+(πM−v)/n.
Then πM ∈ [v, vn] for every n. Moreover, since πM ∈ int(∆(K)), there
exists N0 such that vn ∈ ∆(K) for every n ≥ N0. As at the beginning of
the proof, we take for each n ≥ N0 an element un ∈ C(∆(K)) satisfying
un(q) = 1 for q ∈ {v, vn} and un(q) < 1 for q ∈ ∆(K) \ {v, vn}. Hence,
by arguing as before for ei, e

n
i and uni , only this time for v, vn and un,

we obtain that vM ∈ (v, vn] for every n ≥ N0. As vn → πM as n→∞,
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we see that vM ∈ (v, πM ]. On the other hand,

vM =
1

2
(eiM + ejM)

=
1

2
(βiei + (1− βi)πM) +

1

2
(βjej + (1− βj)πM)

=

(
1− βi

2
− βj

2

)
πM + βiv +

1

2
(βj − βi)ej.

(50)

As 0 ≤ βi < βj < 1, this implies that vM lies in the relative interior of
the triangle with the vertices πM , v, and ej. This of course contradicts
the fact that vM ∈ (v, πM ]. Hence, βi = βj for every i 6= j ∈ K, thus
proving that M is a homothety. �
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