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Abstract

A (TU) cooperative game is extendable (Kikuta and Shapley, 1986) if every core
allocation of each sub-game can be extended to a core allocation of the game. It is
strongly extendable if any minimal vector in the upper core of any of its sub-games can
be extended to a core allocation. We prove that strong extendability is equivalent to
largeness of the core (Sharkey, 1982). Further, we characterize extendability in terms
of an extension of the balanced cover of the game. It is also shown how this extension
can unify the analysis of many families of games under one roof.
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1 Introduction

The purpose of this note is twofold. It is first intended to study a property of TU cooperative

games (games, henceforth) called extendability. A game is extendable if every core allocation

of each sub-game can be extended to a core allocation of the game. This concept originates

in an unpublished paper of Kikuta and Shapley (1986) and was further investigated by van

Gellekom et al. (1999). Our main result characterizes extendable games. Furthermore, we

introduce a stronger notion of extendability and show that it is equivalent to largeness of

the core (Sharkey, 1982).

Extendability is an important property when the set of players is dynamic and different

players join the game at different times. Assume that a group of veterans is involved in a

game-like situation and that a core allocation has been established. When a group of rookies

is joining the game a core allocation of the expanded game needs to be chosen. If the new

game is not extendable, then it might be necessary to change the allocation of the veterans,

possibly reducing the payoffs to some of them. Extendability guarantees that one can find a

new core allocation that does not harm any of the veterans.

Our second aim is to show how various families of games can be characterized in terms of

a certain function, called the concavification of the game. Viewed geometrically, the domain

of a game v is the vertices of the unit cube. Rather than restricting attention to the vertices,

we consider the entire cube and refer to the minimal concave and homogeneous function

which is greater than or equal to v1. This function coincides with the totally balanced cover

of v on the vertices of the cube. Balancedness and totally balancedness, convexity, exactness,

largeness of the core and extendability can all, quite effortlessly, be characterized in terms

of this extension. As a consequence, the hierarchy among these properties becomes clearly

apparent.

Since our extension of the balanced cover is homogeneous it is uniquely determined by

its values on the unit simplex. We find it more convenient to restrict attention to the

simplex rather than considering the entire cube. We therefore identify each coalition with

the uniform distribution over its members and not with the corresponding characteristic

vector. The characteristic function describes the per capita value of each coalition rather

than the total worth of a coalition.

This ‘normalized version’ of a game might be seen dispensable. However, two arguments

1This is not a new idea. Similar constructions can be found in Lovasz (1983), Ichiishi (1990) and Weber
(1994).
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justify its use. First, when working in the simplex the point corresponding to the grand

coalition becomes an interior point of the domain. This fact is important in the proof of

our characterization of extendability (Theorem 1). Second, the dimension of the domain

is reduced by 1. This makes the geometry simpler and the proofs more visible. For in-

stance, Lemma 2, which is essentially the Shapley-Bondareva theorem (Shapley, 1967 and

Bondareva, 1962), becomes very intuitive when presented in this way2.

In the following section we provide an example to motivate the study of the extendability

property. In Section 3 we formally define the normalized game and the extension of the

balanced cover to the unit simplex. Section 4 discusses the properties of convexity, exactness

and largeness of the core. Some of the results in this section are variants of already known

facts. The proofs are omitted whenever this is the case. In Section 5 extendability is

investigated. Some of the proofs are deferred to the Appendix.

2 Pricing in public enterprizes: An example

The following application of cooperative game theory is adopted from Faulhaber (1975). A

publicly owned (or a privately owned and publicly regulated) enterprize produces and sells

a set T of different products. Possible examples include a railway company selling tickets to

various destinations, a communication company providing long and short distance calls as

well as internet connection, and a dam maintenance company providing flood control, water

for irrigation and electric power. For every subset R ⊆ T , the cost of providing the required

demands only for the products in R is given by v(R).

For equity reasons, public policy makers would like to design a pricing scheme that keeps

a balanced budget and is subsidy-free. The first means that the total revenue,
∑

i∈T xi, is

equal to the total cost, v(T ). The latter means that
∑

i∈R xi ≤ v(R) for every R ⊆ T . This

implies that no subset of products subsidies the rest. In terms of cooperative game theory

the vector {−xi}i∈T is in the core of the game −v.

