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Abstract

This paper deals with an incomplete relation over events. Such a relation naturally arises when likelihood
estimations are required within environments that involve ambiguity, and in situations which engage multi-
ple assessments and disagreement among individuals’ beliefs. The paper characterizes binary relations over
events, interpreted as likelihood relations, that can be represented by a unanimity rule applied to a set of
prior probabilities. According to this representation an event is at least as likely as another if and only if
there is a consensus among all the priors that this is indeed the case. A key axiom employed is a cancellation
condition, which is a simple extension of similar conditions that appear in the literature.
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1. Introduction

1.1. Motivation and background

Estimating the odds and comparing the likelihood of various events are essential parts of pro-
cesses carried out by many organizations. For instance, the US intelligence community produces
National Intelligence Estimates, in which the likelihood of various events is assessed. Questions
such as, ‘Is it more likely that democracy will prevail in Libya, or that a military regime will be
established?’, and the like, seem natural to ask. These questions and many others call for likeli-
hood comparisons of different events. Other examples in which probabilistic estimates are used
include forecasts published by central banks, that address issues such as the odds of inflation
or recession, estimated likelihood of natural events such as global warming, that are based on
individual opinions of scientists and on many experiments, and so forth. In all these instances,
statements of the type ‘event A is more likely than event B’ seem fundamental to the respective
context.

In many situations, assessments of the kind given above are a product of advisory entities
(e.g. intelligence analysts, consulting firms, scientists), that output likelihood judgements and
forward them to a decision maker, who in turn takes these into account when making a decision.
Typically, such assessments rely on ‘objective’ data, such as reports of military movements,
temperature measurements and the like, and are intended to be based as closely as possible on the
data. Frequently, though, the events examined involve some degree of ambiguity. Knowledge or
available information might be insufficient to determine which of two events under consideration
is more likely, and a likelihood relation in such situations might therefore leave the comparison
between some pairs of events unspecified.

Motivated by the above question, this paper characterizes a likelihood relation that may be in-
complete. The question of representing an incomplete likelihood relation was already addressed
is Nehring [17]. In his paper, Nehring considers an incomplete ‘at least as likely as’ relation over
events, and proposes to represent it using a consensus rule over a set of prior probabilities.2 His
result matches the results of Giron and Rios [10], Bewley [2], and the purely subjective work of
Ghirardato et al. [9] – all being characterizations of multi-prior expected utility representations –
to the domain of comparisons between events. Our paper is closely related to Nehring [17]. Sim-
ilarly, it formulates conditions on a binary relation over events, that are necessary and sufficient
for the relation to be represented by a consensus rule over a set of prior probabilities.

Formally, let � denote a binary relation over events, where A � B for events A and B is inter-
preted as ‘A is at least as likely as B’. The main theorem of the paper introduces necessary and
sufficient conditions (‘axioms’) on � that guarantee the existence of a set of prior probabilities,
P , such that for any two events A and B ,

A � B ⇔ μ(A) � μ(B) for all μ ∈P . (1)

The difference between the representation theorem in this paper and that in [17] lies in the
axioms assumed, most notably a richness assumption used in [17] that we replace in the case of
an infinite state space, and drop completely when finite state spaces are concerned. As a result,
the paper contains what we consider to be a purely subjective treatment of partial likelihood

2 Nehring then pairs this likelihood relation with a preference relation and explores the compatibility between the two
relations. This paper focuses on likelihood relations, and does not investigate preference relations.
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relations, and includes a representation result for finite state spaces, which are not dealt with
in [17].

In view of the similarity between the papers we do not elaborate further on motivation and
background. The interested reader is referred to [17] for a survey of related literature and an
extensive discussion that motivates the investigation of incomplete likelihood relations.

1.2. Axiomatization

Some notation is needed to facilitate the following discussion. Let S denote a nonempty state-
space with a typical element s, and Σ an algebra of events over S. For an event E, 1E denotes
the indicator function3 of E. A binary relation �, interpreted as an ‘at least as likely as’ relation,
is defined over Σ . A probability measure P agrees with � if it represents it, in the sense that
A � B ⇔ P(A) � P(B). A probability measure P almost agrees with � if the former equiva-
lence is relaxed to A � B ⇒ P(A) � P(B).

De Finetti [4,5] introduced four basic postulates that must be satisfied by an ‘at least as likely
as’ relation. The most substantial of the four is Cancellation,4 which states that if A, B and C

are events such that A ∩ C = B ∩ C = ∅, then A � B ⇔ A ∪ C � B ∪ C. Cancellation implies a
form of separability over events in the sense that any event has its own likelihood weight, which
is unrelated to other disjoint events. In other words, the marginal contribution of an event is the
same, no matter what other disjoint events it is annexed to.5

The four de Finetti’s assumptions are necessary for the relation to admit an agreeing proba-
bility. However as was demonstrated by an example in Kraft, Pratt and Seidenberg [13] they are
insufficient, even to guarantee existence of an almost agreeing probability. The example implies
that the de Finetti assumptions, completeness excluded, are also insufficient to obtain a set of
representing probabilities in the sense of (1).

Kraft, Pratt and Seidenberg, and later on Scott [20], Krantz et al. [14] and Narens [16], sug-
gested a strengthening of the Cancellation condition, Finite Cancellation. In case the state space
is finite, this condition together with the other de Finetti assumptions were shown to suffice for
an ‘at least as likely as’ relation to obtain an almost agreeing probability.

