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Abstract

We study allocation problems when agents negotiate across different agendas.

Unlike existing papers on multi-agenda disputes, we consider environments in

which resources are constrained and investing (say, time or effort) in one agenda

reduces the ability to invest in other agendas. In order to analyze such a scenario,

we introduce a class of cooperative games, referred to as set-valued – SVG. The

value of each coalition in an SVG is a subset of payoff vectors. Each vector is

associated with a specific distribution of the resources that the coalition may

allocate across the different agendas. In this environment we introduce and

analyze the notion of the core. We show that the core of an SVG allows for

more cooperation opportunities and exchanging favors than existing cooperative

multi-agenda models. Interestingly, proving this relies on a general notion of

a comparative advantage. It is shown that the classical core characterization,

resorting to duality, does not hold in the current setup. We then extend the

balancedness condition that guarantees a non-empty core in a wide range of

games.
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1 Introduction

Typically a (cooperative) game measures the ‘worth’ of any subgroup of individuals.

This value can be interpreted as the productivity of the subgroup under consideration

when investing time and effort in a particular enterprise, its social or political power,

etc. Often times though there are multiple enterprises that could be invested in while

the resources, say time, are constrained. In such scenarios there are many different

time allocations to each of the different projects, each of which resulting in a different

outcome. It seems that if one wishes to model such tradeoffs without pre-committing to

a specific time allocation, and thereby to a specific level of production in each project,

one needs to consider a more general notion of a game than the classical ones.

In this paper we introduce and study the concept of set-valued games : each sub-

group of individuals is associated with a set of real valued vectors. The set of vectors

associated with a subgroup is all production possibilities across the different enterprises.

Note that this approach does not take a stand on the aggregation of (or preferences

over) payoffs across the different agendas as in existing work on multi-agenda disputes.

We seek to study the primitive, as opposed to the reduced form, and wish to consider a

model that is robust to the aggregation process. As in the classical theory, we address

the issue of allocation. The appropriate notion of the core of a set-valued game is

defined and analyzed.

Vector games have been studied ever since Lind [7]. Set-valued games and their

cores were studied as non-transferable utility games (see, e.g., Predtetchinski and Her-

ings [9]), and more generally as in the current manuscript (see Voorneveld and van

den Nouweland [8] and Fernandez et al. [4]). The current manuscript introduces a

new model and interpretation to allocation in multi-agenda disputes and studies its

relation and distinction to existing economic theories on this topic. We show that our

approach to multi-agenda disputes raises interesting results relative to the standard

ones in cooperative games.1 First, the notion of the core presented here provides more

1Work on the topic of multi-dimensional bargaining exists also in the literature of noncooperative
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opportunities for cooperation, and exchange of “power” across the different agendas,

among the individuals. Second, we show that the classical Bondareva-Shapley result of

core non-emptiness [10, 2] does not hold in our model. The well-known balancedness

condition is sufficient for core non-emptiness, but is not necessary.

For the sake of clarity of our results, consider a grand group of N individuals that

have to invest in k enterprises. A set-valued game (henceforth SVG) is a function v

that associates a subset v(S) ⊆ Rk+ for every subgroup (or coalition) S of individuals

out of N . Under the classical notion of a game, k = 1 and v(S) is a singleton. The

interpretation behind an SVG v is the following. Every x ∈ Rk+ is a vector of production

levels for each of the k projects. A coalition can produce the bundle x = (x1, ..., xk)

if by distributing their limited resources (say one unit of time) across the different

projects, they can accomplish x` of project `, for every ` = 1, ..., k. If x ∈ Rk+ is indeed

produceable by coalition S (in one time unit), then x ∈ v(S). A member of the core

of an SVG is a payoff for each player for each of the k enterprises, that is feasible (that

is, in v(N)), and such that no coalition can deviate and do better by itself in every

one of the k enterprises.2

We start by paying specific attention to a special class of SVGs called multi-game

based. An SVG in this class is a convex span of k (classical) games. Formally, letting

v` be the `th game in the base of the SVG v, the value of a coalition S is all vectors

for which the `th production component is α`v`(S) (where the α`’s are non-negative

and sum to 1). This corresponds to production output being linear in effort. For this

class of games, it is interesting to see the relation between our solution concept and the

cores of the individual games (which are the base of the SVG), and between our notion

of a core and existing approaches to allocation in multi-agenda disputes, in which the

payoffs across agendas are aggregated uniformly (in particular, Bloch and de Clippel

[3] and Gayer and Persitz [5]).

We provide the following results. First, we show that it is possible that while the

cores of all base games, and of the sum of these games, are all empty, and thus the

solution concepts in both Bloch and de Clippel and Gayer and Persitz are empty, the

core of the SVG itself is not empty. We further show that if the cores of all base games

games. See [3] for a review.
2Note that this is consistent with the approach that no particular aggregation of the payoffs across

projects is considered.
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are non empty, then the convex span of these cores are a subset of the core of the SVG.

In addition, this containment could be strict. In particular, we prove that whenever

the cores of the base games all consist of a single allocation, then there is always a

possibility of logrolling among several individuals that is not possible when resorting

to previous approaches.3 These results indicate that the approach and solution concept

presented here are conceptually different than the existing approaches, and allow for

more cooperation.

