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Abstract

In the context of a binomial tree model, the decision maker has a subjective belief

about the probability associated with upward and downward movements. Within this dy-

namic framework, we examine when various stochastic dominance relations among priors

are preserved after conditioning on histories of observations, and when can we guarantee

that the probability distributions over a certain set of histories induced by different priors

satisfy first-order stochastic dominance relation. These stochastic dominance relations

include first-order and likelihood-ratio dominance, and (reverse) hazard-rate dominance.

As an application, we explore the consequences of diverse stochastic dominance relations

on the subjective evaluation of both European and American options.
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1 Introduction

In classical dynamic Bayesian decision problems involving uncertainty, a decision maker

(referred to as DM) is faced with an unknown state of nature about which she holds an

initial prior belief. As the decision scenario unfolds, the DM gathers information that

assists in updating her belief about the state, thereby enabling her to maker better

decisions. However, even when confronted with identical decision scenarios, DMs often

possess distinct prior beliefs. These differences can be attributed to various factors,

such as diverse past experiences and individual dispositions spanning from optimism

to pessimism. Consequently, individuals may assign differing probabilities to future

events, subsequently influencing their behavioral responses.

This paper aims to analyze the implications of different stochastic dominance rela-

tions among prior beliefs in Bayesian learning, focusing notably on the applications in

terms of subjective valuation of options. In the Bayesian learning framework, a history

of observations serves a dual role: it helps the DM to update her belief about the un-

known state of nature, and it determines the DM’s payoff. Drawing from the dual role

histories play, we consider two fundamental facets of Bayesian learning: the stochastic

dominance relation between the prior belief over a set of histories and between the

posterior belief conditional on this set. While the probability distribution over histo-

ries is useful for evaluating the expected payoffs, the posterior belief is important for

calculating continuation payoffs, and ultimately for the decision making. To address

these questions, we investigate four most prominent stochastic dominance relations

that compare the “magnitude” or “location” of random variables,1 including first-

order stochastic dominance, hazard-rate dominance, reverse hazard-rate dominance,

and likelihood-ratio dominance.

As an application, we examine the connections between the various forms of stochas-

tic dominance relations and the valuation of European and American options. The

conventional no-arbitrage approach to option pricing operates on the premise that it

is possible to construct a portfolio comprising traded financial assets that mirrors the

price fluctuations of the underlying asset. Consequently, the subjective beliefs held by

option holders regarding the unknown state play no role in option valuation. How-

ever, this method assumes a market rich enough in risky assets, which can be quite

demanding.

By contrast, our focus lies in highlighting the significance of prior beliefs in a

1See, e.g., p. 3, Chapter 1 of Shaked & Shanthikumar (2007). We exclude second- and third-

degree stochastic dominance, for which Levy (2006) offers a comprehensive exploration, coupled with

applications in the context of investment decisions within uncertain environments. However, Levy’s

work does not contain an analysis of (reverse) hazard-rate dominance and likelihood-ratio dominance,

both of which constitute central chapters of our paper.
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decision-theoretic framework, and concentrate on the subjective valuation of options.

This approach proves particularly relevant when considering the valuation of certain

real options2, wherein not every derivative can be replicated through portfolios. Our

findings reveal that first-order stochastic dominance and (reverse) hazard-rate domi-

nance exhibit a relationship with the valuation of European options, while likelihood-

ratio dominance displays a connection with the valuation of American options.

Our analysis is conducted mainly within the framework of the binomial tree model,

which boasts a broad spectrum of applications.3 In this model, a stochastic outcome,

either an “up” or “down” movement, is generated independently in each period, condi-

tioned on the state. The probability p of observing an “up” outcome remains unknown

and constant over time. The value of p can reflect various factors such as the prof-

itability of an investment, the overall market conditions, and more. The DM holds a

prior belief about the value of p, captured by a cumulative distribution function (CDF)

on the interval [0, 1]. This CDF can be either continuous or discrete, and is allowed

to have any number of atoms. Each observed sequence of outcomes, referred to as a

history, progressively reveals information about the underlying state, enabling the DM

to revise her belief, and thereby affecting her payoff.

Our initial set of findings revolves around first-order stochastic dominance. Consider

two priors, denoted as F and G, that do not put all probability on 0 or 1.4 We

show that F first-order stochastically dominates G if and only if for any period t, the

probability distribution of the t+ 1 distinct empirical frequencies5 induced by F first-

order stochastically dominates that induced by G. Consequently, if the DM’s payoff

function is monotonically increasing in empirical frequencies, this equivalence implies

that for any period t, a prior that exhibits first-order stochastic dominance would yield

a greater expected payoff. Utilizing this equivalence, we demonstrate that F first-order

stochastically dominates G if and only if the expected value of any European call option

is higher under F than under G.

We next consider two important stochastic dominance relations among prior beliefs:

hazard-rate dominance and reverse hazard-rate dominance; both are stronger than first-

2Real options differ from conventional financial options in that they involve tangible assets such as

land, buildings, inventory, etc. Some investment problems involving sunk costs could also be classified

as real options. Consequently, real options are often not traded as securities. Furthermore, manage-

ment cannot quantify uncertainty in terms of volatility and must instead rely on their perceptions of

uncertainty.
3For instance, it serves as a foundational framework in diverse areas such as option pricing (e.g.,

Cox et al., 1979; Shreve, 2004) and Bayesian learning (e.g., Bikhchandani et al., 1992; Müller &

Scarsini, 2002; Ifrach et al., 2019).
4This assumption ensures that every history is observed with a positive probability.
5These empirical frequencies denote the occurrences of “up” outcomes. In period t, there are t+1

empirical frequencies: 0
t , ...,

t
t .
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order stochastic dominance. They capture different kinds of optimistic attitudes toward

risk. We find that the hazard-rate dominance (reverse hazard-rate dominance) relation

is preserved under Bayesian learning, conditional on any event whose probability is

increasing (decreasing) in the state of nature. This property not only holds in the

binomial tree model, but it extends also to the general Bayesian learning framework.

The concept of hazard-rate dominance implies that upon observing a favorable event—

referred to as “good news”—which is more likely to get realised under a more favorable

state, such as a surge in sales, the DM maintains a sense of optimism concerning

that state, as characterized by this concept. This property distinguishes it from first-

order stochastic dominance, as the latter lacks this specific attribute after conditioning.

Furthermore, consider a set of equal-length histories whose empirical frequencies are

above a given threshold. It is shown that a hazard-rate dominating prior yields a

first-order stochastically dominating probability distribution over this set of histories.

The importance of these results is that they bring forth a consequential insight

regarding the valuation of European options: we show that F hazard-rate dominates

G if and only if, for every European call option, the option value – under the condition

that it is exercised – is greater under F than under G.

The third set of findings centers around the concept of likelihood-ratio dominance,

a form of stochastic dominance that is stronger than the other types explored in this

study, and indeed yields stronger results. Mirroring the results established for (reverse)

hazard-rate dominance, the likelihood-ratio dominance relation is preserved under con-

ditioning on any event that occurs with positive probability. This result illuminates

the connections that exist between likelihood-ratio dominance and the valuation of

American options. Specifically, we establish that F likelihood-ratio dominates G if

and only if for every American call option, the option’s value associated with F ex-

ceeds that associated with G, when conditioning on the event that the option remains

unexercised. Moreover, in cases where F likelihood-ratio dominates G, if it is opti-

mal to exercise under F , the same holds true under G. This conveys that for any

American call option, the set of histories leading to exercising of the option is smaller

under the likelihood-ratio dominating prior. Hence holders of American options with

likelihood-ratio dominating prior beliefs are more patient.

Related Literature. Our paper is related to the literature that studies stochastic dom-

inance in the Bayesian learning framework. One strand of literature focuses on the

stochastic dominance relations among posteriors induced by different samples, while

holding the prior fixed. Whitt (1979) considers the influence of samples on posterior

distribution of the entire population as well as the unsampled population in the bino-

mial tree model similar to ours. Whitt’s work lies within the domain of likelihood-ratio

dominance. In the same vein, Fahmy et al. (1982) analyse the likelihood-ratio dom-
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inance of posteriors induced by histories of different empirical frequencies when the

prior is fixed. Milgrom (1981) shows that a signal x yields a first-order stochastically

dominating posterior belief compared to another signal y for every prior if and only

if, the density function of the signal conditional on state satisfies the strict monotone

likelihood-ratio property (see also Chambers & Healy (2009) for a related discussion).

Charness et al. (2007) conduct an experimental study to test whether individuals and

groups behave in accordance with first-order stochastic dominance and Bayesian up-

dating when making decisions.

These studies delve into the impact of various histories while keeping the prior be-

lief fixed. In contrast, our paper examines different priors and their influence on the

stochastic dominance relationship of posterior distributions, as well as on the probabil-

ity distributions over specific set of histories. Furthermore, while the previously men-

tioned papers exclusively focus on likelihood-ratio dominance and first-order stochastic

dominance, our analysis expands to encompass a broader array of stochastic dominance

relationships. This includes exploring hazard-rate dominance and reverse hazard-rate

dominance.

