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Abstract

We study the problem in which a set of agents are required to produce across

several different projects (or more generally, agendas) and we consider environ-

ments in which resources are constrained and investing (say, time or effort) in one

agenda reduces the ability to invest in other agendas. To this end we introduce

a class of capacities we refer to as set-valued: the value of each coalition is a

subset of a vector space. For a particular coalition, each vector in its value is

associated with a different distribution of the resources invested across the differ-

ent agendas. In this context the Choquet and the concave integrals are defined,

characterized, and shown to be identical if and only if the underlying set-valued

capacity is supermodular. We apply the tools developed and introduce a new

decision theory.
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1 Introduction

Typically a capacity measures the ‘worth’ of any sub-group of individuals. This value

can be interpreted as the productivity of the sub-group under consideration when

investing time and effort in a particular enterprise, its social or political power, etc.1

Often times though there are multiple enterprises that could be invested in while the

resources, say time, are constrained. In such scenarios there are many different time

allocations to each of the different projects, each allocation resulting in a different

outcome. It seems that if one wishes to model such tradeoffs without pre-committing

to a specific time allocation, and thereby to a specific level of production in each project,

one needs to consider a more general notion of a capacity than the classical ones.2

In this paper we introduce and study the concept of set-valued capacities : each sub-

group of individuals is associated with a set of real valued vectors. The set of vectors

associated with a subgroup is all possible production possibilities across the different

enterprises. Note that this approach does not take a stand on the aggregation of (or

preferences over) payoffs across the different agendas3. We seek to study the primitive,

as opposed to the reduced form, and wish to consider a model that is robust to the

aggregation process across the different agendas. As in the classical theory, we address

the issue of integration.

Suppose that each worker i out of a set of workers N can invest only Xi time units.

If we wish to measure the productivity of the grand group conditional on these indi-

vidual time constraints, we need to extend the set-valued capacity (henceforth, SVC),

v, from coalitions to a given time profile (X1, ..., Xn). We generalize the definition of

the concave integral (Lehrer [15] and Lehrer and Teper [17]), which is a natural aggre-

gator when the underlying objective is maximizing productivity. We also introduce the

1Another common use of capacities is in the context of uncertainty. The capacity is defined over a

set of states and “measures” the likelihood of each subset.
2A different problem is introduced in Gonzalez and Grabisch [8]. They study a classical one project

problem with coalitional-time constraints.
3These, for example, could be the preferences of the different individuals (or a third party, say, a

manager, the market, etc.). This point is further discussed in Section 5.
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counterpart of the Choquet integral4 in the current setting5. We study both integrals

and characterize them. Lastly, in order to understand exactly when it is that the two

aggregators yield different outcomes, a necessary and sufficient condition is provided

under which the two notions coincide, generalizing the classical result by Lovàsz [18].

We apply the idea of integration with respect to SVCs and introduce a decision

theory. The primitive in this theory is a preference relation over individuals’ time

investment profiles (Rn
+). Such preferences are induced by the respective profiles with

respect to an SVC. These preferences are subjective and are determined by the SVC

and the integration mechanism. These preferences are clearly incomplete, since we

do not take a stand on how the different agendas are aggregated (this is related to

the point discussed above). At this stage we consider a general utility function (or,

preferences) over the different production possibilities across the different agendas, and

resort to such utility to complete our preferences over time investment profiles.

The paper is organized as follows. Section 2 introduces the notion of set-valued

capacities. Section 3 defines the concave integral w.r.t. SVCs and studies its charac-

terization. Section 4 addresses similar questions regarding the Choquet integral. It

also provides a necessary and sufficient condition for the two integration schemes to

coincide. Section 5 introduces a decision theory founded on integration with respect to

SVCs. Final comments are discussed in Section 6. All proofs appear in the Apendix.

4The incorporation of Choquet’s theory [3] to decision sciences is due to Schmeidler [22]. He

proposed an alternative to the classical subjective expected utility theory due to findings by Ellsberg [5]

that such theory is not consistent with experimental findings (later Schmeidler’s theory was extended

to the domain of risk due to similar paradoxes that were raised by Allais [1]).
5Beyond Choquet integral and the concave integral there are other integral schemes that are not

discussed here (see Grabisch [10] for a recent comprehensive monograph on the topic). Examples are

the partitional integral (also known as Riemann or Pan integral; see Wang et al. [26]) and Shilkret [23].

The first two are types of decomposition integrals (see Even and Lehrer [6]) that can be expressed in

terms of decompositions of the time X between different subgroups of N .
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2 Set-Valued Capacities

2.1 The definition

Let N = {1, ..., n} be a finite set of players and k ∈ N. A coalition S is any subset of N ,

S ⊆ N . According to the classical definition, a capacity (also known as a cooperative

game) v associates a real valued number, v(S), to each coalition S ⊆ N . A set-valued

capacity is a generalization of this notion and associates to each coalition a subset of

vectors in Rk
+.