There are various formulations of Finite Cancellation in the literature.6 One possible formu-
lation, equivalent to those mentioned above when complete relations are concerned, states that
for two finite sequences of events, (Ai)

n
i=1 and (Bi)

n
i=1, and a corresponding finite sequence of

natural numbers, (ki)
n
i=1,

If
n∑

i=1

ki1Ai
(s) =

n∑
i=1

ki1Bi
(s) for all s ∈ S,

and Ai � Bi for i = 1, . . . , n − 1,

then Bn � An. (2)

3 That is, 1E is the function that attains the value 1 on E and 0 otherwise.
4 The other three are the basic Complete Order assumption, and Positivity and Non-Triviality, stated below in Sec-

tion 2.1.
5 This assumption is violated, for instance, when states are evaluated through a nonadditive probability v. Under such

an evaluation, the marginal contribution of event C when added to event A, v(A∪C)− v(A), is not necessarily the same
as its marginal contribution when added to event B , v(B ∪ C) − v(B).

6 See Fishburn [7] for a thorough survey of Cancellation axioms and almost agreeing probabilities, and Wakker [22]
for a discussion and related results.
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We term this version Generalized Finite Cancellation (GFC for short). The idea behind
(Generalized) Finite Cancellation is similar in essence to that lying at the basis of de Finetti’s
Cancellation condition. Like Cancellation, Finite Cancellation is based on the assumption that
each state has always the same marginal contribution of likelihood, no matter to which other
states it is added (see further elaboration in Section 2.1).

Our first result is that in case of a finite state space, the above generalized version of Finite
Cancellation together with the basic de Finetti assumptions, completeness excluded, is both nec-
essary and sufficient for the relation to admit a consensus multi-prior representation as in (1).
We complement those conditions with a richness assumption to obtain the representation for an
infinite state space.

While the solution we suggest is a cancellation-type axiom, supplemented by a richness condi-
tion for the case of infinite state spaces, Nehring [17] complements the assumptions of de Finetti
with three axioms: a form of continuity, an axiom called Splitting and another called Equidivis-
ibility. Splitting extends the incomplete ‘at least as likely as’ relation according to the rationale
embedded in Cancellation, but only so as to restore an implication of Cancellation that is lost
when completeness is not assumed. It is in fact a special case of Generalized Finite Cancella-
tion. In order to obtain a representing set of probabilities Nehring [17] assumes two additional
richness conditions. One is (a standard form of) continuity, and the other is Equidivisibility.

Equidivisibility hinges upon an explicit assumption that any event can be divided into two
equally-likely events. This assumption is quite a strong one. First, it dictates an infinite state
space. More importantly, from the behavioral point of view, it requires the individual to be able
to exactly identify a ‘half-event’ for every given event. In some situations this assumption seems
appropriate, for instance when a randomizing device, independent of the other events, is available
and natural to the problem at hand. This is the case in the Anscombe–Aumann framework [1],
where both subjective and objective (or at least, exogenous) probabilities are assumed. However,
in other, ‘purely subjective’ situations, an individual considering an event might not perceive
any sub-event as being half as likely, as required by Equidivisibility. It might be the case that
such a ‘half-event’ is alien to the situation (imagine an intelligence analyst trying to pinpoint two
equally-likely sub-events of the event ‘revolution in Libya’). Moreover, even when an indepen-
dent randomizing device is embedded properly in the state space, an individual (or individuals)
need not perceive this device as being objective. Put differently, the probabilities involved in such
a randomizing device may very well be subjective themselves.

This work aims to obtain a multiple priors consensus rule in a purely subjective setup. Equidi-
visibility is thus dropped, and GFC applied instead. As a result, finite state spaces, which are not
treated in [17], are accommodated (Theorem 1). For infinite state spaces (Theorem 2) GFC is
supplemented with a richness assumption.

Our richness assumption, which is an incomplete counterpart of Savage’s P6 (see [19]), con-
strains the probabilities in the representing set to agree on null and universal events. By contrast,
the representing set in [17] need not exhibit this kind of agreement. On the other hand, the set in
[17] is explicitly assumed to have the property that, for any event A, there exists an event B ⊂ A

such that all priors μ agree that μ(B) = 1
2μ(A). It implies in particular that all the priors agree

on a rich algebra of events: the one generated by dividing the entire space into 2n equally likely
events, for any integer n. In our work such agreement is implied only in special cases (in a similar
fashion as Savage’s P6 implies convex-rangedness of the representing probability), but need not
hold in general (see Example 1 below).

The price paid for moving to a purely subjective axiomatization is uniqueness. In the represen-
tation theorems in this paper, as oppose to that in [17], the representing set of prior probabilities is
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not necessarily unique.7 This is the reason why reference is made to the maximal, w.r.t. inclusion,
representing set of priors.

1.3. Outline of the paper

Section 2 describes the essentials of the subjective multi-prior probability model. It details the
setup and assumptions, and then formulates representation theorems, separately for the cases of
a finite and an infinite spaces. Section 3 includes a few comments. All proofs appear in the last
section.

2. The subjective multi-prior probability model

2.1. Setup and assumptions

Let S be a nonempty set, Σ an algebra over S, and � a binary relation over Σ . A statement
A � B is to be interpreted as ‘A is at least as likely as B’. For an event E ∈ Σ , 1E denotes the
indicator function of E. In any place where a partition over S is mentioned, it is to be understood
that all atoms of the partition belong to Σ .

The following assumptions are employed to derive a subjective multi-prior probability belief
representation.

P1. Reflexivity. For all A ∈ Σ , A � A.

P2. Positivity. For all A ∈ Σ , A � ∅.

P3. Non-Triviality. ¬(∅ � S).

These first three assumptions are standard. Positivity and Non-Triviality are two of de Finetti’s
suggested attributes. Since Completeness is not supposed, Reflexivity is added in order to identify
the relation as a weak one. Transitivity is implied by the other axioms, hence it is not written
explicitly.

Next we state Generalized Finite Cancellation, our central axiom (already introduced above).