Now, assume that the enterprize considers an expansion of its services and to provide a

new set of products, S, in addition to T . The domain of the function v is extended to all

subsets of N := T ∪ S.

The notion of extendability, which is the main theme of this note, refers to the relation

between the original v, defined over the restricted domain, T , and its extension to the grand

2Of course, intuition is a subjective matter. Still, we believe that many will consider our proof as more
intuitive than those standard in the literature.
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domain, N . When the new game (N,−v) is extendable it is possible to find a pricing scheme

{yi}i∈N in the core of (−v,N) (i.e.,
∑

i∈N yi = v(N),
∑

i∈R yi ≤ v(R) for every R ⊆ N)

such that yi = xi for every i ∈ T . In other words, extendability of −v enables one to

introduce a pricing scheme for the large set of products that maintains the balanced budget

the subsidy-free properties, while keeping the prices of the products in T unchanged. In

particular, expanding the menu of services provided does not force a price increase of any of

the original services in T .

On the other hand, if the game (N,−v) is not extendable, then it might be that every

core allocation y of this game has some product i ∈ T that needs to become more expensive

(i.e., yi > xi). Policy makers will have to raise the price of some products in T , which is

likely to lead consumers of the products that are about to become more expensive to object

to the proposed expansion. This might make the reform harder to implement. This is why

extendability is an essential characteristic of a game.

3 Preliminaries

A game with player set N (|N | = n) is a function v : 2N → IR with v(∅) = 0. If S ⊆ N is a

non-empty coalition then the sub-game of v, with respect to the coalition S, is a cooperative

game vS, where the grand coalition is S and vS(T ) = v(T ) for every T ⊆ S. We denote by

C(v) the core of the game v, that is C(v) = {x ∈ IRN ; x(N) = v(N), x(S) ≥ v(S) for every

S ⊆ N}. The upper core of a game v, denoted U(v), is the set U(v) = {x ∈ IRN ; x(S) ≥ v(S)

for every S ⊆ N}.
A balanced collection for a coalition S ⊆ N is a set of coalitions {T1, T2, . . . , Tk} and

non-negative numbers {α1, α2, . . . , αk} such that
∑k

i=1 αieTi
= eS, where, for every coalition

R ⊆ N , eR ∈ IRN is the vector whose i’th coordinate equals 1 if i ∈ R and 0 otherwise.

For a given game v, the totally balanced cover of v is the game v̄ (with the same player set

as v) defined by v̄(S) = max
∑k

i=1 αiv(Ti), where the maximum is taken over all balanced

collections for the coalition S. A game v is called balanced if v̄(N) = v(N) and totally

balanced if v̄(S) = v(S) for every S ⊆ N . It is well known (see Shapley 1967 and Bondareva,

1962) that v has a non-empty core iff it is balanced and that every sub-game of v has a

non-empty core iff v is totally balanced.

We denote by ∆ the unit simplex of IRN , that is ∆ = {(q1, . . . , qn);
∑n

i=1 qi = 1, qi ≥
0, i = 1, . . . , n}. For S ⊆ N , ∆S ⊆ ∆ is the set of distributions over N whose support is

contained in S. For any non-empty coalition S ⊆ N denote cS = 1
|S|eS ∈ ∆. Given a game v,
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let v̂(cS) = v(S)
|S| for every non-empty S ⊆ N . v̂ is a function over a set of 2n− 1 points in the

n-dimensional unit simplex. v̂(cS) is the average worth of the coalition S, or the per-capita

value of the members of S.

Definition 1 The concavification of v̂, cavv̂, is defined as the minimum of all concave

functions f : ∆ → IR such that f(cS) ≥ v̂(cS) for every non-empty coalition S.

Remark 1 Since the minimum of a family of concave functions over ∆ is concave, cavv̂ is

concave. Thus, cavv̂ is the minimal concave function that is greater than or equal to v̂ on

every point of the type cS.

Lemma 1 For every q ∈ ∆,

cavv̂(q) = max{
∑
S⊆N

αS v̂(cS);
∑
S⊆N

αScS = q, αS ≥ 0 and
∑
S⊆N

αS = 1}.