Definition 1. A set-valued capacity (SVC) over a collection N of players, is a function

v : 2N → 2Rk
+ defined over all subsets of N , and satisfies:

1. v(∅) = {0};

2. Closedness. For every S ⊆ N , v(S) is a closed set;

3. Comprehensiveness. If x ∈ v(S) and y ∈ Rk
+ is such that6 y ≤ x, then y ∈ v(S).7

4. Monotonicity. If S ⊆ T ⊆ N , then v(S) ⊆ v(T ).

We will explicitly refer to a classical capacity as such, as opposed to the more

general set-valued capacity that will be referred to as SVC. In the remainder of this

section we discuss possible properties of an SVC and its relation to capacities. The

role of the definitions and examples we introduce is to motivate the notion of an SVC,

and to familiarize the reader with this notion and related definitions pertinent to the

analysis in subsequent sections.

2.2 Set-valued and classical capacities

The values that an SVC takes are subsets of Rk
+. A capacity, on the other hand, is

defined, like an SVC, on subsets of N , but takes numbers as values. However, there

is a natural connection between the two notions. A capacity v is related to SVC v

6y ≤ x means that yj ≤ xj for every j = 1, ..., k.
7More generally, if ϕ is a function with domain RN

+ and range 2R
k
+ , then we say that ϕ is closed if

ϕ(X) is closed for every X ∈ Rn
+. Furthermore, ϕ is comprehensive if for every X ∈ RN

+ , whenever

x ∈ ϕ(X) and y ∈ Rk
+ such that y ≤ x, then y ∈ ϕ(X).
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that takes values in R+, that is, k = 1. In this case the values that v takes are

closed intervals whose left side is 0. The capacity associated with such v is defined as

v(S) = max v(S) for every S ⊆ N . And vice versa: if v is a capacity then the SVC

associated with it is the one defined as v(S) = [0, v(S)] for every S ⊆ N .

2.3 A multi-capacity based SVC

Consider a family of k ∈ N capacities v1, ..., vk, and define a SVC v by

v(S) :=

{
(α1v1(S), ..., αkvk(S)) ∈ Rk

+; αj ≥ 0 ∀j,
k∑
j=1

αj ≤ 1

}
. (1)

Note, if all vj’s are capacities (in particular monotonic), then v satisfies all the prop-

erties in Definition 1 and is indeed an SVC.8

This definition could be interpreted as follows. Consider vj(S) to be the amount

of project j coalition S can complete in one unit of time. Therefore, if the coalition

invests αj(S) in project j, and if
∑k

j=1 αj(S) ≤ 1, then in one time unit, a vector

(α1v1(S), ..., αkvk(S)) can be produced by coalition S. An SVC of this kind is referred

to as multi-capacity based.

The base capacities (vj’s) capture the stand-alone productivity (or, value) for each

project. The SVC (v) defined through these capacities reflects the natural time con-

straints and tradeoffs between investing in the different projects. Clearly, not every

SVC is multi-capacity based, but the interpretation remains: v(S) captures the pro-

ductivity of coalition S and reflects the time constraints faced by the coalition when

contemplating how much time (or, more generally, resources) to invest in each project.

The following example illustrates the structure of a multi-capacity based SVC.

Example 1. Let N = {1, 2, 3}, k = 2, and define the following SVC: v(N) = {(w1, w2);

w1 + w2 ≤ 3},v(1, 2) = {(w1, w2); 2w1 + w2 ≤ 3},v(2, 3) = {(w1, w2); w1 + 2w2 ≤
3},v(1, 3) = {(w1, w2); w1 + w2 ≤ 2} and v(i) = {(w1, w2); w1 + w2 ≤ 1}, i = 1, 2, 3.

This SVC is multi-capacity based. Indeed, define two capacities v1, v2 in the fol-

lowing manner. v1(N) = 3, v1(1, 2) = 1.5, v1(2, 3) = 3, v1(1, 3) = 2, and v1(i) = 1 for

8If vj(∅) = 0 then v(∅) = {0}. Closedness is obtained by the weak inequalities of Eq. 1. Compre-

hensiveness is obtain by the requirement that the sum
∑k

j=1 αj may be smaller, and not necessarily

equal, to 1. Lastly, monotonicity is obtain by the monotonicity of all the vj ’s.
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every player i ∈ N . Similarly, v2(N) = 3, v2(1, 2) = 3, v2(2, 3) = 1.5, v2(1, 3) = 2, and

v2(i) = 1 for every player i ∈ N . It is easy to verify that v is a multi-capacity based

(on v1, v2) SVG.

2.4 Additive SVCs

An SVC v is additive if for every two disjoint coalitions, S, T ⊆ N ,

v(S) + v(T ) = v(S ∪ T ). (2)

It is clear that v is additive if and only if for every S ⊆ N , v(S) =
∑

i∈S v(i). In terms

of productivity, each worker’s productivity is independent of the group she is working

with: her contribution to a group is always the set of vectors she can produce alone.

Gould integral (see [9]) is defined in a general setup where v is additive and taking

values that are subsets of a Banach space. In our finite case, when v is additive, the

Gould integral is defined as

Ev(X) =
n∑
i=1

Xiv(i) (3)

for every X ∈ Rn
+. The notation E refers to the expectation and is chosen to distinguish

it from an integral. Indeed, Eq. (3) resembles that of the expectation and we will later

refer to it as the expectation w.r.t. v.