Another strand of literature that studies stochastic dominance and Bayesian learn-

ing considers the implications of different prior beliefs. Bikhchandani et al. (1992)

consider a finite set of simple lotteries over a finite set of outcomes. Priors (and pos-

teriors) are compound lotteries. For two priors F and G, they find necessary and

sufficient conditions under which after any history of observations, the reduced simple

lottery under F first-order stochastically dominates (or “Bayes first-order stochastic

dominates”, in the terminology of Bikhchandani et al., 1992) that under G. As an

application, Bikhchandani & Sharma (1996) examine the effect of Bayes’ first-order

stochastic dominance among priors in terms of an optimal search problem when the

underlying distribution of price is unknown. In comparison, we study the stochastic

dominance relations of posteriors conditional on a set of histories instead of a single

history. In addition, we also examine probability distributions on a set of histories

induced by different priors.

Our paper also relates to the literature on real option valuation. In contrast to

financial options, the underlying assets for real options are often tangible. As de-

scribed in Dixit & Pindyck (1994), generally there are two approaches to real option

valuation, depending on whether the risk of the underlying asset can be spanned by

existing assets or not. In case one can find traded assets that exactly replicate the

stochastic component of the underlying asset, the classical arbitrage-free option pric-

ing approach can be applied (see, e.g., Cox et al., 1979; Shreve, 2004). Otherwise, we

refer to the dynamic programming approach: assume the price of the underlying asset

evolves according to a known stochastic process. The dynamic programming method
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is used to obtain the option value in a wide range or dynamic decision problems with

irreversible actions under uncertainty, such as investment problems (see, e.g., Cukier-

man, 1980; Bernanke, 1983; Pindyck, 1991; Demers, 1991; Chetty, 2007). Our paper

pertains to this second approach. In contrast to the literature, we consider the sit-

uation in which there is uncertainty in the stochastic process (i.e., the probability of

moving up each period is unknown, instead of a known constant) and focus on different

stochastic dominance relations among prior beliefs and investigate the implications for

the option value. Stochastic dominance has been applied to option valuation when

market completeness or frictionless trading assumptions are violated, for instance, due

to the presence of rare events and proportional transaction costs. The idea is to obtain

upper and lower bounds on admissible option prices (instead of a unique option price)

that exclude stochastically dominant strategies (strategies that increase the utility of

all traders). For option prices outside the bounds, every trader can have an arbitrage

opportunity. Perrakis (2019) contains a comprehensive treatment of studies along this

vein, with a focus on the second-degree stochastic dominance. By contrast, we focus on

likelihood-ratio dominance and (reverse) hazard-rate dominance relations among prior

and posterior beliefs about an unknown state of nature that governs the evolution of

the market price.

The rest of the paper is organized as follows. Section 2 presents the binomial

tree model. The following three sections are devoted to the discussion of first-order

stochastic dominance, (reverse) hazard-rate dominance, and likelihood-ratio dominance

relations among prior beliefs, respectively. The proofs and some supplementary results

can be found in the Appendix.

2 The Binomial Tree Model

Consider a risk-neutral decision maker (DM) who faces an unknown state of nature

p ∈ [0, 1]. The DM’s prior belief about p is captured by a CDF F (p). Depending on the

true state of nature, a random outcome (either “U” or “D”) is observed in each period.

Suppose that P(U) = p and outcomes observed in different periods are independent

conditional on the state.

As an example, the symbols “U” and “D” can be understood as representing up-

ward and downward shifts in a company’s stock price, similar to the interpretation in

the work by Cox et al. (1979). The parameter p could signify the undisclosed perfor-

mance of the company or the prevailing market conditions. In different scenarios, these

symbols could also be associated with distinct meanings. For instance, they might rep-

resent changes in a company’s sales—either an increase (“U”) or a decrease (“D”).

Alternatively, they could denote positive (“U”) and negative (“D”) consumer ratings,
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as seen in the research conducted by Ifrach et al. (2019)

A history of length t is an ordered sequence of outcomes, and is denoted by ht.

Let Ht be the set of all histories of length t, and denote a subset of Ht by Ht. When

a history ht contains k observations of the outcome “U”, we say that the empirical

frequency (or simply frequency) of outcome “U” in ht is θ(ht) := k
t
. Histories have

two roles: when the dynamics unfolds, they reveal information to the DM about the

unknown state p; moreover, they determine the payoff of the DM.

One of the most notable applications of the binomial tree model is in option pricing.

As demonstrated by Cox et al. (1979), the celebrated Black-Scholes formula can be

derived as an asymptotic case of the binomial tree model. However, the conventional

theory of financial option pricing is centered around the fundamental concept of the

no-arbitrage principle. This principle assumes the free tradability of the underlying

asset in the market, positing that it is possible to construct a portfolio that perfectly

mirrors the price fluctuations of the underlying asset. This methodology relies, firstly,

on the availability of a suitably diverse array of markets dealing with risky assets –

a requirement that can be quite demanding. Secondly, it hinges on the assumption

that risk-free arbitrage opportunities do not exist. This latter assumption effectively

nullifies the impact of the option holder’s personal beliefs about the parameter p on

the determination of the option price. In contrast, to underscore the influence of prior

beliefs, we embrace a decision-theoretic perspective. This approach proves particularly

relevant in scenarios like the valuation of numerous real options, including various

investment-decision problems involving sunk costs.

3 First-Order Stochastic Dominance and European

Options

A key driver behind the widespread use of first-order stochastic dominance (FOSD)

lies in the following well-known equivalent condition, articulated through expectations:

F ⪰FOSD G if and only if, EF (u) ≥ EG(u), where u is any increasing6 function. This

section of the study delves into the implications of the first-order stochastic dominance

relation among prior distributions within the binomial tree model. We establish an

equivalent condition for the relationship F ⪰FOSD G, tailored to this specific model.

Subsequently, we extend this understanding to the subject of European option valua-

tion and thereby illustrate additional applications of this concept.

Notice that for a given period t, the prior belief F induces a probability distribution

6In this context, “increasing” (or “decreasing”) is used to indicate weakly increasing (or decreasing)

functions.
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over the t+ 1 empirical frequencies 0
t
, ..., t

t
via

PF (k, t) :=

∫ 1

0

(
t

k

)
pk(1− p)t−kdF, 0 ≤ k ≤ t. (1)

In other words, PF (k, t) is the probability of observing a history with empirical fre-

quency k
t
in period t under the prior belief F .

The following proposition gives an equivalent condition for F ⪰FOSD G expressed in

terms of the stochastic dominance relation of probability distributions over empirical

frequencies induced by different priors. The proof, as well as all others, is deferred to

the Appendix.

Proposition 1. Consider two different prior beliefs F and G about the state of nature

p. Then F ⪰FOSD G if and only if for any period t, the probability distribution over

the t + 1 empirical frequencies under prior F first-order stochastically dominates the

probability distribution under G, or {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0.

It is important to note that the first-order stochastic dominance relation is not

preserved under conditioning, whether that involves conditioning on a subset of the

support, on a single history, or on a set of histories. This fact is well-documented

in the literature, as exemplified by studies like Bikhchandani et al. (1992). In con-

trast, stronger stochastic dominance relations—such as hazard-rate dominance, reverse

hazard-rate dominance, and likelihood-ratio dominance—do exhibit this property. To

further understand this issue, the reader is referred to Propositions 3 and 6 below.

Application to Option and Forward Contract Valuation. Proposition 1 natu-

rally finds practical relevance in the valuation of European options and forward con-

tracts. Consider a European call/put option, where owning a unit grants the holder

the choice (but not the obligation) to buy/sell a specified asset unit at a predetermined

strike price at a future time (known as the expiration date). Importantly, this choice

is irrespective of the market price of the asset at that point. It is important to note

that exercising this option is exclusively permissible on the expiration date, setting it

apart from American call options that can be exercised at any point before expiration.

Similarly, a forward contract determines both a termination date and a pre-established

strike price. Nevertheless, upon reaching the termination date, the contract holder has

no choice but to exercise at the pre-established strike price.

Consider a scenario where the market price evolves according to the binomial tree.

A key assumption underlying this setup is that the price is contingent on the empirical

frequency. More precisely, in period t, with k instances of the outcome labeled as

“U”, the corresponding price is S(k, t). Consequently, two equal-length histories with

the same empirical frequency would result in identical prices. The function S(k, t) is
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assumed to be monotonically increasing in k for any fixed t. The conventional binomial

option pricing model, such as outlined in Cox et al. (1979), assumes that the price moves

up or down by a fixed fraction every period. Instead, in our setup the price function

S(k, t) is more flexible, accommodating for a broader set of options.

A unit of European option or forward contract is formally described by a triple

(T, S̄, S(k, T )), where T denotes the termination date and S̄ represents the predeter-

mined strike price. Notably, S(k, T ) stands for the price at period T given k instances

of the outcome “U”. The probability of observing the outcome “U” is dictated by the

unknown parameter p.