Proof. Denote w(q) = max{∑S⊆N αS v̂(cS);
∑

S⊆N αScS = q, αS ≥ 0 and
∑

S⊆N αS = 1}.
Since w is concave and v̂ ≤ w, cavv̂ ≤ w. On the other hand, if

∑
S⊆N αScS = q where

αS ≥ 0 and
∑

S⊆N αS = 1, then by concavity of cavv̂, cavv̂(q) ≥ ∑
S⊆N αScavv̂(cS) ≥∑

S⊆N αS v̂(cS). Thus, cavv̂ ≥ w.

Remark 2 In view of Lemma 1, cavv̂ can be thought of as a generalization of the totally

balanced cover of v (up to multiplication by the size of the relevant coalition). In particular,

for every coalition S ⊆ N , cavv̂(cS) = v̄(S)
|S| .

Definition 2 For a function f : ∆ → R and a point p ∈ ∆, a vector x ∈ IRn is a linear

support of f at p, if 3 x · p = f(p) and x · q ≥ f(q) for any q ∈ ∆.

Lemma 2 (a) C(v) 6= ∅ iff cavv̂(cN) = v̂(cN).

(b) If v is balanced then C(v) is equal to the set of linear supports for cavv̂ at the point cN .

Proof. To prove (a), assume first that v has a non-empty core and let x ∈ C(v). Consider

the linear (and in particular concave) function on ∆ defined by f(q) = x · q. Since x is in

the core, for every non-empty coalition S ⊆ N , f(cS) = x · cS = x(S)
|S| ≥ v(S)

|S| = v̂(cS). It

follows that f(q) ≥ cavv̂(q) for every q ∈ ∆. By a similar argument, f(cN) = x ·cN = v̂(cN).

Therefore, v̂(cN) ≤ cavv̂(cN) ≤ x · cN = v̂(cN).

3For every two vectors a = (a1, . . . , an) and b = (b1, . . . , bn) in IRn, a · b denotes the inner product
a · b =

∑n
i=1 aibi.
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In order to prove the inverse direction, assume that cavv̂(cN) = v̂(cN). Since cavv̂ is

concave, it has a linear support, say x, at the point cN . By assumption, x · cN = cavv̂(cN) =

v̂(cN). Also, for every S ⊆ N , x(S)
|S| = x · cS ≥ v̂(cS) = v(S)

|S| , which implies x(S) ≥ v(S).

Therefore, x ∈ C(v) which proves (a). (b) follows from the proof of (a).

Remark 3 A similar characterization of balanced games appears in Branzei and Tijs (2001).

Here, however, it is related to the concavification operator.

4 Convexity, exactness and large cores

4.1 Convex games

Definition 3 (Shapley 1971) The game v is convex if for any two coalitions S and T ,

v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ).

A first characterization of convex games via cavv̂ appears in the following proposition.

Weber (1994, Section 9, pages 1295-1297) has a similar result. We omit the proof.

Proposition 1 A game v is convex iff, for every pair of non-empty coalitions S, T such that

T ⊆ S, the line segment connecting the points (cS, v̂(cS)) and (cT , v̂(cT )) is on the graph of

cavv̂.

We next provide another characterization of convex games. This is done by an explicit

description of cavv̂ when the game is convex. The proof of the proposition can be rather

easily obtained from the results of Delbaen (1974, Lemma 2, pp. 214-215) or Lovasz (1983,

pp. 246-249) and is therefore omitted. We first need some notation.

Notation 1 (a) For a permutation π over N , denote by Si
π the coalition {π(1), π(2), . . . , π(i)},

i = 1, . . . , n.

(b) Let v be a game and π an order over the set of players N . Then the vector of marginal

contributions, with respect to π is xπ = (x1
π, . . . , xn

π), where xi
π = v(Si

π)− v(Si−1
π ), i ∈ N .

(c) Let q = (q1, . . . , qn) ∈ ∆. πq denotes a permutation of the players such that qπq(1) ≥
qπq(2) ≥ . . . ≥ qπq(n). When there is more than one such permutation, i.e., qi = qj for some

i 6= j, πq is any one of them.

(d) For q = (q1, . . . , qn) ∈ ∆, let Si
q = Si

πq
and xq = xπq .

Proposition 2 A game v is convex iff cavv̂(q) = q · xq for every q ∈ ∆.
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4.2 Exact games

Definition 4 (Schmeidler, 1972) The game v is exact if, for every coalition S, there is

x ∈ C(v) such that v(S) = x(S).

Proposition 3 A game v is exact iff, for every non-empty coalition S, the line segment

connecting the points (cS, v̂(cS)) and (cN , v̂(cN)) is on the graph of cavv̂.