2.5 Convex-valued functions

We say that an SVC v is convex-valued if v(S) is convex for every S ⊆ N . More

generally, if ϕ is a function with domain RN
+ and range 2Rk

+ , then we say that ϕ is

convex-valued if ϕ(X) is a convex set for every X ∈ RN
+ . Whenever an SVC v (or,

more generally, a set-valued function ϕ) is convex-valued and closed we say that it is

convex-closed.

2.6 The induced capacity

The following definition will be helpful in analyzing the core of an SVC in subsequent

sections. Let λ be a non-negative vector in Rk (i.e., λ ∈ Rk
+) and v be an SVC over N .
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Definition 2. The λ-induced-capacity of v is the capacity vλ defined by9

vλ(S) = max
y∈v(S)

y · λ (4)

for every S ⊆ N .

One possible interpretation for λ could be that it is a weight function across the

different agendas,10 and that payoff vectors are evaluated according to a separable

utility function with weights being λ.

Remark 1. Note that for every S ⊆ N , v(S) ⊆ {y ∈ Rk
+; y · λ ≤ vλ(S)}.

3 The Concave Integral w.r.t. SVCs

Definition 3. Let v be an SVC and11 X ∈ Rn
+. The concave integral of X w.r.t. v is∫ cav

Xdv =

{∑̀
j=1

αjyj;
∑̀
j=1

αj1Aj
≤ X, yj ∈ v(Aj), αj ≥ 0, Aj ⊆ N, j = 1, ..., `

}
. (5)

The concave integral has a natural interpretation in the context of production.

Indeed, an SVC, v, reflects the different production possibilities of every coalition

(given one unit of time). Then, if each individual i ∈ N is time constrained by Xi,

then
∫ cav

Xdv reflects all production possibilities given the time constraints profile X.

In particular, the concave integral takes into account all the tradeoffs between how

much time different coalitions invest in the different projects, when the overall time

constraint for individual i (regardless of which coalitions she partakes in) is Xi.

Remark 2. a (i) In Eq. (5) one can replace the inequality condition
∑`

j=1 αj1Aj
≤ X

with the equality condition
∑`

j=1 αj1Aj
= X to obtain an equivalent definition of the

concave integral. This is due to comprehensiveness and monotonicity of v.

(ii) The concave integral for a capacity v, as defined by Lehrer [15], is given by:∫ cav

Xdv = max

{∑̀
i=j

αjv(Aj);
∑̀
i=j

αj1Aj
≤ X,αj ≥ 0, Aj ⊆ N, j = 1, ..., `

}
. (6)

9y · λ denotes the inner product of y and λ.
10See also the related discussion in Section 5.
11From here on and without explicitly specifying it, X stands for a non-negative vector in Rn.
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One can see the differences and the similarities between Eqs. (5) and (6). While the

integral in Eq. (5) takes sets as values, the one in Eq. (6) takes numbers as values.

When k = 1, the set Eq. (5) is an interval whose maximal number equals Eq. (6).

Lemma 1. For every v (convex-valued or not),
∫ cav · dv is convex-valued.

The following proposition is useful since it ties the concave integral w.r.t. an SVC

to standard integration w.r.t. the induced capacities.

Proposition 1. A set-valued function ϕ, defined on Rn
+, coincides with

∫ cav · dv if

and only if ϕ satisfies,

(i) For every X ∈ Rn
+, ϕ(X) is convex-closed and satisfies comprehensiveness; and

(ii) For every λ ∈ Rk
+,

max
y∈ϕ(X)

y · λ =

∫ cav

Xdvλ. (7)

3.1 A characterization of the concave integral

This section provides a characterization of the concave integral w.r.t. SVCs. It follows

the spirit of the characterization of the integral w.r.t. capacities that appears in Lehrer

[15]

Definition 4. Let ϕ be a set-valued function defined on Rn
+ whose values are subsets

of Rk
+.

(i) ϕ is homogeneous if for every α ≥ 0 and X ∈ Rn
+, ϕ(αX) = αϕ(X).

(ii) ϕ is concave if for every α ∈ (0, 1) and X, Y ∈ Rn
+,

αϕ(X) + (1− α)ϕ(Y ) ⊆ ϕ(αX + (1− α)Y ).

Fix an SVC v. Beyond the properties in Definition 4, we introduce two additional

axioms on ϕ:

DOM. If p is an additive capacity and for every S ⊆ N , v(S) ⊆ p(S), then ϕ ⊆ Ep,

that is,

ϕ(X) ⊆ Ep(X)
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for every X ∈ Rn
+.

DOM states12 that if an additive SVC p dominates v, then the integral w.r.t. v is

dominated by the expectation w.r.t. p.

INCL. For every S ⊆ N , v(S) ⊆ ϕ(1S).

Theorem 1. Fix an SVC v. Let ϕ be a set-valued function defined on Rn
+. The two

following statements are equivalent:

(i) ϕ is homogeneous, concave, comprehensive, convex-closed and satisfies DOM and

INCL;

(ii) ϕ(X) =
∫ cav

Xdv for every X ∈ Rn
+.

Remark 3. The concave integral possesses the monotonicity properties: for every X, Y

where X ≤ Y ,
∫ cav

Xdv ⊆
∫ cav

Y dv.

4 The Choquet integral

A list A1, A2, ..., A` of subsets of N is a chain if it is increasing w.r.t. inclusion, that is

A1 ⊆ A2 ⊆ ... ⊆ A`.