The ex-post value of the European call and put options at (k, T ) are, respectively,

v(k, T, S(k, T )) = max{0, S(k, T ) − S̄} and v(k, T, S(k, T )) = max{0, S̄ − S(k, T )}.
For a forward contract, the ex-post value at (k, T ) is v(k, T, S(k, T )) = S(k, T ) − S̄.

It follows from the monotonicity of S(k, T ) that v(k, T ) is increasing (decreasing) in k

for European call (put) options.

Suppose, in addition, that future payoffs are discounted by δ ∈ (0, 1]. The ex-ante

(subjective) value of the option when the option holder has prior belief F is7

VF (T, S̄, S(k, T )) := δT
∫ 1

0

T∑
k=0

(
T

k

)
pk(1− p)T−kv(k, T, S(k, T ))dF (p)

= δT
T∑

k=0

PF (k, T )v(k, T, S(k, T )). (2)

The main finding of this section concerns the consequences of first-order stochastic

dominance for the valuation of European call options and forward contracts.

Theorem 1. Consider two beliefs F and G about the state of nature p. Then,

(i) F ⪰FOSD G if and only if the ex-ante value of every European call option is greater

under F than under G; and

(ii) F ⪰FOSD G if and only if the ex-ante value of every forward contract is greater

under F than under G.

In the classical binomial option pricing theory (see, e.g., Cox et al., 1979), the price

of the underlying asset at a node (k, t) is given by S(k, t) = S0λ
kλ−(t−k) = S0λ

2k−t,

where S0 is the initial price, and λ > 1 is a constant. In words, the price exhibits an

increase or decrease by a fixed proportion with each iteration. Fix S0, a price function

can be characterized by λ. Consider a termination date t. Lemmas 3 and 4 in Appendix

A.2 show that in order to determine whether {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0 holds

or not, it suffices to consider any t such price functions with different λ’s.

7Recall from Eq. (1) that PF (k, T ) is the probability of observing histories with frequency k
T in

period T under prior belief F .
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4 (Reverse) Hazard-Rate Dominance

The objective of this section is to investigate two additional stochastic orders among

prior beliefs and their implications in the binomial tree model. We refer here to the

hazard-rate and the reverse hazard-rate dominance orders (HRD and RHRD). It is well

known that HRD and RHRD are stronger than FOSD. We show that under (R)HRD,

one can obtain a stronger version of Proposition 1 and Theorem 1.

Consider two prior beliefs F and G on [0, 1], and let f and g be their densi-

ties (Radon-Nikodym derivatives w.r.t. some common measure, not necessarily the

Lebesgue measure). It includes cases in which F and G have atoms. To rule out

uninteresting cases, we assume that F and G are non-trivial, namely, they are not

degenerate at a single point, and the probability that p ∈ (0, 1) (i.e., not 0 or 1) is

positive. We know that F hazard-rate dominates G (F ⪰HR G) if f(p)
1−F (p)

≤ g(p)
1−G(p)

. Sim-

ilarly, F reverse hazard-rate dominates G (F ⪰RHR G) if f(p)
F (p)

≥ g(p)
G(p)

. The following

proposition presents two useful equivalent conditions for (R)HRD.

Proposition 2. The following are equivalent conditions for F ⪰HR G (resp., F ⪰RHR

G):

1. For all functions u and w such that w is non-negative and increasing, u is in-

creasing, and that the expectations under F and G exist,

EF (uw)EG(w) ≥ EG(uw)EF (w). (3)

For RHRD, we only need to change w to be non-negative and decreasing.

2. For any pH > pL, [1 − F (pH)][1 − G(pL)] ≥ [1 − G(pH)][1 − F (pL)] (resp.,

F (pH)G(pL) ≥ G(pH)F (pL) ).

The first condition is due to Capéraà (1988). It is an equivalent condition for

(R)HRD expressed in terms of expectations. Another way to express the first equiv-

alent condition is as follows. Take any w that is non-negative and increasing (resp.,

decreasing) such that EF (w), EG(w) > 0. Define two new CDFs, F̂ (p) :=
EF (w1(−∞,p])

EF (w)

and Ĝ(p) :=
EG(w1(−∞,p])

EG(w)
. Then for any increasing and measurable function u, EF̂ (u) ≥

EĜ(u), or F̂ ⪰FOSD Ĝ. It means that first-order stochastic dominance is preserved

under a certain change of measure.

In the environment of Bayesian learning, since the posterior beliefs and conditional

expectations can be expressed in the form EF (uw)
EF (w)

, where u and w are functions with

certain properties, this characterization also has natural applications (see, e.g., Propo-

sition 4).
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In comparison, the second equivalent condition, which is well-known (see, e.g.,

Shaked & Shanthikumar (2007)), is phrased in terms of CDFs. It has a straightforward

geometric implication. To see it, let us consider the transformation (correspondence)

φ : [0, 1] ⇒ [0, 1] such that F (p) = φ(G(p)).8

0

F

G

1

1

F (pL)

F (pH)

G0

A

B

Panel (a): F ⪰RHR G

φ

0

F

G

1

1

A

B

φ

Panel (b): F ⪰HR G

Figure 1: A graphical illustration of RHR and HR dominance.

Take any point on the graph of φ and connect it to the origin by a segment.

Condition 2 of Proposition 2 implies that if F ⪰RHR G, then the slope of the line

segment increases as one moves the point along the graph of φ toward (1, 1) (see Panel

(a) of Figure 1). In other words, imagine we put a light bulb at the origin, then the

light can reach every point on φ from above the graph of φ. The case when F ⪰HR G

is similar. It implies that the slope of the line segment connecting a point on the graph

of φ and (1, 1) is increasing as one moves the point toward (1, 1).

Using Proposition 2, one can establish the following proposition, which is a main

result of this section. It presents a set of conditions equivalent to F ⪰HR G (resp.,

F ⪰RHR G) in the setup of Bayesian learning framework.

Proposition 3. Consider two non-trivial priors F and G on [0, 1]. The following

conditions are equivalent:

8Indeed, define φ(y) = F (G−1(y)), where y is in the range of G (since G may have atoms, the

range of G may be a proper subset of [0, 1]) and G−1(y) = {x ∈ [0, 1] | G(x) = y}. The reason why

φ(·) is a correspondence rather than a function is that G might be constant on some interval, while F

is strictly increasing on the same interval. Such a case is illustrated in Panel (a) of Figure 1. In the

figure, G equals G0 on [pL, pH ], while F (pH) > F (pL), and φ maps G0 to a closed interval containing

F (pL) and F (pH). Also, note that F or G may have atoms (hence the densities w.r.t. the Lebesgue

measure may not exit) but nevertheless, F ⪰RHR G or F ⪰HR G can still hold (see Panel (b) of Figure

1).
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1. F ⪰HR G;

2. For a set of histories H such that the probability of observing H is increasing in

p, the posterior beliefs conditional on H satisfy F |H ⪰HR G|H.

3. For any period t and any level of empirical frequency θ ∈ [0, 1], consider the set

of histories H+
t (θ) := {ht ∈ Ht|θ(ht) ≥ θ}. The posteriors conditional on H+

t (θ)

satisfy F |H+
t (θ) ⪰FOSD G|H+

t (θ).

4. Consider the same set of length-t histories H+
t (θ) as in 3. The probability distri-

bution over H+
t (θ) under F FOSD the probability distribution over H+

t (θ) under

G.

For F ⪰RHR G, we replace the set of histories H in 2 with a set of histories whose

probability is decreasing in p, and replace the set of histories H+
t (θ) in 3 and 4 with

H−
t (θ) := {ht ∈ Ht|θ(ht) ≤ θ}.

The significance of Proposition 3 is that it establishes the equivalence of several

conceptually distinct conditions: Condition 1 is concerned with stochastic dominance

relations among prior beliefs. Conditions 2 and 3 focus on the stochastic dominance

relations among posterior beliefs. In particular, condition 2 implies that the HRD

(or RHRD) relation among prior beliefs is preserved conditional on certain histories.

The third condition, which is weaker than the second one, is sufficient to ensure that

the (R)HRD relation holds among prior beliefs. Condition 4 compares probability

distributions over a set of histories induced by different priors.

In the second condition, the set of histories H under consideration include many

natural cases. In particular, by Lemma 1 in the Appendix, the probability of observing

H+
t (θ) in the third condition is increasing in p. The equivalence between the first two

conditions has natural applications in Bayesian learning. We can extend the equivalence

between the first two conditions to the general Bayesian learning framework by using

Proposition 2.

Proposition 4. Let p ∈ R be an unknown state of nature, and let F (p), G(p) be two

prior beliefs. Then F (p) ⪰HR G(p) (resp., F (p) ⪰RHR G(p)) if and only if, for any

Blackwell experiment E = (π(s|p))s∈S,9 and for any event E ⊆ S whose probability is

positive under F and G and is increasing (resp., decreasing) in p, the posterior beliefs

conditional on E satisfy [F |E](p) ⪰HR [G|E](p) (resp., [F |E](p) ⪰RHR [G|E](p)).