Proposition 3 is a variant of a result in Weber (1994, section 9, pages 1295-1297). The proof

is omitted. A simple consequence is the following corollary.

Corollary 1 Let v be a totally balanced game. Then v is exact iff cavv̂(cS) = min{x·cS; x ∈
C(v)} for every S ⊆ N .

4.3 Games with a large core

Definition 5 (Sharkey, 1982) v has a large core if for every y ∈ U(v) there exists x ∈ C(v)

such that x ≤ y.

Proposition 4 v has a large core iff cavv̂(q) = min{x · q; x ∈ C(v)} for every q ∈ ∆.

Proposition 4 will follow from Lemma 4 which is a consequence of Lemma 3. The proofs

of these lemmas are deferred to the Appendix. In Ichiishi (1990, Proposition 2.4) a similar

characterization of games with no-gap (the dual concept of large core) appears.

Lemma 3 Let A ⊆ IRn be a convex set and let f : A → IR be concave. Assume that H ⊆ IRn

has the following two properties:

(i) H is closed and convex.

(ii) For every q ∈ A there is y ∈ H such that y · q = f(q) and y · q′ ≥ f(q′) for every q′ ∈ A

(the hyperplanes defined by the vectors in H support the entire graph of f).

Let q0 be in the interior of A and assume that x ∈ IRn is a linear support for f at q0.

Then x ∈ H.

Lemma 4 Let A = ∆, and let f and H be as in the previous lemma. Assume that q0 is in

the relative interior of ∆ and that x is a linear support for f at q0. Then, x ∈ H.

7



Proof of Proposition 4: Assume first that v has a large core and fix q ∈ ∆. By Lemma

2 (b), if x ∈ C(v) then x · q ≥ cavv̂(q). Therefore, cavv̂(q) ≤ min{x · q; x ∈ C(v)}.
Now, let y be a linear support of cavv̂ at the point q. Then, y ∈ U(v) and, since v has

a large core, there is x ∈ C(v) such that x ≤ y. Since x is in C(v), cavv̂(q) ≤ x · q

and since x ≤ y, cavv̂(q) = y · q ≥ x · q. It follows that x · q = cavv̂(q), and therefore,

cavv̂(q) = min{x · q; x ∈ C(v)}.
Conversely, assume that cavv̂(q) = min{x · q; x ∈ C(v)} and let y ∈ U(v). Obviously,

y · q ≥ cavv̂(q) for every q ∈ ∆. Therefore, there is x ≤ y such that x is a linear support

of cavv̂ at some point q ∈ ∆. Moreover, x can be chosen in a way that it supports cavv̂ at

a point q in the relative interior of ∆. We can thus apply Lemma 4, where (in the lemma’s

notation) A = ∆, f = cavv̂, H = C(v), and q0 = q. It follows that x ∈ C(v) and x ≤ y.

5 Extendable games

5.1 Extendability

We denote by CS(v) the projection of C(v) to the subspace corresponding to the coalition

S. That is, CS(v) = {x ∈ IRS; there is y ∈ C(v) such that yi = xi for all i ∈ S}.

Definition 6 v is extendable if C(vS) ⊆ CS(v) for every S ⊆ N .

Extendability was introduced by Kikuta and Shapley (1986) and named by van Gellekom et

al. (1999).

Theorem 1 Let v be a totally balanced game. Then, v is extendable iff there is δ > 0 such

that if, for some S ⊆ N , q ∈ ∆S satisfies |q− cS| < δ, then cavv̂(q) = min{x · q; x ∈ C(v)}.

Proof. Assume first that v is extendable. Since cavv̂ is piece-wise linear, for every S ⊆ N

one can find a small enough number δS > 0 such that for every q ∈ ∆S with |q − cS| < δS

and for every 0 ≤ α ≤ 1, αcavv̂(q) + (1 − α)cavv̂(cS) = cavv̂(αq + (1 − α)cS). Let

δ = min{δS; S ⊆ N}. Fix S ⊆ N q ∈ ∆S with |q−cS| < δ. Then, by the separation theorem,

there is x ∈ IRS which is a linear support of the restriction of cavv̂ to ∆S at both points cS

and q. Since v is totally balanced, and by Lemma 2 (b), x ∈ C(vS). Thus, by assumption,

we can extend x to a core vector of the game v, say x̃. Obviously, x̃ · q = x · q = cavv̂(q).