Definition 5. Let X ∈ Rn
+. The Choquet integral w.r.t. v is defines as follows:∫ Ch

Xdv =

{∑̀
i=1

αiyi;
∑̀
i=1

αi1Ai
≤ X, (8)

yi ∈ v(Ai), αi ≥ 0, i = 1, ..., ` and A1, A2, ..., A` is a chain

}
.

Remark 4. It is obvious from the definitions that for every X,
∫ Ch

Xdv ⊆
∫ cav

Xdv.

The following lemma is analogous to Lemma 1, but its proof is a bit more involved

and appears in the appendix.

12Note that only when the SVC, v, has been fixed, DOM can be formulated. It is possible to be

more explicit about this when defining the property, and refer to it as v-DOM. There will be no

confusion in what follows as to which SVC DOM refers to. Thus, we will use the abbreviated name

DOM. This also holds for additional properties presented below.
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Lemma 2. For every v (convex-valued or not):

1.
∫ Ch · dv is convex-valued; and

2.
∫ Ch

1Sdv = conv(v(S)), for every S ⊆ N .

The following result provides conditions under which the Choquet integral can be

written in a more standard fashion.

Lemma 3. v is convex-valued if and only if for every X ∈ Rn
+∫ Ch

Xdv =

{
n∑
i=1

(Xπ(i) −Xπ(i−1))yi; yi ∈ v
(
{π(i), ..., π(n)}

)
, i = 1, ..., n

}
, (9)

where π is a permutation on N such that 0 =: Xπ(0) ≤ Xπ(1) ≤ ... ≤ Xπ(n−1) ≤ Xπ(n).

To see why Eq. (9) holds, note that it is sufficient to show that it holds for indicators

(that is, 1S for every S ⊆ N). And indeed, Eq. (9) holds for indicators due to item 2

of Lemma 2 above.

Proposition 2. A set-valued function ϕ defined on Rk
+ coincides with

∫ Ch · dv if and

only if ϕ satisfies,

1. For every X ∈ Rn
+, ϕ(X) is convex-closed and satisfies comprehensiveness; and

2. For every λ ∈ Rk
+,

max
y∈ϕ(X)

y · λ =

∫ Ch

Xdvλ. (10)

The proof of this proposition is similar to that of Proposition 1 and is therefore

omitted.

4.1 Characterizing the Choquet integral

For the sake of completeness we provide a characterization of the Choquet integral. It

follows the footsteps of Schmeidler’s characterization in the classical case. The main

concept needed is co-monotonicity.
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Definition 6. We say that X, Y ∈ Rn
+ are co-monotonic if for every i, j ∈ N , (Xi −

Xj)(Yi − Yj) ≥ 0.

CO-MON. ϕ is co-monotonic additive, that is, ϕ(X +Y ) = ϕ(X) +ϕ(Y ) for every two

co-monotonic X, Y .

COINC. For every S ⊆ N , ϕ(1S) = v(S).

Theorem 2. Fix a convex-valued SVC v. Let ϕ be a set-valued function defined on

Rn
+. The two following statements are equivalent:

(i) ϕ is homogeneous, comprehensive, convex-closed and satisfies CO-MON and CO-

INC;

(ii) ϕ(X) =
∫ Ch

Xdv for every X ∈ Rn
+.

Given the existing theory on the Choquet integral, the proof is rather straight-

forward and is left for the reader. It is worth noting that Theorem 2 deals with

convex-valued capacities while Theorem 1 does not impose this restriction. In case the

values the capacity obtains are not convex, Choquet integral does not satisfy COINC.

Indeed, let v be an SVC and define a new SVC v̂Ch by

v̂Ch(S) =

∫ Ch

1Sdv,

for every S ⊆ N . When v is convex-valued then v = v̂Ch, but v ⊆ v̂Ch otherwise.

It is immediate however that
∫ Ch

Xdv =
∫ Ch

Xdv̂Ch for every X ∈ Rn
+. And in

particular,13
∫ Ch

1Sdv = conv(v(S)). Thus, in the general case the characterization of

the Choquet integral would take the following form.14

COINC-CONV. For every S ⊆ N , ϕ(1S) = conv(v(S)).

13conv(v(S)) denotes the convex hull of v(S).
14Parts of this hold for the concave integral as well. Note that the concave integral satisfies INCL,

which is strictly weaker than COINC and even than ϕ(1S) = conv(v(S)). In fact, it is easy to think

of examples for which
∫ cav

1Sdv strictly contains conv(v(S)). Nevertheless, we can define v̂cav by

v̂cav(S) =
∫ cav

1Sdv for every S ⊆ N , and it still holds that
∫ cav

Xdv =
∫ cav

Xdv̂cav for every

X ∈ Rn
+.
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Theorem 3. Fix an SVC v. Let ϕ be a set-valued function defined on Rn
+. The two

following statements are equivalent:

(i) ϕ is homogeneous, comprehensive, convex-closed and satisfies CO-MON and COINC-

CONV;

(ii) ϕ(X) =
∫ Ch

Xdv for every X ∈ Rn
+.

Remark 5. Like the concave integral, the Choquet integral satisfies monotonicity. In

addition, it satisfies translation-covariance: for every X and a constant c > 0,
∫ Ch

X+

c1Ndv =
∫ Ch

Xdv + cv(N).