9Here π(s|p) is the probability distribution over signals conditional on p. For a more comprehensive

discussion of Blackwell experiment, see Blackwell (1953).

11



It is worth noting that, generally speaking, the first-order stochastic dominance

relation is not preserved under conditioning, as is well-known in the literature (see,

e.g., Bikhchandani et al., 1992). This is by contrast to stronger stochastic dominance

relations, such as hazard-rate dominance and reverse hazard-rate dominance relations.

Proposition 4 characterizes a class of events conditional on which the posteriors preserve

the (reverse) hazard-rate dominance relation among priors.

Finally, condition 4 allows us to compare the expected payoffs under different prior

beliefs. In particular, for a fixed t, if the payoff function is increasing in empirical

frequency, then condition 4 implies that from the ex-ante perspective10, a hazard-rate

dominating prior yields a greater expected payoff over the set of histories H+
t (θ).

Frequently, there is an interest in scrutinizing the posterior beliefs concerning a

collection of histories, given that this precise collection has occurred. To motivate this

notion, consider a scenario where, at time t, the DM is told that the realized history

is in the set Ht, but she does not know which particular history has been realized. To

draw a parallel, imagine an investor who lacks precise knowledge of an asset’s value

but possesses the information that the asset’s value surpasses a certain threshold. The

information that the actual history belongs to the set Ht reveals additional information

about the unknown state and allows the DM to update her belief from F to F |Ht about

specific histories within Ht.

The term ex-post is assigned to the probability distribution over the set of histo-

ries Ht which is assessed through the revised belief F |Ht. It differs from the ex-ante

probability distribution over Ht in that the ex-post uses the extra information embed-

ded in that Ht actually occurred. The ex-ante probability distribution, in contrast, is

calculated using the prior belief F alone, and lacks the additional information that Ht

has been realized.

Corollary 1. Suppose that two prior beliefs satisfy F ⪰HR G. Then, given the set of

histories H+
t (θ), the ex-post probability distribution over H+

t (θ) under F FOSD the ex-

post probability distribution H+
t (θ) under G. In case F ⪰RHR G, the same statement

holds when H−
t (θ) replacing H+

t (θ).

The corollary is an immediate consequence of Proposition 3. By Lemma 1 and the

equivalence of conditions 1 and 2, the posteriors satisfy F |H+
t (θ) ⪰HR G|H+

t (θ). Now

regard F |H+
t (θ) and G|H+

t (θ) as the new “priors”, the equivalence of conditions 1 and

4 establishes the desired result.

Application to Valuation of European Options. We return to the European

options discussed by the end of Section 3. Since both hazard-rate dominance and

10Note that in condition 4 of Proposition 3, the probability distributions over the set of histories

H+
t (θ) are evaluated using the prior beliefs.
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reverse hazard-rate dominance are stronger than first-order stochastic dominance, both

F ⪰RHR G and F ⪰HR G imply that the ex-ante expected option value of every

European call option is greater under F than under G. However, we can obtain a

stronger result for (reverse) hazard-rate dominance.

Theorem 2. Let F and G be two non-trivial prior beliefs on [0, 1]. Then F ⪰HR G if

and only if for every European call option, the option value conditional on the option

is exercised is greater under F than under G. Similarly, G ⪰RHR F if and only if for

any European put option, the option value conditional on the option is exercised is

greater under F than under G.

An European call (put) option is exercised at the expiration date when the price of

the underlying asset exceeds (falls below) the strike price. In the binomial tree model,

the histories that lead to exercise of the option are exactly those whose empirical

frequencies are above (below) a threshold. Therefore, we can use the equivalence

between the first and the fourth conditions of Proposition 2 to establish Theorem 2.

5 Likelihood-Ratio Dominance and American Op-

tions

Another stochastic dominance relation of cardinal importance in economics, manage-

ment science and finance is the likelihood-ratio dominance (LRD). It is stronger than

HRD and RHRD. In this section, we focus on the implication of LRD in Bayesian

updating, with applications to valuation of American options. We know that for two

probability distributions F and G (CDFs), F likelihood-ratio dominates G, and then

one writes F ⪰LR G, if their densities f and g (w.r.t. some dominating measure, not

necessarily the Lebesgue measure) satisfy f(pH)g(pL) ≥ f(pL)g(pH), for any pH > pL.

Analogous to the equivalent conditions for (R)HRD (Proposition 2), we can establish

the following counterpart result for LRD.

Proposition 5. The following are equivalent conditions for F ⪰LR G:

1. For any increasing function u and any non-negative function w, with respect to

which the expectations exist, it holds that

EF (uw)EG(w) ≥ EG(uw)EF (w). (4)

2. For any p1 > p2 > p3,

[F (p1)− F (p2)][G(p1)−G(p3)] ≥ [F (p1)− F (p3)][G(p1)−G(p2)]. (5)
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The first equivalent condition is due to Lehrer &Wang (2023). In contrast to Propo-

sition 2, for LRD, there is no monotonicity requirement for the “weight function” w.

The second equivalent condition is well known, it can be found in Shaked & Shanthiku-

mar (2007). It implies that F can be obtained from G via a convex transformation φ

(i.e., there is a convex function φ : [0, 1] → [0, 1] such that F = φ(G)).

The equivalent conditions of Proposition 5 are particularly useful when one studies

conditioning and Bayesian updating. Using these conditions, one can establish the

following set of equivalent conditions for LRD in the binomial tree model.

Proposition 6. Let F and G be two non-trivial prior beliefs on [0, 1]. The following

conditions are equivalent:

1. F ⪰LR G;

2. for any set of histories H (not necessarily of the same length), F |H ⪰LR G|H;

3. for any set of histories H, F |H ⪰FOSD G|H;

4. for any t and any set of length-t histories Ht ⊆ Ht, the probability distribution

over Ht under F FOSD that under G.

This proposition is the counterpart of Proposition 3 for (R)HRD. Compared to

Proposition 3, the second and the third conditions of Proposition 6 impose no restriction

on the set of histories under consideration. As the following proposition demonstrates,

the equivalence between the first and the second conditions is not restricted to the

binomial tree model: it extends to more general Bayesian learning setups.

Proposition 7. Let p ∈ R be an unknown state of nature, and let F (p), G(p) be

two prior beliefs. Then F (p) ⪰LR G(p) if and only if, for any Blackwell experiment

E = (π(s|p))s∈S, and any event E ⊆ S that occurs with positive probabilities under F

and G, the posterior beliefs conditional on E satisfy [F |E](p) ⪰LR [G|E](p).

The property of likelihood-ratio dominance (LRD) relation being preserved under

conditioning holds significant importance within Bayesian learning context. The next

discussion on American options exemplifies its practical application.

Analogous to Corollary 2, we may examine the ex-post probability distributions

over a set of histories. By utilizing Proposition 5, we can obtain the following result.

Corollary 2. Suppose that two prior beliefs satisfy F ⪰LR G. Then, given any set of

histories Ht, the ex-post probability distribution over Ht under F FOSD the ex-post

probability distribution Ht under G.
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Application to American Option Valuation. An American call/put option entitles

its holder to the right, though not the obligation, to purchase/sell a unit of a specified

asset at a predetermined strike price on or before a designated future time, referred

to as the expiration date. This is true regardless of the market price of the asset at

the moment of exercise. This grants American options a higher degree of flexibility

compared to European options.

In this context, a history of observations serves a dual role. Firstly, it determines

the payoff of the option if exercised. Secondly, it provides information about the

unknown state p, enables the option holder to revise her belief and to determine the

optimal exercise timing. Essentially, the option holder is facing an optimal stopping

problem, where an optimal exercise strategy corresponds to an optimal stopping rule.

Our primary goal is to explore the ramifications of the likelihood-ratio dominance

(LRD) relation among prior beliefs in terms of the value of American options and the

corresponding optimal exercising strategy.
Consider an American option characterized by (T, S̄, S(k, t)), where S(k, t) is in-

creasing in k for a given t. Let V T
F (k, t) be the value function (option value) given

a history with frequency k
t
under prior belief F . The value function can be written

recursively as

V T
F (k, t) = max

{
S(k, t)− S̄, δ

[
PF (U |k, t)V T

F (k + 1, t+ 1) + PF (D|k, t)V T
F (k, t+ 1)

]}
, (6)

where PF (U |k, t) and PF (D|k, t) are the probabilities of observing “U” and “D” in

period t + 1, respectively, conditional on a history with frequency k
t
, and δ ∈ (0, 1] is

the discount factor.