P4. Generalized Finite Cancellation. Let (Ai)
n
i=1 and (Bi)

n
i=1 be two finite sequences of events

from Σ , and (ki)
n
i=1 a finite sequence of numbers from N. Then,

If
n∑

i=1

ki1Ai
(s) =

n∑
i=1

ki1Bi
(s) for all s ∈ S,

and Ai � Bi for i = 1, . . . , n − 1,

then Bn � An.

Consider the following two sequences of events: (Ai)
n
i=1 with each event Ai repeating ki

times (the A-sequence), and (Bi)
n
i=1 with each event Bi repeating ki times (the B-sequence).

7 Indeed there are likelihood relations that admit representation by two distinct (convex and closed) sets of priors – see
Example 1 in [17].
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The equality that appears in the axiom, between the two sums of indicators, means that each
state appears the same number of times in the A-sequence as in the B-sequence. Following the
rationale behind de Finetti’s Cancellation, by which each state has its own marginal weight in-
dependent of other states, the equality between the two sums suggests that it cannot be that the
A-sequence has an overall likelihood weight greater than that of the B-sequence. Generalized
Finite Cancellation thus explicitly states that in order to balance the ‘account’, An and Bn should
be comparable, and Bn should be at least as likely as An.8

When completeness is assumed, it is immaterial whether Finite Cancellation is formulated as
P4 above, or, as is commonly the case (see e.g. Scott [20]), with the last pair of events, An and Bn,
repeating only once. Obviously P4 implies the special case with kn = 1. In the other direction,
completeness renders ¬(Bn � An) impossible under ‘standard’ Finite Cancellation (formulated
with one repetition). Without completeness, the above general version of Finite Cancellation is
required, having a two fold role. First, it preserves consistency in the same manner as the standard
Finite Cancellation. Furthermore, it allows for extensions of the relation to yet undecided pairs of
events, by prescribing a completion that abides by the principle of each state having an invariant
marginal contribution, unrelated to other states.

The next remark summarizes a few implications of P4.

Remark 1. Generalized Finite Cancellation implies that � satisfies Cancellation (de Finetti’s
condition; by letting A1 = A, B1 = B , A2 = B ∪C and B2 = A∪C). It also results in Transitivity
(by letting A1 = B3 = A, A2 = B1 = B , and A3 = B2 = C), and together with Positivity yields
that A � B whenever A ⊃ B . In particular,9 A � B ⇔ Bc � Ac, hence S � B for all events B .

2.2. Representation theorem: The case of a finite S

The next theorem states that when S is finite assumptions P1–P4 are necessary and sufficient
to obtain a multi-prior probability representation of �. For simplicity, Σ is assumed to be the
collection of all subsets of S (that is, Σ = 2S ).

Theorem 1. Suppose that S is finite, and let � be a binary relation over events in S. Then
statements (i) and (ii) below are equivalent:

(i) � satisfies axioms P1 through P4.
(ii) There exists a nonempty set P of additive probability measures over events in S, such that

for every A,B ⊆ S,

A � B ⇔ μ(A) � μ(B) for every μ ∈P .

8 An analogue axiom to GFC, formulated on mappings from states to outcomes, appeared in Blume et al. [3] (under
the name ‘extended statewise cancellation’). In their paper, the axiom was applied in a different framework, and was used
to obtain a representation that contains a subjective state space. Hence, the result of Blume et al. cannot be employed to
characterize a likelihood relation over a given, primitive state space.

9 To understand the following, note that A = (A ∩ Bc) ∪ (A ∩ B) � (B ∩ Ac) ∪ (A ∩ B) = B ⇔ A ∩ Bc � B ∩ Ac ⇔
Bc = (A ∩ Bc) ∪ (Ac ∩ Bc) � (B ∩ Ac) ∪ (Ac ∩ Bc) = Ac .
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2.3. Representation theorem: The case of an infinite S

To obtain a representation when S is infinite, an additional richness assumption is required.
Without this assumption it is possible to obtain a set P of probability measures that only almost
agrees with �, in the sense that for all events A and B , A � B ⇒ μ(A) � μ(B) for every μ ∈ P ,
but not necessarily the other way around. The richness assumption requires a definition of strong
preference for its formulation (the definition originates in Nehring [17]).

Definition 1. For two events A,B ∈ Σ , the notation A �� B states that there exists a finite
partition {G1, . . . ,Gr} of S, such that A \ Gi � B ∪ Gj for all i, j .

In the representation, having A �� B is equivalent to the condition that there exists δ > 0 for
which μ(A) − μ(B) > δ > 0 for every μ ∈ P .

P5. Non-Atomicity. If ¬(A � B) then there exists a finite partition of Ac, {A′
1, . . . ,A

′
m}, such

that for all i, A′
i �� ∅ and ¬(A ∪ A′

i � B).

Remark 2. As ¬(A � B) ⇔ ¬(Bc � Ac), Non-Atomicity is equivalent to:
If ¬(A � B) then there exists a finite partition of B , {B1, . . . ,Bm}, such that for all i, Bi �� ∅
and ¬(A � B \ Bi).

Non-Atomicity is the incomplete-relation version of Savage’s richness assumption P6 [19].
Adding Completeness makes P5 (along with the definition of strict preference) identical to Sav-
age’s P6, as negation of preference simply reduces to strict preference in the other direction. The
setup used here is somewhat weaker than that in Savage, as Σ is assumed to be an algebra and not
necessarily a σ -algebra. Still, adding Completeness yields a unique probability that represents
the ‘at least as likely as’ relation � (see Kopylov [11] for this result for an even more general
structure of Σ ).

Before the representation result for infinite state spaces is stated, another definition is required.

Definition 2. A set P of probability measures is uniformly strongly continuous if:

(a) For any event B , μ(B) > 0 if and only if μ′(B) > 0, for every pair of probabilities μ,μ′ ∈ P .
(b) For every ε > 0, there exists a finite partition {G1, . . . ,Gr} of S, such that for all j ,

μ(Gj ) < ε for all μ ∈P .