4.2 Supermodular SVCs

In this section we provide a condition that is necessary and sufficient for the two

integrals to coincide.

Definition 7. An SVC v is supermodular if for every S, T ⊆ N ,

v(S) + v(T ) ⊆ v(S ∪ T ) + v(S ∩ T ).

Theorem 4.
∫ Ch · dv =

∫ cav · dv if and only if v is supermodular.

5 SVCs and Decision Making

In the sections above we introduced the notion of an SVC and proposed a theory of

aggregation with respect to it. This section shows how these concepts can be applied

in the context of decision making.

To that end fix an SVC, v, and an integral operator
∫
·dv. The integral can be

the Choquet integral, the concave integral, or perhaps another aggregation operator.

The (chosen) integral with respect to the SVC v induces a natural ranking of all time-

constraint profiles across the different individuals 1, ..., n.

Formally, for any two time-constraint profiles X, Y ∈ Rn
+ define a partial order �

as follows:

X � Y if and only if

∫
Xdv ⊇

∫
Y dv. (11)
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The interpretation is that a time-constraint profile X is preferred to a time-constraint

profile Y if and only if the production possibilities given the SVC v under the profile X

include all the production possibilities under the profile Y . Under comprehensiveness

(see Definition 1) the condition in Eq. 11 is also equivalent to the Pareto frontier of∫
Xdv dominating that of

∫
Y dv.

The preference relation � given in Eq. (11) is typically partial, that is, there might

be two time-constraint profiles X and Y such that neither X � Y nor Y � X. This

brings us to the issue of selection out of
∫
Xdv and the completion of �.

As discussed in the introduction, unlike the classical theory of capacities, v and

its extension to
∫
Xdv explicitly model the tradeoffs of investing in different projects

conditional on the time investment profile X. Nevertheless, it is quite intuitive to

consider how the preferences15 (over elements in Rk
+) of a third party, say a manager

who is responsible to the overall production conditional on market demand, prices, etc.,

shape the selection out of
∫
Xdv for every time-constraint profile X. More formally,

consider a utility function U : Rk
+ → R aggregating the different values across the k

different agendas. Given a time-constraint profile X, the selection out of
∫
Xdv given

the utility function U will be16 argmaxx∈
∫
XdvU(x).

Now, define a preference relation �∗ over Rn
+ as follows: for any two time-constraint

profiles X, Y ∈ Rn
+,

X �∗ Y if and only if max
x∈

∫
Xdv

U(x) ≥ max
y∈

∫
Y dv

U(y). (12)

Notice, �∗ is a complete preference relation and is a completion of �. That is,

X � Y ⇒ X �∗ Y.

It turns out that whenever U is linear (and monotone), that is there exists a λ ∈ Rn
+

such that U(x) = λ · x, for every x ∈ Rn
+, the selection according to λ is equivalent to

taking the integral with respect to the induced capacity vλ. In other words, there is

15Note that these preferences over production possibilities are not the primitive. They do, however,

together with the SVC and the integration method, determine the primitive (preferences over time-

constraint profiles).
16Standard results in the analysis of multi-variate calculus (Berge’s theorem of the maximum)

guarantee that under “nice” properties of U over production possibilities, the selection will be well

behaved.
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invariance to changing the order of integration and maximization. We formalize this

in the following proposition, which is implied directly by Proposition 1 for the concave

integral, or Proposition 2 for the Choquet integral.

Proposition 3. Let v be an SVC and λ ∈ Rn
+. Then,

max
x∈

∫
Xdv

λ · x =

∫
Xdvλ

for every X ∈ Rn
+.

Lastly, note that when U is not linear, a generalization of the proposition does not

hold. That is, letting vU be defined as vU(S) = maxy∈v(S) U(y) for every coalition S,

it is not true that maxx∈
∫
Xdv U(x) =

∫
XdvU for every X. A clear example for that is

whenever U is strictly concave (or strictly convex).

We conclude with noting that the preference � over time constraint profiles could

be considered subjective. It depends both on the ability of the different coalitions

to produce across the different agendas (namely, the SVC v), and on the integration

method applied. In the context of production, it seems more natural to consider

the concave integral, since it allows for more production possibilities than the Choquet

integral (see Remark 4). Then, in the selection process (provided by the utility function

U as discussed above), the decision maker can only benefit.

6 Final Comments

6.1 Integral of set-valued functions.

This paper deals with integration of functions w.r.t. set-valued capacities. This sub-

ject should not be confused with integration of set-valued function w.r.t. a (classical)

measure, like Aumann (1965) integral.

6.2 Other integrals.

We discussed two types of integrals: the concave and Choquet. These two integrals are

specific types of decomposition integrals (see Even and Lehrer [6]). Other important
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integrals of this family are Riemann (or Pan) and Shilkret [23]. Riemann integral has

been introduced by Gavriluţ [7] (see also Wang et al. [26]) as an extension of Gould

[9] integral in the case where the capacity is sub-additive (i.e., for every two disjoint

sets S, T ⊆ N , v(S ∪ T ) ⊆ v(S) + v(T )). The concept of decomposition integral,

among which are Riemann and Shilkret integrals, can be generalized in a natural way

to set-valued capacities.