We examine first how LRD relation among prior beliefs affects the optimal exer-

cise strategy. According to the value function Eq. (6), the optimal exercise strategy is

governed by the comparison of the expected stopping payoff and the discounted con-

tinuation value. It follows immediately from Proposition 6 that conditional on any

history ht, a LRD prior yields a greater ex-post option value. Thus, we can obtain the

following result:

Proposition 8. Let F and G be two non-trivial prior beliefs that satisfy F ⪰LR G.

Then, for every American call option, whenever it is optimal to exercise under F , it is

optimal to exercise under G.

Another way to phrase Proposition 8 is to say that whenever it is optimal to wait

under G, it is optimal to wait under F . This implies that when faced with the same

American option, the option holder with a LRD prior tends to be more patient.

Next, we consider the implication of a LRD prior belief in terms of option value.

In particular, we compare the option values conditional on a set of histories. We say
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that a history ht is alive, if the option is not exercised when ht is observed. Similarly,

we say that a set of length-t histories Ht is alive, if each history in Ht is alive. Using

Proposition 6, we can establish the following result.

Theorem 3. Let F and G be two non-trivial prior beliefs. Then F ⪰LR G if and only

if for every American call option and every set of histories Ht that is alive under both

F and G, the expected option value conditional on Ht is greater under F than under

G.

The sets of histories under consideration are rich enough to cover many interesting

cases. For instance, the ex-ante value (i.e., conditional on the null history) and the

value conditional on every history that is alive is greater under a LRD prior. For

American put options, F ⪰LR G implies that the option value is lower under F .

6 Conclusion

We examined the implications of several well-known stochastic dominance relations

that compare the magnitude or location of random variables in the Bayesian learning

framework, and investigated applications in terms of subjective valuation of European

and American options. These stochastic dominance relations include likelihood-ratio

dominance, (reverse) hazard-rate dominance, and first-order stochastic dominance. In

particular, we discussed when the stochastic dominance relation among prior beliefs

is preserved under conditioning, and when it can be guaranteed that the probability

distributions over a certain set of histories induced by different prior beliefs satisfy

first-order stochastic dominance relation.

We have found that if a prior F hazard-rate dominates (resp., reverse hazard-rate

dominates) another one G, then conditional on any event whose probability is increas-

ing (resp., decreasing) with the state of nature, the posteriors preserve the hazard-rate

dominance (resp., reverse hazard-rate dominance) relation. By contrast, the likelihood-

ratio dominance is preserved conditional on any event that occurs with positive prob-

ability. These result holds not only in binomial tree models, but also in the general

Bayesian learning framework.

In the binomial tree model, we demonstrated that first-order stochastic dominance

and (reverse) hazard-rate dominance are closely related to the subjective valuation

of European options, while likelihood-ratio dominance is related to the valuation of

American options. Specifically, a prior belief F dominates another one G in the sense

of first-order stochastic dominance if and only if the value of every European call

option is greater under F than under G. The belief F hazard-rate dominates G if and

only if for every European call option, conditional on the option is exercised, F yields
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greater expected exercise payoff. For likelihood-ratio, a prior likelihood-ratio dominates

another one if and only if the former yields greater valuation for every American call

option.

lt is worth mentioning that to emphasize the role of the prior beliefs, we focused

on subjective valuation of options. This approach may be applicable to the valuation

of some real options, such as some investment problems involving sunk costs. This is

in contrast to the no-arbitrage approach adopted for the valuation of financial options,

where the subjectively held prior beliefs play no role.
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A Appendix

A.1 Proof of Proposition 1

In order to prove Proposition 1, we first prove the following two lemmas. They will also

be useful to establish other results in the paper. Lemma 1 says that the probability of

observing a length-t history whose empirical frequency is at least k
t
is strictly increasing

in the state p.

Lemma 1. For any k, 0 ≤ k ≤ t, let Γ(k, t; p) :=
∑t

i=k

(
t
i

)
pi(1 − p)t−i and let

Γ̄(k, t; p) :=
∑k

i=0

(
t
i

)
pi(1 − p)t−i. Then Γ(k, t; p) is increasing in p, and Γ̄(k, t; p) is

decreasing in p.

Proof. Note that Γ(k, t; p) is the probability of observing a length-t history with fre-

quency no less than k
t
, conditional on the true state of nature being p.

We prove by induction on k (start with t, and then t−1, ..., k+1, k, so on so forth)

that

dΓ(k, t; p)

dp
=

d

dp

(
t∑

i=k

(
t

i

)
pi(1− p)t−i

)
=

t!

(k − 1)!(t− k)!
pk−1(1− p)t−k > 0. (7)

For k = t, Γ(t, t; p) = pt, so dpt

dp
= tpt−1, which satisfies Eq. (7). Similarly, for k = t−1,

dΓ(t− 1, t; p)

dp
=

d(pt + tpt−1(1− p))

dp
= t(t− 1)pt−2(1− p),

so again Eq. (7) is satisfied.

Now suppose Eq. (7) is satisfied for k + 1, namely

dΓ(k + 1, t; p)

dp
=

t!

k!(t− k − 1)!
pk(1− p)t−k−1. (8)

We show that Eq. (7) also holds for k.

Notice that

d

dp

(
t

k

)
pk(1− p)t−k =

t!

k!(t− k)!
pk−1(1− p)t−k−1(k − tp). (9)
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Using Eq. (8) and Eq. (9), we have

dΓ(k, t; p)

dp
=

dΓ(k + 1, t; p)

dp
+

d

dp

(
t

k

)
pk(1− p)t−k

=
t!

k!(t− k − 1)!
pk(1− p)t−k−1 +

t!

k!(t− k)!
pk−1(1− p)t−k−1(k − tp)

=
t!

k!(t− k)!
pk−1(1− p)t−k−1

(
(t− k)p+ (k − tp)

)
=

t!

k!(t− k)!
pk−1(1− p)t−k−1k(1− p)

=
t!

(k − 1)!(t− k)!
pk−1(1− p)t−k,

which is exactly Eq. (7). Since Γ̄(k, t; p) = 1−Γ(k+1, t; p), we conclude that Γ̄(k, t; p)

is decreasing in p. This completes the proof for the lemma.

The aim of the following lemma is to calculate the probability of observing those

histories whose empirical frequencies belong to a given interval in the limiting case

when the number of observations goes to infinity. Recall that by θ(ht) we denote the

empirical frequency of a history ht.

Lemma 2. Let F be a prior belief (CDF) of p on [0, 1]. Consider the set of histories

Ht(pL, pH) := {ht ∈ Ht | pL ≤ θ(ht) ≤ pH}, where pL, pH are constants that satisfy

0 ≤ pL < pH ≤ 1. Then as t → ∞, PF (Ht(pL, pH)) → F (pH)− F (pL).

Proof. We prove the assertion for the case where both pL and pH are not atoms and

pH < 1. The proof for the case where pH = 1 is similar and is omitted. Let B(p;ht) :=(
pθ(ht)(1− p)1−θ(ht)

)t
denote the probability of observing history ht when the true state

is p, and let B(p;Ht) :=
∑

ht∈Ht
B(p;ht) be the probability of observing a history in

the set Ht. By the Weak Law of Large Numbers, we have limt→∞B(p;Ht) = 1 for

p ∈ (pL, pH), and limt→∞B(p;Ht) = 0 for p < pL and p > pH . Since 0 ≤ B(p;Ht) ≤ 1

for every p, the dominated convergence theorem implies that limt→∞ PF (Ht(pL, pH)) =

limt→∞
∫ 1

0
B(p;Ht)dF = F (pH)− F (pL).

With Lemma 1 and Lemma 2, we are ready to prove Proposition 1.

Proof of Proposition 1

“Only if” direction. To show that {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0, it suffices to

show that for any k, where 0 ≤ k ≤ t,

t∑
i=k

PF (i, t) ≥
t∑

i=k

PG(i, t).
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Note that, by Eq. (1),

t∑
i=k

PF (i, t) =

∫ 1

0

t∑
i=k

(
t

i

)
pi(1− p)t−idF

=

∫ 1

0

Γ(k, t; p)dF

= EF (Γ(k, t; p)).

Similarly,
∑t

i=k PG(i, t) = EG(Γ(k, t; p)).

Since for any (k, t), Lemma 1 tells us that Γ(k, t; p) is increasing in p, the assumption

that F ⪰FOSD G implies that EF (Γ(k, t; p)) ≥ EG(Γ(k, t; p)), hence
∑t

i=k PF (i, t) ≥∑t
i=k PG(i, t) for 0 ≤ k ≤ t. This completes the proof of the “only if” direction.

“If” direction. Suppose that F ⪰FOSD G does not hold. Then there exists a p̂ ∈
(0, 1) such that F (p̂) > G(p̂). Consider the set Ht(p̂) := {ht ∈ Ht | 0 ≤ θ(ht) ≤ p̂} of

length-t histories. It follows from {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0 that PF (Ht(p̂)) ≤
PG(Ht(p̂)) for any t. By Lemma 2, as t → ∞, PF (Ht(p̂)) → F (p̂) and PG(Ht(p̂)) →
G(p̂), hence in the limit, it must be true that F (p̂) ≤ G(p̂), which contradicts F (p̂) >

G(p̂). This completes the proof for the “if” direction.