Theorem 2. Let � be a binary relation over Σ . Then statements (i) and (ii) below are equivalent:

(i) � satisfies axioms P1–P5.
(ii) There exists a nonempty, compact10 and uniformly strongly continuous set P of additive

probability measures over Σ , such that for every A,B ∈ Σ ,

A � B ⇔ μ(A) � μ(B) for every μ ∈ P . (3)

10 In the weak* topology, in which convergence of measures corresponds to event-wise convergence.
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The proof appears in Section 4. In essence, it relies on a separation argument in the vector
space generated by linear combinations of indicator functions for events in Σ . The closed convex
cone generated by indicator differences that indicate ranking is considered, and the crucial step
is to prove that it cannot contain an indicator difference that does not correspond to a ranking.
Convexity is handled using GFC. The fact that the closedness operation does not add vectors that
do not indicate ranking is the result of Non-Atomicity.

The next example demonstrates that under the assumptions of the paper it can be the case
that there are no events, other than trivial ones, to which the probabilities in the representing set
assign the same probability. The example imitates Example 1 in [17].

Example 1. Denote by λ the Lebesgue measure. Let S = [0,1) and Σ the algebra generated by
all intervals [a, b) contained in [0,1). For A ∈ Σ such that λ(A) = 1

2 , let πA be the probability
measure defined by the density:

fA(s) =
{

1
2 s ∈ A

3
2 s /∈ A

Let P be the convex and closed set generated by all probability measures πA. All measures in
the set are mutually absolutely continuous with λ. For ε > 0, letting {E1, . . . ,En} be a partition
with λ(Ei) < 2

3ε obtains πA(Ei) < ε for all measures πA, hence for all measures in P . The set
P is therefore uniformly strongly continuous.

The resulting subjective multi-prior probability representation satisfies assumptions P1–P5.
Note that for any event B ∈ Σ for which 0 < λ(B) < 1,

max
π∈P

π(B) = 3

2
min

(
λ(B),

1

2

)
+ 1

2
max

(
0, λ(B) − 1

2

)

>
1

2
min

(
λ(B),

1

2

)
+ 3

2
max

(
0, λ(B) − 1

2

)
= min

π∈P
π(B),

and by the construction of the measures, the derived likelihood relation is: A � B if and only
if λ(A \ B) � 3λ(B \ A). Importantly, the measures in P do not agree on any event which is
non-null and non-universal. Moreover, there are even no events with probability ε-close to a
fixed value 0 < p < 1. Note also that for events A and B , it cannot be that all measures in P
agree that A and B have equal probabilities, therefore events cannot be partitioned into equally
likely events.

3. Comments

3.1. On the uniqueness of the set of prior probabilities

The set of prior probabilities obtained in the above theorems need not be unique. For an ex-
treme example imagine a simple coin toss, where the individual believes that ‘Heads’ is at least as
likely as ‘Tails’. In this case the likelihood relation is complete, and yet, any probability measure
that lends ‘Heads’ a probability of at least half would represent the relation. Such a phenomenon
will occur in every finite case. However,11 considering that the likelihood relation may later be

11 Recall the advisory entity interpretation from the Introduction, and see the extensive discussion in [17].
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used as basis for decision making, a cautious choice would be to represent this relation by the
largest possible set, even at the expense of potentially replacing a singleton representing set with
a much larger set, as in the coin toss example.

We thus suggest to consider the union of all representing sets as the representing set of prob-
abilities. This union is itself a representing set, and is maximal w.r.t. inclusion. It contains all
the probability measures that almost agree with the relation. When analyzing judgements made
under ambiguity, the maximal set w.r.t. inclusion seems to be a natural choice to express belief,
as it takes into consideration all priors that may be relevant to the case at hand. If an incomplete
relation (for a finite or infinite state spaces) is to be later completed (e.g., according to a min-
imum probability rule), the completion may yield different results under different representing
sets. Taking the maximal set guarantees that the completion does not ignore possible likelihood
assessments.

3.2. Partial observations

When discussing an incomplete relation, the set of axioms serves both as a consistency tool
and as a means to derive additional relationships between events. Given a subset of comparative
likelihood observations, this subset can be matched with a representing set of priors just as long
as it does not contradict any of the axioms. Specifically, all relationships implied by GFC can be
added to the subset of comparisons if needed. Technically speaking, the full set of relationships
that emerges from the observations can be identified by computing the closed convex cone of
the set {1A − 1B | A � B was observed}. If an indicator difference 1E − 1F happens to be a
member in the closed convex cone computed, then E � F should hold (and hence added even if
not directly observed). The obtained set of observations admits a multi-prior representation as in
the above theorems.

3.3. Equidivisibility and Lyapunov Theorem

As a result of Lyapunov Theorem (a version thereof, see Theorem 1.4 in Rao [18]), if Σ is a
σ -algebra, and the representing set of probabilities is finite (or, equivalently, is the convex hull of
a finite number of probabilities), then uniform strong continuity implies Nehring’s [17] axiom of
Equidivisibility. As a result, there is a unique convex and closed representing set of probabilities.

3.4. Countably additive priors

In case one wishes to guarantee that all priors are countably additive, the following additional
axiom is required.

P6. Monotone Continuity. If E1 ⊇ E2 ⊇ · · · is a sequence of events converging to the empty
set (i.e.,

⋂
n En = ∅), and F is an event such that F �� ∅, then there exists n0 such that for all

n > n0, F � En.

The axiom is a version of monotone continuity conditions due to Villegas [21], Kopylov [12]
and others.



S. Alon, E. Lehrer / Journal of Economic Theory 151 (2014) 476–492 485
Proposition 3. Let Σ be a σ -algebra over S, and suppose that � is a binary relation over Σ ,
admitting the multi-prior representation as in (ii) of Theorem 2. Then all prior probabilities in P
are countably additive if and only if � satisfies P6.