Another type of integral that should be mentioned in this context is Sugeno [25]

integral. The question of how to define the Sugeno integral w.r.t. set-valued games is

left for the future.

Other approaches were proposed in the literature. One approach (see de Campos et

al. [4]) unifies Choquet and Sugeno integrals through four essential properties. Another

approach (see Klement et al. [13, 14]) building on Choquet, Sugeno [25] and Shilkret

integrals, defines a universal integral. Both methods use different binary operations

instead of the regular addition and multiplication.
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A Proofs

Proof of Lemma 1 . Fix X and let
∑`1

i=1 αiyi ∈
∫ cav

Xdv, where
∑`1

i=1 αi1Ai
≤

X, yi ∈ v(Ai), αi ≥ 0, Ai ⊆ N, i = 1, ..., `1 and
∑`2

j=1 βjzj ∈
∫ cav

Xdv where
∑`2

j=1 βj1Bj
≤

X, zj ∈ v(Bj), βj ≥ 0, Bj ⊆ N, j = 1, ..., `2. Let γ ∈ (0, 1). Then,
∑`1

i=1 γαi1Ai
+∑`2

j=1(1 − γ)βj1Bj
≤ X and thus,

∑`1
i=1 γαiyi +

∑`2
j=1(1 − γ)βjzj ∈

∫ cav
Xdv which

shows that
∫ cav

Xdv is convex.

Proof of Proposition 1. It is clear that ϕ =
∫ cav · dv satisfies (i). As for (ii), con-

sider λ ∈ Rk
+ and X ∈ Rn

+. We show first that maxy∈ϕ(X) y · λ ≤
∫ cav

Xdvλ. Sup-

pose that
∑`

i=1 αiyi ∈
∫ cav · dv. It means that there exist Ai ⊆ N, i = 1, ..., `

17



such that
∑`

i=1 αi1Ai
≤ X, yi ∈ v(Ai) and αi ≥ 0, i = 1, ..., `. In particular, yi ·

λ ≤ maxz∈v(Ai) z · λ. For i = 1..., `, denote zi := argmaxz∈v(Ai)
z · λ. Thus, (a)∑`

i=1 αizi ∈
∫ cav

Xdv; and (b) (
∑`

i=1 αiyi) · λ ≤ (
∑`

i=1 αizi) · λ. We conclude that

for any y ∈
∫ cav

Xdv, y · λ ≤
∫ cav

Xdvλ, and hence the desired inequality. In order to

show the converse inequality, let
∫ cav

Xdvλ =
∑`

i=1 αivλ(Ai), where
∑`

i=1 αi1Ai
≤ X

and Ai ⊆ N,αi ≥ 0, i = 1, ..., `. In particular, vλ(Ai) = yi · λ for yi ∈ v(Ai). Thus,∑`
i=1 αiyi ∈

∫ cav
Xdv, which completes the proof of (ii).

Now suppose that ϕ satisfies (i) and (ii), then ϕ =
∫ cav · dv. Suppose to the con-

trary that there is X such that ϕ(X) 6=
∫ cav

X dv. Suppose that there exists y ∈
ϕ(X) \

∫ cav
X dv. Since both ϕ(X) and

∫ cav
X dv are closed, convex and satisfy com-

prehensiveness there is a separating λ ∈ Rk
+ which satisfies: y · λ > max

z∈
∫ cav X dv

z · λ.

However, from the first part of the proof we know that max
z∈

∫ cav X dv
z ·λ =

∫ cav
Xdvλ.

We therefore obtain that y · λ >
∫ cav

Xdvλ, which contradicts (ii). The case where

there exists y ∈
∫ cav

X dv \ ϕ(X) is handled in a similar fashion and the proof is

complete.

Proof of Theorem 1. We show first that (ii) implies (i). From Lemma 1 and Propo-

sition 1 we get that the set-valued function
∫ cav ·dv is comprehensive and convex-closed

valued. Homogeneity and INCL are obvious. It remains to show that
∫ cav ·dv is con-

cave and satisfies DOM. Due to homogeneity, in order to show concavity of
∫ cav ·dv it is

sufficient to prove that
∫ cav

Xdv+
∫ cav

Y dv ⊆
∫ cav

X+Y dv. Indeed, let x ∈
∫ cav

Xdv

and y ∈
∫ cav

Y dv. Then, x ∈
∑

S αSv(S), where
∑

S αS1S = X and αS ≥ 0 for every

S. Similarly, y ∈
∑

T βTv(T ), where
∑

T βT1T = Y and βS ≥ 0 for every T . Thus,

x + y ∈
∑

S αSv(S) +
∑

T βTv(T ) while
∑

S αS1S +
∑

T βT1T = X + Y and all the

coefficient are non-negative. We therefore obtain that x+y ∈
∫ cav

X+Y dv as desired.

The proof that
∫ cav ·dv satisfies DOM is also easy. Let X ∈ Rn

+ and suppose that

v(S) ≤ p(S). Let x ∈
∫ cav

Xdv. Then, x ∈
∑

S αSv(S), where
∑

S αS1S = X and

αS ≥ 0 for every S. However,
∑

S αSv(S) ⊆
∑

S αSp(S) and since p is comprehensive,

x ∈
∑

S αSp(S) = Ep(X) (where the last equality is due to the additivity of p).