A.2 Proof of Theorem 1 and Supplementary Results

Proof. Let us focus on item (i) of Theorem 1. The proof of (ii) is similar. To

show the “only if” direction, recall from Proposition 1 that F ⪰FOSD G implies that

{PF (k, T )}Tk=0 ⪰FOSD {PG(k, T )}Tk=0. Since v(k, T ) is monotone in k, we conclude from

Eq. (2) that VF (T, S̄, S(k, T )) ≥ VG(T, S̄, S(k, T )) for every European call option.

To show the “if” direction, according to Proposition 1, it suffices to show that the

greater value under F for very European call option implies that for every period t,

{PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0. To this end, consider t different European call op-

tions with T = t and Si(k, t) =

{
1 + S̄, if i ≤ k ≤ t,

S̄, if 0 ≤ k < i,
for i = 1, . . . , t. The ex post

value of the i-th option is vi(k, t, Si(k, t)) = max{0, Si(k, t)−S̄} =

{
1, if i ≤ k ≤ t,

0, if 0 ≤ k < i,

which is increasing in k. By Eq. (2), the assumption that V i
F (t, S̄, S

i(k, t)) ≥ V i
G(t, S̄, S

i(k, t))

for i = 1, . . . , t implies that
∑t

k=i PF (k, t) ≥
∑t

k=i PG(k, t), for i = 1, . . . , t, which shows

that {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0.

In the proof of the “if” direction, in order to ensure that {PF (k, t)}tk=0 ⪰FOSD

{PG(k, t)}tk=0, we considered t special European options (increasing functions Si(k, t)).

One may wonder whether we can consider a general set of increasing functions instead.
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In what follows, we show that to check whether {PF (k, t)}tk=0 ⪰FOSD {PG(k, t)}tk=0

holds, it suffices to consider t increasing payoff functions that satisfy certain mild

conditions.

Let f = (f0, . . . , ft), g = (g0, . . . , gt) be two probability distributions over t + 1

outcomes, and let F , G be their CDFs. Consider any t different increasing payoff

functions R1, . . . , Rt defined on t+ 1 outcomes.

Definition 1. Consider an increasing payoff function R over t+1 outcomes: R(i) = ri,

i = 0, . . . , t, where ri ≥ rj whenever i > j. We call ∆R := (ri − ri−1)
t
i=1 the increment

vector of R.

Since R is increasing, the t elements of ∆R are all non-negative.

Lemma 3. Consider two probability mass functions f = (f0, ..., ft), g = (g0, ..., gt)

over t + 1 outcomes and let F , G be their CDFs. To determine whether F ⪰FOSD G,

it suffices to consider any t monotone payoff functions over the t + 1 outcomes with

linearly independent increment vectors.

Proof. Note that for a given increasing payoff function Ri, its expectation under F

(similarly under G) can be written as follows:

EF (R
i) =

t∑
j=0

fjr
i
j

=

(
t∑

j=0

fj

)
ri0 +

(
t∑

j=1

fj

)
(ri1 − ri0) + · · ·+

(
t∑

j=ℓ

fj

)
(riℓ − riℓ−1)

+ · · ·+ ft(r
i
t − rit−1)

= ri0 +
t∑

ℓ=1

(riℓ − riℓ−1)

(
t∑

j=ℓ

fj

)
.

Recall that, by definition, ∆Ri =
(
riℓ − riℓ−1

)t
ℓ=1

is the increment vector of Ri. Let

F̄ℓ =
∑t

j=ℓ fj be the survival function of F at ℓ, ℓ = 0, ..., t (similarly for Ḡℓ), and

let ∆(F̄ − Ḡ) :=
(
F̄j − Ḡj

)t
j=1

be the vector or differences between the two survival

functions. It follows that

EF (R
i)− EG(R

i) =
t∑

ℓ=1

(riℓ − riℓ−1)

(
t∑

j=ℓ

fj −
t∑

j=ℓ

gj

)
= ∆Ri ·∆(F̄ − Ḡ). (10)

Hence, so long as the t increment vectors ∆R1, ...,∆Rt are linearly independent, one

can uniquely determine the vector ∆(F̄ − Ḡ). If all its elements are non-negative, we

conclude that F ⪰FOSD G; otherwise, F ⪰FOSD G does not hold.
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The following lemma is concerned with the payoff functions (asset price functions)

that are widely used in the classical tree model for option pricing. It establishes the

linear independence among increment vectors associated with these payoff functions.

The proof is straightforward and hence omitted.

Lemma 4. Consider t increasing payoff functions Ri(k, t) = S0λ
2k−t
i , k = 0, ..., t,

i = 1, ..., t, over t+1 outcomes (0, t), ..., (t, t), where 1 < λ1 < λ2 < · · · < λt. Then the

increment vectors ∆R1, ∆R2, ...,∆Rt are linearly independent.

Remark. If we have t increasing payoff functions R1, ..., Rt such that EF (R
i) −

EG(R
i) ≥ 0 for every i, then we cannot draw a conclusion whether F ⪰FOSD G holds or

not. To see the reason, suppose there are 3 outcomes and consider two payoff functions

R1, R2 with independent increment vectors ∆R1, ∆R2, ∆R1 = (r11 − r10, r
1
2 − r11),

∆R2 = (r21 − r20, r
2
2 − r21). Let c

i := EF (R
i)− EG(R

i), i = 1, 2. Each ci is nonnegative,

but we do not know its exact value. Then, according to Eq. (10),(
r11 − r10 r12 − r11
r21 − r20 r22 − r21

)(
F̄1 − Ḡ1

F̄2 − Ḡ2

)
=

(
c1

c2

)
≥
(

0

0

)
,

or equivalently,

(F̄1 − Ḡ1)

(
r11 − r10
r21 − r20

)
+ (F̄2 − Ḡ2)

(
r12 − r11
r22 − r21

)
=

(
c1

c2

)
≥
(
0

0

)
.

To ensure F̄1− Ḡ1 ≥ 0 and F̄2− Ḡ2 ≥ 0, the vector
(
c1

c2

)
must lie in the cone of the two

column vectors
(r11−r10
r21−r20

)
and

(r12−r11
r22−r21

)
. But since c1, c2 could be any non-negative number,

unless
(r11−r10
r21−r20

)
and

(r12−r11
r22−r21

)
coincide with the two axes (which is the case for the special

choice of payoff functions in the proof of “if” part of Theorem 1), we cannot guarantee

that F̄1 − Ḡ1 ≥ 0 and F̄2 − Ḡ2 ≥ 0. Figure 2 illustrates such a case.

A.3 Proof of Proposition 3

1 ⇒ 2. By condition 1 of Proposition 2, it suffices to show that for any increasing

function u and non-negative, increasing function w integrable w.r.t. F and G (the case

when at least one of the denominators is 0 is straightforward)

EF |H(u(p)w(p))

EF |H(w(p))
≥

EG|H(u(p)w(p))

EG|H(w(p))
.

By assumption, the probability of observing H is increasing in p (i.e., B(p;H) is in-

creasing in p, where B(p;H) =
∑

h∈H B(p;h)). Hence, for any non-negative increasing

23



0

(r11−r10
r21−r20

)

(r12−r11
r22−r21

)
(
c1

c2

)

Figure 2: Greater value of European options may not imply FOSD.

function w(p), the function w(p)B(p;H) is non-negative, increasing and integrable. By

the Bayes rule,

[F |H](p) =
EF (B(p;H)1[0,p])

EF (B(p;H))
.

It follows from F ⪰HR G that

EF |H(u(p)w(p)))

EF |H(w(p))
=

EF (u(p)w(p)B(p;H))

EF (w(p)B(p;H))

≥ EG (u(p)w(p)B(p;H))

EG (w(p)B(p;H))

=
EG|H(u(p)w(p)))

EG|H(w(p))
.

This is what we set out to prove. More generally, using the same argument, we can

show that F ⪰HR G implies that for any event whose probability is increasing in the

state of nature p, the posterior beliefs conditional on this event preserve the HRD

relation.

2 ⇒ 3. This is trivial, since, by Lemma 1, B(p;H+
t (θ)) is increasing in p for any t

and any θ ∈ (0, 1). Moreover, both HRD and RHRD imply FOSD.

3 ⇒ 1. Suppose F ⪰HR G does not hold. By condition 2 of Proposition 2, there

exists pH > pL in [0, 1] such that [1 − F (pH)][1 − G(pL)] < [1 − G(pH)][1 − F (pL)].