4. Proofs

Let B0(S,Σ) denote the vector space generated by linear combinations of indicator functions
1A for A ∈ Σ , endowed with the supremum norm. The next claims show that under assumptions
P1 through P4, preference is preserved under convex combinations (the proof is joint for the finite
and infinite cases). In some of the claims, conclusions are more easily understood considering
the following alternative formulation of Generalized Finite Cancellation:

Let A and B be two events, and (Ai)
n
i=1 and (Bi)

n
i=1 two sequences of events from Σ , that

satisfy:

Ai � Bi for all i, and for some k ∈ N,
n∑

i=1

[
1Ai

(s) − 1Bi
(s)

] = k
[
1A(s) − 1B(s)

]
for all s ∈ S.

Then A � B .

Claim 1. Suppose that12 ri ∈ Q++, and Ai � Bi for i = 1, . . . , n. If 1A − 1B = ∑n
i=1 ri(1Ai

−
1Bi

), then A � B .

Proof. Let k denote the common denominator of r1, . . . , rn, and write ri = mi

k
for mi ∈ N and

i = 1, . . . , n. It follows that k(1A − 1B) = ∑n
i=1 mi(1Ai

− 1Bi
) for all s ∈ S. By GFC applied to

sequences (Ai)
N
i=1 and (Bi)

N
i=1, where each Ai and each Bi repeats mi times (N = m1 + · · · +

mn), it follows that A � B . �
Claim 2. Suppose that Ai � Bi for i = 1, . . . , n. If there are αi > 0, i = 1, . . . , n, such that
1A − 1B = ∑n

i=1 αi(1Ai
− 1Bi

), then A � B .

Proof. Suppose there are αi > 0, i = 1, . . . , n, such that 1A − 1B = ∑n
i=1 αi(1Ai

− 1Bi
). Con-

sider the partition induced by A1, . . . ,An,B1, . . . ,Bn,A,B , and denote it by A, with atoms
denoted by a. The assumed indicators identity for all s ∈ S translates to the following finite
system of linear equations, with the variables α1, . . . , αn:

n∑
i=1

δi(a)αi = δ(a), a ∈ A,

δi(a) = 1Ai
(s) − 1Bi

(s), s ∈ a, δ(a) = 1A(s) − 1B(s), s ∈ a.

Since all coefficients in the above equations, δ(a) and δi(a), are integers, it follows that if there
is a solution then there is a rational solution. Moreover, due to the denseness of the rationals
within the reals there are rational solutions that are arbitrarily close to the original solution,
therefore if this one is positive, then there exists a positive and rational solution. By the previous
claim it follows that A � B . �
12 Q++ is the set of strictly positive rational numbers.



486 S. Alon, E. Lehrer / Journal of Economic Theory 151 (2014) 476–492
4.1. Proof of Theorem 1

First it is proved that under assumptions P1–P4, the consensus multiple-priors representation
follows (direction (i) ⇒ (ii)).

When S is finite, there are finitely many pairs of events. Let Ai , Bi , i = 1, . . . , n denote
all pairs of events such that Ai � Bi , and define yi = 1Ai

− 1Bi
. Consider cone{y1, . . . , yn},

the convex cone generated by the vectors yi . By Positivity and Reflexivity it is nonempty and
contains zero. For each pair of events A and B , 1A − 1B is in cone{y1, . . . , yn} if and only if
A � B: By definition, if A � B then 1A − 1B is included in cone{y1, . . . , yn}, and according to
Claim 2 the opposite is also true.

Define13 V = {v ∈ RS | v · y � 0 for all y ∈ cone{y1, . . . , yn}}. The set V is a closed convex
cone, and contains the zero function.

Claim 3. y ∈ cone{y1, . . . , yn} ⇔ v · y � 0 for every v ∈ V .

Proof. By definition of V , if y ∈ cone{y1, . . . , yn} then v · y � 0 for every v ∈ V . Now suppose
that x /∈ cone{y1, . . . , yn}. Since cone{y1, . . . , yn} is a closed convex cone then by a standard sep-
aration theorem there exists a nonzero vector w ∈ RS separating it from x. As cone{y1, . . . , yn}
contains the zero vector and αx /∈ cone{y1, . . . , yn} for all α > 0, it must be that w ·y � 0 > w ·x,
for every y ∈ cone{y1, . . . , yn}. It follows that w ∈ V , and the proof is completed. �
Conclusion 1. A � B ⇔ v · (1A − 1B) � 0 for every v ∈ V .

For every event A ∈ Σ and vector v ∈ V , denote v(A) = v · 1A = ∑
s∈A v(s). According

to the Non-Triviality assumption, V �= {0}. By Positivity, 1A ∈ cone{y1, . . . , yn} for all A ∈ Σ ,
therefore v(A) � 0 for every v ∈ V . It follows that the set P = {π = v/v(S) | v ∈ V \ {0}} is a
nonempty set of additive probability measures over Σ , such that:

A � B ⇔ π(A) � π(B) for every π ∈ P .

By its definition, P is the maximal set w.r.t. inclusion that represents the relation.
The other direction, from the representation to the axioms, is trivially implied from properties

of probability measures (GFC follows easily by taking expectation on both sides).

4.2. Proof of Theorem 2

4.2.1. Proof of the direction (i) ⇒ (ii)
Define a subset D� of B0(S,Σ),

D� = closure

{
n∑

i=1

αi[1Ai
− 1Bi

]
∣∣∣ Ai � Bi, αi � 0, n ∈N

}
.