Conversely, assume that x ∈ C(vS) for some S ⊆ N . Then, x is a linear support of the

restriction of cavv̂ to ∆S at the point cS. The set CS(v) is closed and convex. Moreover,
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by assumption, for every q ∈ ∆S sufficiently close to cS there is y ∈ CS(v), which is a linear

support of the restriction of cavv̂ to ∆S at q. Thus, we may apply Lemma 4 and deduce

that x ∈ CS(v).

Remark 4 The second part of the proof does not use the assumption that v is totally bal-

anced. It follows that any game v which satisfies the condition of the theorem is extendable.

Thus, by Proposition 4, large core implies extendability.

5.2 Strong extendability

Definition 7 y ∈ U(vS) is minimal if x ∈ U(vS) and x ≤ y implies y = x.

Definition 8 v is strongly extendable if, for every coalition S and a minimal y ∈ U(vS),

y ∈ CS(v).

Lemma 5 If v is strongly extendable, then it is extendable.

Proof. This is obvious since if y ∈ C(vS), then it is minimal in U(vS).

Theorem 2 v is strongly extendable iff it has a large core.

Proof. Suppose that v has a large core and let y ∈ U(vS) be minimal. One can extend y to

a vector, say z, in U(v). Since v has a large core, there is x ∈ C(v) such that x ≤ z. Thus,

xS, the restriction of x to ∆S, satisfies xS ≤ y. By the minimality of y, xS = y.

As for the converse, assume that v is strongly extendable. We use Proposition 4 and show

that cavv̂(q) = min{x · q; x ∈ C(v)} for every q ∈ ∆. Since cavv̂ is concave, it is sufficient

to show that for every S $ N and for every q ∈ ∆S, cavv̂(q) = min{x · q; x ∈ C(v)}.
Moreover, since cavv̂ is continuous, it is sufficient to show it for every S $ N and for every

point q in the relative interior of ∆S.

Let S $ N and q be a relative interior point of ∆S (i.e., qi > 0 for every i ∈ S). The

function cavv̂S is concave, and as such it has a support at q. Denote this support by y.

In particular, y ∈ U(vS) and y · q = cavv̂S(q). Since all the coordinates of q are positive,

it implies that y is minimal. By assumption, y ∈ CS(v). It means that there is x ∈ C(v)

whose restriction to ∆S coincides with y. Thus, x · q = y · q = cavv̂S(q). This shows that

min{x ·q; x ∈ C(v)} ≤ cavv̂S(q). Since always min{x ·q; x ∈ C(v)} ≥ cavv̂S(q), the desired

equality is proven.
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7 Appendix

Proof of Lemma 3:

Assume, contrary to the lemma, that x /∈ H. Since H is closed and convex, and by the
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separation theorem, there is 0 6= p ∈ IRn such that p · x > max{p · y; y ∈ H}. Since q0 is in

the interior of A, one can find a small enough δ > 0 such that q0 − δp ∈ A. Let y ∈ H be a

linear support of f at q0 and let z ∈ H be a linear support for f at q0 − δp. Then,

z · (q0 − δp) = f(q0 − δp) ≤ x · (q0 − δp) < y · (q0 − δp). (1)

It follows that there is 0 < α ≤ 1 such that

αz · (q0 − δp) + (1− α)y · (q0 − δp) = x · (q0 − δp). (2)

Denote w = αz + (1− α)y ∈ H. It follows that

w · (q0 − δp) = w · q0 − δw · p > w · q0 − δx · p ≥ f(q0)− δx · p = x · (q0 − δp). (3)

However, (2) and (3) contradict each other. Therefore, x ∈ H.

Proof of Lemma 4:

Consider the homogeneous extension of f to IRn
+, denoted f̂ . That is, f̂(a) = |a|f( a

|a|) for

every a ∈ IRn
+ (|a| =

∑n
i=1 |ai| is the l1 norm of a). Since f is concave on ∆, it is straight

forward that f̂ is concave on IRn
+. Also, for every a ∈ IRn

+, if y is a linear support of f at a
|a| ,

then it is a linear support of f̂ at a. Finally, since q0 is in the relative interior of ∆ it is an

interior point of IRn
+. Thus, we can apply Lemma 3 and deduce that x ∈ H.

11