Consequently, 1− F (pL) > 0, 1−G(pH) > 0, and pH < 1, hence

1− F (pH)

1− F (pL)
<

1−G(pH)

1−G(pL)
. (11)

Consider the sets of histories H+
t (pH) := {ht ∈ Ht|θ(ht) > pH} and H+

t (pL) := {ht ∈
Ht|θ(ht) > pL}. By Lemma 2, limt→∞ PF (H

+
t (pL)) = 1−F (pL), limt→∞ PG(H

+
t (pL)) =
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1 − G(pL), limt→∞
∫ 1

0
B(p;H+

t (pL))1(pH ,1]dF =
∫ 1

0
1(pL,1]1(pH ,1]dF = 1 − F (pH), and

limt→∞
∫ 1

0
B(p;H+

t (pL))1(pH ,1]dG = 1−G(pH). It follows that

lim
t→∞

1−
[
F |H+

t (pL)
]
(pH) = lim

t→∞
EF (1(pH ,1]|H+

t (pL))

= lim
t→∞

∫ 1

0
B(p;H+

t (pL))1(pH ,1]dF

PF (H
+
t (pL))

=
1− F (pH)

1− F (pL)
,

and similarly,

lim
t→∞

1−
[
G|H+

t (pL)
]
(pH) =

1−G(pH)

1−G(pL)
.

By assumption, F |H+
t (pL) ⪰FOSD G|H+

t (pL), hence for every t, 1−
[
F |H+

t (pL)
]
(pH) ≥

1−
[
G|H+

t (pL)
]
(pH), which implies that 1−F (pH)

1−F (pL)
≥ 1−G(pH)

1−G(pL)
, contradicting Eq. (11).

1 ⇒ 4. We first establish the following lemma.

Lemma 5. Suppose a set of length-t histories has αi histories with empirical frequency
ki
t
, i = 1, ..., N , where 0 ≤ ki < kj ≤ t whenever i < j, and each αi is a non-negative

integer. Let n be any number between 1 and N . Then the expression∑
i>n αip

ki(1− p)t−ki∑
j≤n αjpkj(1− p)t−kj

(12)

is strictly increasing in p, for p ∈ (0, 1).

Proof. Divide the numerator and the denominator in Eq. (12) by pkn(1−p)t−kn . Then

(12) becomes ∑
i>n αi

(
p

1−p

)ki−kn

∑
j≤n αj

(
p

1−p

)kj−kn
. (13)

Since ki > kn for all i > n and kj < kn for all j < n, and since p
1−p

is strictly increasing

in p, we conclude that all terms in the numerator of (13) are strictly increasing in p,

and all terms in the denominator of (13) are strictly decreasing in p, hence (12) is

strictly increasing in p.

Take any θ ∈ [0, 1] and consider any history ht ∈ H+
t (θ). Then ht partitions H

+
t (θ)

into two disjoint subsets, H≥
t and H<

t , where H≥
t contains those histories in H+

t (θ)

whose empirical frequencies are not smaller than that of ht, and H<
t is the collection

of those histories in H+
t (θ) with strictly smaller frequencies. Let B(p;H≥

t ), B(p;H<
t )
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be the probabilities of observing a history in the sets H≥
t , H

<
t , respectively, when the

true state is p. It suffices to show that
EF (B(p;H≥

t ))

EF (B(p;H+
t (θ)))

≥ EG(B(p;H≥
t ))

EG(B(p;H+
t (θ)))

. By Lemma 1,

B(p;H+
t (θ)) and B(p;H≥

t ) are increasing in p, and by Lemma 5,
B(p;H≥

t )

B(p;H<
t )

is strictly

increasing in p, hence
B(p;H≥

t )

B(p;H+
t (θ))

=
B(p;H≥

t )

B(p;H≥
t )+B(p;H<

t )
is strictly increasing in p. It follows

from the first equivalent condition of Proposition 2 that

EF (B(p;H≥
t ))

EF (B(p;H+
t (θ)))

=
EF

(
B(p;H+

t (θ))
B(p;H≥

t )

B(p;H+
t (θ))

)
EF (B(p;H+

t (θ)))

≥
EG

(
B(p;H+

t (θ))
B(p;H≥

t )

B(p;H+
t (θ))

)
EG(B(p;H+

t (θ)))

=
EG(B(p;H≥

t ))

EG(B(p;H+
t (θ)))

.

This shows that the probability distribution over histories in H+
t (θ) under F FOSD

that under G.

4 ⇒ 1. Suppose F ̸⪰HR G. Then there exits pH > pL in [0, 1] such that Eq. (11)

holds. Let HL
t := {ht ∈ Ht|θ(ht) > pL}, and let HH

t := {ht ∈ Ht|θ(ht) > pH}. By

Lemma 2, we know that as t → ∞, PF (H
L
t ) → 1− F (pL), PF (H

H
t ) → 1− F (pH), and

similarly, PG(H
L
t ) → 1−G(pL), PG(H

H
t ) → 1−G(pH).

By assumption, the probability distribution over HL
t under F FOSD the probability

distribution over HL
t under G, for every t, and so

PF (HH
t )

PF (HL
t )

≥ PG(HH
t )

PG(HL
t )
. In the limit, we

have 1−F (pH)
1−F (pL)

≥ 1−G(pH)
1−G(pL)

, which contradicts Eq. (11).

A.4 Proof of Proposition 4

The proof of the only if direction is essentially the same as the proof of “1 ⇒ 2” of

Proposition 3. We only need to replace B(p;H+
t (θ)) with π(E|p) and note that π(E|p)

is increasing (resp., decreasing) in p by assumption.

For the if direction, regard the conditional probability distribution over length-t

histories given state p as a Blackwell experiment. The desired result follows from the

proof of “3 ⇒ 1” of Proposition 3.

A.5 Proof of Theorem 2

For the “only if” direction, note that for any European call option there exists a cutoff θ

such that the option is exercised in the termination date when the empirical frequency
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is above θ. Let H+
T (θ) = {hT ∈ HT | θ(hT ) ≥ θ} be the set of length-T histories

whose frequencies are greater than θ. It follows from Proposition 3 (the equivalence

between conditions 1 and 4) that the probability distribution over the frequencies in

H+
T (θ) under F first-order stochastically dominates that under G. This together with

the fact that S(k, T ) is increasing in k yields the desired result.

To show the “if” direction, we note that by the equivalence of conditions 1 and 4 of

Proposition 3, it suffices to show that for any θ ∈ (0, 1) and any T , {PF (H
+
T (θ))} ⪰FOSD

{PG(H
+
T (θ))}. Suppose this set of histories contains n+1 different outcomes (i.e., n+1

frequencies) (T, T ), ..., (T −n, T ). Consider the following n European call options with

termination date T and

Si(k, T ) =


S̄ + 1, if T − i ≤ k ≤ T,

S̄, if T − n ≤ k < T − i,

S(k, T ), if 0 ≤ k < T − n

for i = 0, ..., n−1. Here Si(k, T ) is increasing in k and is strictly less than S̄ (hence the

option will not be exercised) for 0 ≤ k < T − n. It follows from the assumption that

the value of every option i conditional on it is being exercised (i.e., T − n ≤ k ≤ T ) is

greater under F than under G that {PF (H
+
T (θ))} ⪰FOSD {PG(H

+
T (θ))}. For European

put options, the proof is similar.

A.6 Proof of Proposition 6

1 ⇒ 2. According to the first equivalent condition of Proposition 5 (Eq. (4)), to

show that F |H ⪰LR G|H for any set of histories H, it suffices to show that for any

increasing function u and any non-negative function w integrable w.r.t. F and G,

EF |H(u(p)w(p))

EF |H(w(p))
≥

EG|H(u(p)w(p))

EG|H(w(p))
.

(In case one of the denominators is 0, Eq. (4) holds trivially.) It follows from F ⪰LR G

that

EF |H(u(p)w(p))

EF |H(w(p))
=

EF (u(p)w(p)B(p;H))

EF (w(p)B(p;H))

≥ EG (u(p)w(p)B(p;H))

EG (w(p)B(p;H))

=
EG|H(u(p)w(p))

EG|H(w(p))
.

This is what we set out to prove.
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2 ⇒ 3. This is trivial, since LRD implies FOSD.

3 ⇒ 1. According to the second equivalent condition of Proposition 5, it suffices to

show that for each p3 < p2 < p1 in [0, 1],

[F (p1)− F (p2)][G(p1)−G(p3)] ≥ [G(p1)−G(p2)][F (p1)− F (p3)]. (14)

We focus on the case in which G(p1) − G(p3) > 0 and F (p1) − F (p3) > 0. If one of

these differences is zero, say G(p1)−G(p3) = 0, then G(p1)−G(p2) = 0 and Eq. (14)

holds trivially. Therefore, we show that

F (p1)− F (p2)

F (p1)− F (p3)
≥ G(p1)−G(p2)

G(p1)−G(p3)
. (15)

First, suppose that p1 < 1 (the proof for the case p1 = 1 is the same and omitted).

Since F and G are right-continuous and each has at most countably many atoms, we

can assume w.l.o.g. that there are no atoms (neither of F , nor of G) at p3, p2 and p1.