That is, D� is the closed convex cone generated by indicator differences 1A − 1B , for A � B .
By Reflexivity, Positivity and Nontriviality, D� has vertex at zero, it is not the entire space
B0(S,Σ), and it contains every nonnegative vector ψ ∈ B0(S,Σ). According to Claim 2, if an

13 For x = (x1, . . . , x|S|), y = (y1, . . . , y|S|) ∈RS , x ·y denotes the inner product of x and y. That is, x ·y = ∑|S|
xiyi .
i=1
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indicator difference 1A − 1B is obtained as a convex combination of indicator differences that
correspond to preference, then A � B . In order to show that D� contains exactly those indi-
cator differences which correspond to preference, it should further be proved that preference is
preserved under the closure operation. This is done in the next claims.

Claim 4. If A �� B , then 1A − 1B is an interior point of D�.

Proof. By definition, A �� B implies that there exists a partition {A1, . . . ,Ak} of A and a par-
tition {B ′

1, . . . ,B
′
l } of Bc , such that for all i, j , A \ Ai � B ∪ Bj . First observe that it cannot be

that A = ∅, for it would imply, on the one hand, that A = ∅ � B , by definition of strong prefer-
ence, and on the other hand, by Generalized Finite Cancellation, ∅ � Bc ⇔ B � S, contradicting
Non-Triviality. Similarly B = S is impossible. Hence, k, l � 1. Using the definition of strong
preference, monotonicity of � w.r.t. set inclusion and the structure of D� obtains:

1A − 1B − 1Ai
∈ D�, i = 1, . . . , k, and

1A − 1B − 1Bj
∈ D�, j = 1, . . . , l, therefore

(k + l)(1A − 1B) − 1A − 1Bc = (k + l − 1)(1A − 1B) − 1S ∈ D� ⇒
(1A − 1B) − 1

k + l − 1
1S ∈ D�.

It is next shown that there exists a neighborhood of 1A − 1B in D�. Let ε < 1
2(k+l−1)

and let

ϕ ∈ B0(S,Σ) be such that ‖1A − 1B − ϕ‖ < ε. For all s ∈ S, ϕ(s) > 1A(s) − 1B(s) − 1
2(k+l−1)

,

therefore ϕ dominates 1A − 1B − 1
k+l−1 1S . It follows that ϕ = 1A − 1B − 1

k+l−1 1S + ψ for
ψ ∈ D� (since ψ is nonnegative), hence ϕ ∈ D� and 1A − 1B is an internal point of D�. �
Claim 5. If 1A − 1B is on the boundary of D�, then A � B .

Proof. Suppose on the contrary that for some events A and B , 1A − 1B is on the boundary of
D�, yet ¬(A � B). As 1A − 1B is on the boundary of D�, there exists ε′ > 0 and ϕ ∈ D� such
that 1A − 1B + δϕ ∈ D� for every 0 < δ < ε′.

On the other hand, employing Non-Atomicity, there exists an event F ⊆ Ac such that F �� ∅
and 1A − 1B + 1F /∈ D�. The previous claim entails that 1F is an interior point of D�, hence
there exists εϕ > 0 such that 1F + δϕ ∈ D� for all |δ| < εϕ . Let 0 < δ < min(εϕ, ε′), then
1A − 1B + δϕ + 1F − δϕ = 1A − 1B + 1F is in D�, since it is a sum of two vectors in D�.
Contradiction. �
Conclusion 2. A � B ⇔ 1A − 1B ∈ D�.

Proof. The set D� contains, by its definition, all indicator differences 1A′ − 1B ′ for A′ � B ′
(thus also the zero vector), and their positive linear combinations. However, by the previous
claims, if 1A − 1B may be represented as a positive linear combination of indicator differences
1A′ − 1B ′ for which A′ � B ′, or if 1A − 1B is on the boundary of D�, then A � B . That is,
every indicator difference 1A − 1B in the closed convex cone generated by indicator differences
indicating preference also satisfies A � B . �

Denote by B(S,Σ) the space of all Σ -measurable, bounded real functions over S, endowed
with the supremum norm. Denote by ba(Σ) the space of all bounded, additive functions from Σ
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to R, endowed with the total variation norm. The space ba(Σ) is isometrically isomorphic to the
conjugate space of B(S,Σ). Since B0(S,Σ) is dense in B(S,Σ), ba(Σ) is also isometrically
isomorphic to the conjugate space of B0(S,Σ).

Consider an additional topology on ba(Σ). For ϕ ∈ B0(S,Σ) and m ∈ ba(S,Σ), let ϕ(m) =∫
S
ϕ dm. Every ϕ defines a linear functional over ba(S,Σ), and B0(S,Σ) is a total space of

functionals on ba(S,Σ).14 The B0(S,Σ) topology of ba(S,Σ), by its definition, makes a locally
convex linear topological space, and the linear functionals on ba(S,Σ) which are continuous in
this topology are exactly the functionals defined by ϕ ∈ B0(S,Σ). Event-wise convergence of
a bounded generalized sequence μα in ba(S,Σ) to μ is identical to its convergence to μ in
the following topologies: the B0(S,Σ) topology, the B(S,Σ) topology, and the weak* topology
(see Maccheroni and Marinacci [15]). Hence, the notion of closedness of bounded subsets of
ba(S,Σ) is identical in all three topologies.

Let M = {m ∈ ba(Σ) | ∫
S
ϕ dm � 0 for all ϕ ∈ D�}. The set M is a convex cone, and con-

tains the zero function. For a generalized sequence {mτ } in M, which converges to m in the
B0(S,Σ) topology, mτ (ξ) → m(ξ) for every ξ ∈ B0(S,Σ). Therefore, having mτ (ϕ) � 0 for
every ϕ ∈ D� and every τ , yields that m ∈ M. The set M is thus closed in the B0(S,Σ) topol-

ogy.15

Claim 6. ϕ ∈ D� ⇔ ∫
S
ϕ dm � 0 for every m ∈M.