We now turn to the less trivial direction: (i) implies (ii). Due to INCL and the

fact that ϕ is concave, it is clear that
∫ cav

Xdv ⊆ ϕ(X) for every X ∈ Rn
+. In order

to show the converse inclusion, for every X ∈ Rn
+ and λ ∈ Rk

+ denote cλ(X) :=

argmaxy∈
∫ cav Xdvy · λ. Since

∫ cav
Xdv is closed, cλ(X) is well defined.

Assume there is an X ∈ Rk
+ for which ϕ(X) \

∫ cav
Xdv 6= ∅ and let x ∈ ϕ(X) \

18



∫ cav
Xdv. Since

∫ cav
Xdv is comprehensive and convex, there exists a λ ∈ Rk

+ such

that maxy∈
∫ cav Xdvy · λ < x · λ. In addition, due to DOM, if p is an additive SVC such

that v(S) ⊆ p(S) for every S, we have that x · λ ≤ maxy∈Ep(X) y · λ, implying that

maxy∈
∫ cav Xdv y ·λ < maxy∈Ep(X) y ·λ. Thus, in order to show that

∫ cav
Xdv ⊇ ϕ(X), it

is sufficient to show that for every X ∈ Rn
+, λ ∈ Rk

+ and x ∈ cλ(X) there is an additive

p such that v(S) ⊆ p(S) for every S ⊆ N , where x ∈ argmaxy∈Ep(X)y · λ.
Indeed, consider the function

∫ cav ·dvλ. It is homogeneous and concave. As such, it

has a vector p ∈ Rn such that
∫ cav

Y dvλ ≤ Y · p for every Y ∈ Rn
+, while

∫ cav
Xdvλ =

X · p. Denote

p(S) = {x ∈ Rk
+; x · λ ≤ 1S · p}.

Note that Ep(X) = {x ∈ Rk
+; x · λ ≤ X · p}.

Due to Remark 1, v(S) ⊆ {y ∈ Rk
+; y · λ ≤ vλ(S)} and since vλ(S) ≤

∫ cav
1Sdvλ,

we obtain, v(S) ⊆ {y ∈ Rk
+; y · λ ≤

∫ cav
1Sdvλ} ⊆ {y ∈ Rk

+; y · λ ≤ 1S · p} = p(S)

implying that p dominates v.

Now consider x ∈ cλ(X). Since, x ∈
∫ cav

Xdv, x =
∑

S αSxS, where xS ∈ v(S),∑
S αS1S = X and αS ≥ 0 for every S. Moreover, since x ∈ cλ(X), for every S with

αS > 0, xS ∈ cλ(1S), meaning that xS ·λ =
∫ cav

1Sdvλ. Thus, x ·λ =
∫ cav

Xdvλ = X ·p.
Thus, x ∈ Ep(X) and moreover, x ∈ argmaxy∈Ep(X)y · λ. This completes the proof.

Proof of Lemma 2. We start with the first item of the lemma. Fix X and consider

y =
∑`1

i=1 αiyi ∈
∫ Ch

Xdv, where Y :=
∑`1

i=1 αi1Ai
≤ X, yi ∈ v(Ai), αi ≥ 0, i = 1, ..., `1

and A1, ..., A`1 is a chain. We show the following claim.

Claim: There exists w ∈
∫ Ch

Xdv and a permutation π of {1, ..., n} such that (a)

w ≥ y; (b) w =
∑n

j=1 δjwj where δj ≥ 0, j = 1, ..., n; and (c) wj ∈ v({π(j), ..., π(n)}).

Proof of Claim. Let Z be such that (1) X ≥ Z ≥ Y , (2) there is z ∈
∫ Ch

Zdv such

that z ≥ y; and (3) Z is a maximal of those satisfying (1) and (2). That is, if there is

X ≥ Z ′ ≥ Y satisfying (2) and Z ′ ≥ Z, then Z ′ = Z.

Suppose first that Z = X. In the chain decomposition17 of Z there might be

multiple appearances of the same set. Consider its most concise version, where each

set in the chain appears only once. The proof of Proposition 1 of Even and Lehrer

17By a decomposition of X we mean ` sets A1, ..., A` and ` non-negative coefficients α1, ..., α` such

that
∑`

i=1 αi1Ai
= X. When A1, ..., A` is a chain, we refer to it as a chain decomposition.
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[6] shows that the only chain decompositions of X has the form
(
{π(i), ..., π(n)}

)n
i=1

,

where π is a permutation on N such that Xπ(1) ≤ ... ≤ Xπ(n−1) ≤ Xπ(n). In this case,

X =
∑n

i=1(Xπ(i) −Xπ(i−1))1{π(i),...,π(n)}. Note that in this case (i.e., where Z = X) the

claim is correct.