Indeed, suppose that p1 < 1 and p1 is an atom. One can find a point q1 > p1 which is

not an atom of F or G (because there are at most countably many atoms). Moreover,

since every CDF is right-continuous, q1 can be chosen to be very close to p1 (from the

right), so that F (q1) and G(q1) are close to F (p1) and G(p1) to the extent that the

inequality in Eq. (15) remains valid when we replace p1 by q1. For the same reason,

w.l.o.g., we can assume that p3 and p2 are not atoms.

Consider the set of equal-length histories Ht := {ht ∈ Ht | p3 < θ(ht) ≤ p1}.
By Lemma 2, limt→∞ PF (Ht) = F (p1) − F (p3) and limt→∞

∫ 1

0
B(p;Ht)1(p2,1]dF =∫ 1

0
1(p3,p1]1(p2,1]dF = F (p1)− F (p2). It follows that

lim
t→∞

(1− [F |Ht](p2)) = lim
t→∞

EF (1(p2,1]|Ht)

= lim
t→∞

∫ 1

0
B(p;Ht)1(p2,1]dF

PF (Ht)

=
F (p1)− F (p2)

F (p1)− F (p3)
.

Similarly,

lim
t→∞

(1− [G|Ht](p2)) =
G(p1)−G(p2)

G(p1)−G(p3)
.

Since F |Ht ⪰FOSD G|Ht, we can deduce that Eq. (15) holds.

Now consider the case in which p3 = 0. Using the same argument, we can show

that for each p2 < p1 in (0, 1], [F (p1) − F (p2)]G(p1) ≥ [G(p1) − G(p2)]F (p1). This

completes the proof that condition 3 implies that F ⪰LR G.
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1 ⇒ 4. Fix a given set of histories Ht. Consider a history ht ∈ Ht. Let θ(ht) be

the empirical frequency of ht. The history ht partitions Ht into two disjoint subsets,

H+
t and H−

t , where H
+
t contains those histories in Ht whose frequencies are no smaller

than that of ht, and H−
t is the collection of those histories in Ht with strictly smaller

frequencies. Let B(p;H+
t ), B(p;H−

t ) be the probabilities of observing a history in the

set H+
t , H

−
t respectively, when the true state is p. It suffices to show that

EF (B(p;H+
t ))

EF (B(p;H−
t ))

≥
EG(B(p;H+

t ))

EG(B(p;H−
t ))

. By Lemma 5,
B(p;H+

t )

B(p;H−
t )

is strictly increasing in p. Hence, it follows from the

first equivalent condition of Proposition 5 (Eq. (4)) that

EF (B(p;H+
t ))

EF (B(p;H−
t ))

=
EF

(
B(p;H−

t )
B(p;H+

t )

B(p;H−
t )

)
EF (B(p;H−

t ))

≥
EG

(
B(p;H−

t )
B(p;H+

t )

B(p;H−
t )

)
EG(B(p;H−

t ))

=
EG(B(p;H+

t ))

EG(B(p;H−
t ))

.

This shows that the probability distribution over histories in Ht under F FOSD that

under G.

4 ⇒ 1. Suppose F ̸⪰LR G. Then by Eq. (5) of Proposition 5, there exist p1, p2, p3 ∈
[0, 1] with p1 > p2 > p3 such that

F (p2)− F (p3)

F (p1)− F (p3)
>

G(p2)−G(p3)

G(p1)−G(p3)
. (16)

As in the proof of “3 ⇒ 1”, w.l.o.g., one can assume that p1, p2, p3 are not atoms (or

p1 = 1).

For any p, q with 0 ≤ p < q ≤ 1, consider the set of histories Ht(p, q) := {ht ∈
Ht | p < θ(ht) ≤ q}, where θ(ht) is the empirical frequency of ht. By Lemma 2,

PF (Ht(p3, p2)) → F (p2) − F (p3) and PF (Ht(p3, p1)) → F (p1) − F (p3) as t → ∞.

Therefore, as t → ∞,
PF (Ht(p3, p2))

PF (Ht(p3, p1))
→ F (p2)− F (p3)

F (p1)− F (p3)
.

Similarly, under prior belief G, as t → ∞,

PG(Ht(p3, p2))

PG(Ht(p3, p1))
→ G(p2)−G(p3)

G(p1)−G(p3)
.

By condition 4, the probability distribution on the set of histories Ht(p3, p1) under

F FOSD that under G. Consequently, PF (Ht(p3,p2))
PF (Ht(p3,p1))

≤ PG(Ht(p3,p2))
PG(Ht(p3,p1))

for any t. Hence, in
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the limit,
F (p2)− F (p3)

F (p1)− F (p3)
≤ G(p2)−G(p3)

G(p1)−G(p3)
,

which contradicts Eq. (16). This completes the proof of Propositoin 6.

A.7 Proof of Proposition 8

We first establish the following result that compares the option value conditional on a

single history ht.

Lemma 6. Suppose F and G are two non-trivial priors that satisfy F ⪰LR G. Then

the value of every American call option conditional on every history ht is greater under

F than under G, i.e., V T
F (k, t) ≥ V T

G (k, t) for every (k, t), t ≤ T .

Proof. Consider an American option characterized by (T, S̄, S(k, t)). We proceed by

induction. For the last period T , V T
F (k, T ) = V T

G (k, T ) = max{0, S(k, T )− S̄} for any

0 ≤ k ≤ T , so the desired result holds trivially. Now suppose the result holds for

t + 1, i.e., V T
F (k, t + 1) ≥ V T

G (k, t + 1) for any 0 ≤ k ≤ t + 1. In period t, suppose

we observe a history ht with outcome (k, t). By Proposition 6, the posteriors satisfy

F |ht ⪰FOSD G|ht. By Proposition 1, conditional on (k, t), the probability distribution

over the two nodes (k+1, t+1) and (k, t+1) under F first-order stochastically dominates

that under G. Hence, PF (U |k, t) ≥ PG(U |k, t). Since V T
F (k+1, t+1) ≥ V T

G (k+1, t+1)

and V T
F (k, t+1) ≥ V T

G (k, t+1), we conclude that V T
F (k, t) ≥ V T

G (k, t) for any (k, t).

When F ⪰LR G, by Lemma 6, the expected continuation value conditional on every

history under F is greater than that under G. We conclude that the set of histories

that lead to the exercise of an American call option is smaller under a likelihood-ratio

dominating prior.

A.8 Proof of Theorem 3

To show the “only if” direction, recall from Proposition 6 (the equivalence of condition

1 and condition 4) that F ⪰LR G implies that the probability distribution over Ht

under F FOSD that under G. Specifically, the probability distribution over histories

in Ht is

PF (ht|Ht) =
EF (B(p;ht))

EF (B(p;Ht))
,

where B(p;ht) =
(
pθ(ht)(1− p)1−θ(ht)

)t
is the probability of observing history ht when

the true state is p, and B(p;Ht) =
∑

ht∈Ht
B(p;ht). The expected option value condi-
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tional on Ht under prior belief F (similarly, under G) is∑
ht∈Ht

PF (ht|Ht)VF (θ(ht)t, t).

The desired result follows from Lemma 6 and that {PF (ht|Ht)} ⪰FOSD {PG(ht|Ht)}.

For the “if” direction, according to the proof of Proposition 6 (4 ⇒ 1), it suffices to

consider the sets of histories of the form Ht(θ, θ̄) := {ht ∈ Ht|θ ≤ θ(ht) ≤ θ̄} for any

0 ≤ θ < θ̄ ≤ 1 and any t, such that the probability distribution over each set Ht(θ, θ̄)

under F FOSD that under G.

Fix such a set Ht(θ, θ̄) and suppose that it has n+1 different outcomes (k0, t), (k0+

1, t), ..., (k0 + n, t). Consider the following n American call options with T = t and

Si(k, t) =


S(k, t), if k0 + n < k ≤ t,

S̄ + 1, if k0 + i ≤ k ≤ k0 + n,

S̄, if k0 ≤ k < k0 + i,

S(k, t), if 0 ≤ k < k0,

for i = 1, 2, ..., n, where S(k, t) is increasing in k and is larger than S̄ + 1 for k0 + n <

k ≤ t, and smaller than S̄ for 0 ≤ k < k0. For t
′ < t, choose Si(k, t′) such that

Si(k, t′)− S̄ ≤ δmin
{
PF (U |k, t′)V t

F (k + 1, t′ + 1) + PF (D|k, t′)V t
F (k, t

′ + 1),

PG(U |k, t′)V t
G(k + 1, t′ + 1) + PG(D|k, t′)V t

G(k, t
′ + 1)

}
,

where V t
j (k + 1, t′ + 1), V t

j (k, t
′ + 1), j = F,G, are obtained recursively backward via

Eq. (6). Hence, for each such American call option, it is optimal to hold the option

until the termination date T = t under both F and G, and exercise it when k ≥ k0.

It follows from the assumption that the expected value of each option conditional on

Ht(θ, θ̄) is greater under F than under G that the probability distribution over Ht(θ, θ̄)

under F FOSD that under G.
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