Proof. According to the definition of M, it follows that if ϕ ∈ D� then
∫
S
ϕ dm � 0 for every

m ∈M. Now suppose that ψ /∈ D�. Since D� is a closed convex cone, and B0(S,Σ), endowed
with the supnorm, is locally convex, then by a Separation Theorem (see Dunford and Schwartz
[6, Corollary V.2.12]) there exists a non-zero, continuous linear functional separating D� and ψ .
Hence, since 0 ∈ D� and aψ /∈ D� for all a > 0, there exists m′ ∈ ba(Σ) such that

∫
S
ϕ dm′ �

0 >
∫
S
ψ dm′, for every ϕ ∈ D�. It follows that m′ ∈M, and the proof is completed. �

Conclusion 3. A � B ⇔ ∫
S
(1A − 1B)dm � 0 for every m ∈M.

Proof. Follows from Conclusion 2 and the previous claim. �
According to the Non-Triviality assumption, M �= {0}. By Positivity, 1A ∈ D� for all A ∈ Σ ,

therefore
∫
S

1A dm � 0 for every m ∈ M. It follows that the set P = {π = m/m(S) | m ∈ M \
{0}} is a nonempty, B0(S,Σ)-closed and convex set of additive probability measures over Σ ,
such that:

A � B ⇔ π(A) � π(B) for every π ∈ P .

Observation 1. The set P is bounded (in the total variation norm), hence it is compact in the
B(S,Σ) topology, thus in the B0(S,Σ) topology (see Corollary V.4.3 in Dunford and Schwartz
[6]). As P is weak* closed and bounded, it is weak* compact (by Alaoglu’s Theorem). In ad-
dition, by its definition P is maximal w.r.t. inclusion (any π ′ /∈ P yields

∫
S
ϕ dπ ′ < 0 for some

14 That is, ϕ(m) = 0 for every ϕ ∈ B0(S,Σ) implies that m = 0.
15 This part of the proof is similar to a proof found in ‘Ambiguity from the differential viewpoint’, a previous version
of Ghirardato, Maccheroni and Marinacci [8].
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ϕ ∈ D�, hence π ′(A) < π ′(B) for some pair of events that satisfy A � B), B0(S,Σ)-closed and
convex.

Claim 7. If A �� B then there exists δ > 0 such that π(A) − π(B) > δ for every π ∈P .

Proof. By definition of strong preference, A �� B if and only if there exists a partition
{G1, . . . ,Gr} of S, such that A \ Gi � B ∪ Gj for all i, j . This means that there are parti-
tions {A1, . . . ,Ak} of A, and {B ′

1, . . . ,B
′
l } of Bc, such that π(A) − π(Ai) � π(B) + π(B ′

j )

for all π ∈ P and all i, j . It cannot be that π(A) − π(Ai) = 0 or π(B) + π(B ′
j ) = 1, since

π(B ∪ B ′
j ) > 0 for some j and π(A \ Ai) < 1 for some i. Hence, k � 2 and l � 2, and, for all

π ∈P ,

π(A) − π(B) � π(Ai) + π
(
B ′

j

)
, for all i, j ⇒

(k + l − 1)
(
π(A) − π(B)

)
� 1

and the proof is completed with δ = 1/(k + l), for instance. �
Lemma 1. The probability measures in P are uniformly strongly continuous.

Proof. Let B be an event, and suppose that μ′(B) > 0 for some μ′ ∈ P . The inequality implies
that ¬(∅ � B), therefore by Non-Atomicity there exists a partition of B , {B1, . . . ,Bn}, such that
for all i, Bi �� ∅. Specifically, μ(B1) > δ > 0 for all μ ∈ P according to the previous claim,
proving part (a) of uniform strong continuity.

Non-Atomicity also implies that ¬(∅ � B \ Bi). Therefore, there must be at least two events
Bi in the partition of B , and for each one, μ(Bi) > δ′ > 0 for some δ′ and all μ ∈ P . Hence for
all μ ∈ P , μ(B) > μ(B \ B1) > 0. All probability measures in P are thus non-atomic.

According to the above arguments, there exists an event F1 such that 0 < μ(F1) < 1 for all
μ ∈ P . As this implies ¬(F c

1 � S), it follows from Non-Atomicity that there exists a partition of
F1, {E1, . . . ,Em}, such that Ei �� ∅ and ¬(∅ � F1 \ Ei) for i = 1, . . . ,m.

For a fixed i, the preference Ei �� ∅ entails that there exists a partition of S, {G1, . . . ,Gri },
that satisfies Ei � Gj , j = 1, . . . , ri . Taking the refinement of the partitions for each i, there
exists a partition {G1, . . . ,Gr } such that Ei � Gj for all i = 1, . . . ,m and j = 1, . . . , r . It follows
that for each i, j , μ(Gj ) � μ(Ei) for every μ ∈ P . As ∅ � ∅, the partition {E1, . . . ,Em} must
consist of at least two atoms. Hence, for each j ,

μ(Gj ) � 1

m

m∑
i=1

μ(Ei) � 1

2
μ(F1) <

1

2
, for all μ ∈ P .

Let F2 = Gj for Gj such that μ(Gj ) > 0 (there must exist such j since the Gj ’s partition S).
Again ¬(∅ � F2), and by Non-Atomicity there exists a partition of F2, {E′

1, . . . ,E
′
l}, such that

E′
i �� ∅ and ¬(∅ � F2 \ E′

i ) for i = 1, . . . , l.
As in the previous step, it follows that l � 2 and there exists a partition {G′

1, . . . ,G
′
k} with

μ(G′
j ) � μ(E′

i ) for all indices i, j and all probabilities μ ∈ P . Thus, for all j ,

μ
(
G′

j

)
� 1

l

l∑
μ

(
E′

i

)
� 1

2
μ(F2) <

1

4
, for all μ ∈ P .
i=1
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In the same manner, for all n ∈ N there exists a partition {G1, . . . ,Gr} such that for all j ,
μ(Gj ) < 1

2n for all μ ∈ P . It follows that the probabilities in P are uniformly strongly continu-
ous. �

The proof of the direction (i) ⇒ (ii) is completed.