Suppose, otherwise, that Z 6= X. It means that there is i ∈ N such that X(i) >

Z(i). Let the chain decomposition of Z be Z =
∑`

i=1 δj1Cj
. Suppose that C1 ⊆ ... ⊆ C`

and let `′ be the index at which i ∈ C`′+1 \ C`′ . We set `′ = 0 if i is not a member of

any Cj and `′ = ` if i is a member of all Cj’s. Since X(i) > Z(i), there is an ε > 0 such

that Z ′ :=
∑`′−1

j=1 δj1Cj
+ (δ`′ − ε)1C`′

+ ε1C`′∪{i} +
∑`

j=`′+1 δj1Cj
(with all coefficients

being non-negative) satisfies (1) and (2) (due to monotonicity, z ∈
∫ Ch

Zdv implies

z ∈
∫ Ch

Z ′dv) Z ′ ≥ Z and Z ′ 6= Z. This is a contradiction to the choice of Z. We

conclude that Z = X and the claim is proven.

We now let z :=
∑`2

j=1 βjzj ∈
∫ Ch

Xdv where
∑`2

j=1 βj1Bj
≤ X, zj ∈ v(Bj), βj ≥

0, j = 1, ..., `2 and B1, ..., B`2 is a chain. Let γ ∈ (0, 1). By the previous argument y and

z can be produced by the same chain whose sets are of the type {π(i), ..., π(n)}. Now

we can construct the convex combination, as in the proof of Lemma 1, and conclude

that γy + (1− γ)z ∈
∫ Ch

Xdv, implying that
∫ Ch

Xdv is convex.

We now prove the second item of the lemma. First,
∫ Ch

1Sdv ⊇ conv(v(S)) since

the integral is convex-valued (by the first item of this lemma), and since
∫ Ch

1Sdv ⊇
v(S). Now, to see that the other containment,

∫ Ch
1Sdv ⊆ conv(v(S)), also holds, take

any chain A1 ⊆ A2 ⊆ ... ⊆ A` ⊆ S and corresponding nonnegative scalars, α1, ..., α`,

such that
∑l

i=1 αi1Ai
≤ 1S. Since A1, A2, ..., A` is a chain,

∑l
i=1 αi ≤ 1. W.l.o.g.18∑l

i=1 αi = 1. That is,
∑l

i=1 αiv(Ai) is a convex combination of v(A1), ...,v(A`), each

of which is a subset of v(S) due to monotonicity. Hence,
∑l

i=1 αiv(Ai) ⊆ conv(v(S)).

Since this is true for arbitrary A1 ⊆ A2 ⊆ ... ⊆ A` and corresponding nonnegative

scalars, α1, ..., α`, this is true also for
∫ Ch

1Sdv.

Proof of Theorem 4. We assume first that v is not supermodular and show that∫ Ch · dv 6= ∫ cav · dv. If v is not supermodular, then there are S and T such

v(S) + v(T ) 6⊆ v(S ∪ T ) + v(S ∩ T ). (13)

18Otherwise, define α0 = 1 −
∑l

i=1 αi, and associate it with A0 = ∅. Recalling that v(A0) = {0},
one can then continue the argument with A0, ..., A`.
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Let X = 1S+1T . By definition,
∫ Ch

Xdv = v(S∪T )+v(S∩T ). However,
∫ cav

Xdv ⊇
v(S) + v(T ) (since X = 1S + 1T ). Eq. (13) implies that

∫ Ch · dv 6= ∫ cav · dv, a

contradiction.

Now assume that v is supermodular. We show in three steps that for every X,∫ Ch
Xdv =

∫ cav
Xdv.

Step 1: We start with a simple case where X = α1A + β1B and
∫ cav

Xdv = αv(A) +

βv(B). W.l.o.g. α ≤ β. Due to supermodularity,

αv(A)+βv(B) = αv(A)+αv(B)+(β−α)v(B) ⊆ αv(A∪B)+αv(A∩B)+(β−α)v(B).

Since the RHS is a chain decomposition of X, we obtain that
∫ cav

Xdv ⊆
∫ Ch

Xdv

and therefore
∫ cav

Xdv =
∫ Ch

Xdv. The main purpose of this simple case is to show

that αv(A) + βv(B) is contained in a sum of sets formed by a chain whose largest set

is the union A ∪B. We turn now to the general case.

Step 2: Let
∑`

i=1 αi1Ai
≤ X and consider

∑`
i=1 αiv(Ai). We show that

∑`
i=1 αiv(Ai) ⊆∑`′

i=1 βjv(Bj) where the Bj’s form a chain. We now use the above argument over and

over again. We start with A1 and A2 and show that α1v(A1) + α2v(A2) is contained

in a sum formed by a chain whose largest set is A1 ∪A2. We then incorporate A3 and

show that α1v(A1) + α2v(A2) + α3v(A3) is contained in a sum formed by sets, the

largest of which is the union, A1 ∪ A2 ∪ A3. Using this argument successively shows

that
∑`

i=1 αiv(Ai) is contained in a sum formed by sets, the largest of which (w.r.t.

inclusion) is ∪`i=1Ai. That is, all other sets are contained in ∪`i=1Ai.

Step 3: Consider a sum formed by sets, the largest of which (w.r.t. inclusion) is ∪`i=1Ai

and that the latter has the largest coefficient. Such a sum exists due to the Closeness

condition in the definition of an SVC (see Definition 1). All other sets in this sum are

subsets of ∪`i=1Ai. using the argument in the previous step, we conclude that the union

of all other sets is a strict subset of ∪`i=1Ai. Thus, we use the same argument again and

again. We thereby obtain a chain whose respective sum contains
∑`

i=1 αi1Ai
, which

concludes the proof.
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