4.2.2. Proof of the direction (ii) ⇒ (i)
Suppose that for every A,B ∈ Σ , A � B if and only if π(A) � π(B) for every probability

measure π in a �-maximal set P , and that P is uniformly strongly continuous, and all probabil-
ities in the set are non-atomic. Assumptions P1 through P5 are shown to hold.

P1. Reflexivity and P2. Positivity. For every A ∈ Σ and every π ∈ P , π(A) � π(A) and
π(A) � 0, hence A � A and A � ∅.

P3. Non-Triviality. The �-maximal set P is nonempty, thus π(B) > π(A) for some A,B ∈ Σ

and π ∈ P , implying ¬(A � B).

P4. Generalized Finite Cancellation. Let (Ai)
n
i=1 and (Bi)

n
i=1 be two collections of events in Σ ,

such that Ai � Bi for all i, and
∑n

i=1(1Ai
(s)−1Bi

(s)) � k(1A(s)−1B(s)) for all s ∈ S, for some
k ∈ N and events A,B ∈ Σ . Then for every π in P , kEπ (1A − 1B) �

∑n
i=1 Eπ (1Ai

− 1Bi
) � 0.

It follows that π(A) � π(B) for every π ∈ P , hence A � B .

Claim 8. If μ(F) > 0 for an event F and some probability measure μ ∈ P , then F �� ∅.

Proof. Suppose that F is an event with μ(F) > 0 for some probability μ ∈ P . Using part (a)
of uniform strong continuity, μ(F) > 0 for every μ ∈ P . As the set P is weak* compact, the
infimum of μ(F) over it is attained (see Lemma I.5.10 in Dunford and Schwartz [6]), yielding
that infμ∈P μ(F) = μ′(F ) for some μ′. Hence there exists δ > 0 such that μ(B) > δ for every
probability μ ∈ P . By part (b) of uniform strong continuity there exists a partition {G1, . . . ,Gr}
of S such that μ(F) − μ(Gk) > μ(Gj ) for every k, j and every μ ∈ P , yielding F \ Gk � Gj

for every k, j . By definition, F �� ∅. �
P5. Non-Atomicity. Suppose that ¬(A � B). By the representation assumption, μ′(B) > μ′(A)

for some μ′ ∈ P . Note that necessarily μ′(Ac) > 0. It is required to show that there exists a
partition {A′

1, . . . ,A
′
k} of Ac such that for all i, A′

i �� ∅ and ¬(A ∪ A′
i � B).

Uniform strong continuity of the set P implies that there exists a partition {G1, . . . ,Gr} of S,
such that for all j , μ(Gj ) < μ′(B) − μ′(A) for all μ, thus specifically for μ′. The partition
{G1, . . . ,Gr} induces a partition {A′

1, . . . ,A
′
k} of Ac such that μ′(A′

i ) > 0 and μ′(A ∪ A′
i ) <

μ′(B) for all i, thus by the representation, ¬(A ∪ A′
i � B). According to the previous claim,

A′
i �� ∅ for all i.

4.3. Proof of Proposition 3

Suppose first that � is represented as in (3), and in addition Monotone Continuity P6 holds.
Denote the representing set of probabilities by P . For countable additivity it suffices to prove
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that for any sequence of events that decreases to the empty set, the limit of the probabilities of
the sets is zero.

Let En be a sequence of events such that E1 ⊇ E2 ⊇ · · · and
⋂

n En = ∅. Take ε > 0. Ac-
cording to the representation there exists a partition of S, {G1, . . . ,Gr}, such that for every j and
every μ ∈P , μ(Gj ) < ε. Let Gj be such that μ′(Gj ) > 0 for some μ′, thus by the representation
μ(Gj ) > 0 for all μ ∈ P , which implies Gj �� ∅ by Claim 8. Monotone Continuity them ren-
ders Gj � En for some n, yielding μ(En) < ε for every μ ∈ P . As En ⊇ En+1 ⊇ En+2 ⊇ · · · ,
the same inequality holds for all probabilities from this n on and limn→∞ μ(En) = 0.

In the other direction suppose that each probability in the set is sigma-additive, and consider
a decreasing sequence of events, E1 ⊇ E2 ⊇ · · · , with limit event

⋂
n En = ∅. Let F be an event

such that F �� ∅. According to Claim 7, μ(F) > δ for some δ > 0 and all μ ∈ P . By weak*
compactness of the set P , supμ∈P μ(En) is attained for every n. Denote by μn a probability in P
for which μn(En) = supμ∈P μ(En). It suffices to prove that there exists n for which μn(En) � δ

(as the sequence of events En is decreasing the same will hold for all larger n’s as well).
Suppose on the contrary that μn(En) > δ for every n. As the set P is weak* compact, it is

also sequentially weak* compact (see Theorem 1 in [15]). Thus (μn)n has a convergent sub-
sequence with limit in P . That is to say, there is a subsequence, denote it (μk)k , such that μk

event-wise converges to a probability μ ∈P . For every k, μk(Ek) > δ, therefore, by the structure
of the sequence of events, μk+
(Ek) > δ for all 
 = 1,2, . . . . It follows that all measures in the
sequence (except maybe for a finite number) assign a probability larger than δ to each event Ek ,
therefore μ(Ek) � δ > 0 for every k. But μ is in P , therefore by assumption σ -additive, satisfy-
ing limk→∞ μ(Ek) = 0. Contradiction. It is concluded that μ(F) > δ � μn(En) � μ(En) for all
μ ∈ P , hence F � En, from some n on. �
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