We then provide a non Bondareva-Shapley result: an appropriate definition of

balancedness, that serves as a characterization of core non-emptiness in the classical

cooperative games setup,4 is a sufficient condition for the core of an SVG being non-

empty, but it is not necessary. An example is provided in which an SVG has a non-

empty core while it is not balanced. We point to the fact that a characterization in

the current setup cannot rely on straightforward convexity and duality considerations

as appearing in Bondareva-Shapley. Finally, we generalize the Bondareva-Shapley

condition in a proper way, and show that it 1. coincides with the classical notion of

balancedness in case of classical cooperative games, and 2. is necessary and sufficient

for core non-emptiness in a large class of SVGs.

The paper is organized as follows. Section 2 introduces the notion of set-valued

games and related notions that are important for the analysis of such games. Section

3 presents the notion of a core. Section 4 discusses the relation of the core of an SVG

to solution concepts in other approaches to multi-agenda disputes. Section 5 points to

that a straightforward Bondareva-Shapley balancedness generalized condition cannot

serve as a characterization of the core non-emptiness in the context of SVGs. Section 6

provides a proper generalization of the notion of balancedness, showing that it coincides

with the classical one for standard cooperative games. Then, Section 7 shows that the

proposed generalization characterizes the core non-emptiness for SVGs that satisfy

some convexity conditions. Lastly, all proofs that do not appear in the main text

appear in the Appendix.

3Logrolling is the trading of favors such as vote trading by legislative members.
4The characterization also holds in many other setups, such as those discussed in Gayer and Persitz

[5] and Assa, Elliston and Lehrer [1].
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2 Set-Valued Games

2.1 Cooperative Games

We begin by recalling a few classical definitions in cooperative games. Let N =

{1, ..., n} be a finite set of players. A coalition is any subset of N , S ⊆ N . Ac-

cording to the classical definition, a (cooperative) game v associates a nonnegative real

valued number, v(S), to each coalition S ⊆ N . One of the leading solution concepts

for games is the core: the core of a game v is defined as

Core(v) =

{
(xi)i=1,...,N :

∑
i∈S

xi ≥ v(S),∀S ⊆ N,
∑
i∈N

xi = v(N)

}
. (1)

The cover of a game v at the grand coalition N is defined as5

v̂(N) = max

{∑̀
j=1

αjv(Aj);
∑̀
j=1

αj1Aj
= 1N , αj ≥ 0, Aj ⊆ N, j = 1, ..., `

}
.

Note that v(N) ≤ v̂(N) for every game v. Bondareva and Shapley [2, 10] provided a

necessary and sufficient condition for core non-emptiness: they showed that the core

of a game v is not empty if and only if v is balanced, that is v(N) = v̂(N).

2.2 The definition

A set-valued game is a generalization of the notion of a game. For some k ∈ N, a

set-valued game associates to each coalition a subset of vectors in Rk+.

Definition 1. A set-valued game (SVG) over a collection N of players, is a function

v : 2N → 2R
k
+ defined over all subsets of N , which satisfies:

1. v(∅) = {0};

2. Closedness. For every S ⊆ N , v(S) is a closed set;

3. Comprehensiveness. If x ∈ v(S) and y ∈ Rk+ is such that6 y ≤ x, then y ∈ v(S).

5For any coalition S ⊆ N , the indicator 1S stands for the characteristic function of S, where

1S(i) = 1 if i ∈ S and 0 otherwise.
6y ≤ x means that yj ≤ xj for every j = 1, ..., k.
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We will explicitly refer to a classical cooperative game as a game, as opposed to

the more general set-valued game that will be referred to as SVG. In the remainder of

this section we discuss possible properties of an SVG and its relation to games. The

role of the definitions and examples we introduce is to motivate the notion of an SVG,

and to familiarize the reader with this notion and related definitions pertinent to the

analysis in subsequent sections.

Note, the definition of an SVG relies on transferable utilities within each game and

non-transferable utilities across games. One can generalize the definition, and extend

the analysis below appropriately, while relying solely on non-transferable utilities: an

environment in which each game is a non-transferable utility one, and across games

utility is non-transferable as well.7

2.3 Set-valued and classical games

The values that an SVG takes are subsets of Rk+. A (classical) game is defined like an

SVG on subsets of N , but opportunities are modeled with a single dimension, and thus

each coalition S ⊆ N is a associated with a single number reflecting its (maximum)

payoff.

2.4 A multi-game based SVG

Consider a family of k ∈ N games v1, ..., vk, and define a SVG v by

v(S) :=

{
(α1v1(S), ..., αkvk(S)) ∈ Rk+; αj ≥ 0 ∀j,

k∑
j=1

αj ≤ 1

}
. (2)

This definition is interpreted as follows. Consider vj(S) to be the amount of project

j coalition S can complete in one unit of time. When the coalition invests αj(S) in

project j, where
∑k

j=1 αj(S) ≤ 1, a vector (α1v1(S), ..., αkvk(S)) can be produced by

coalition S in one time unit. An SVG of this kind is referred to as multi-game based.

The base games (vj’s) capture the stand-alone productivity (or, value) for each

project. The SVG defined through these games, v, reflects the natural time constraint

7While not explicitly described as such, Voorneveld and van den Nouweland [8] study a model of

multiple non-transferable utility set-valued games in that spirit and characterize different notions of

the core.
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and tradeoffs between investing in the different projects. Clearly, not every SVG is

multi-game based, but the interpretation remains: v(S) captures the productivity of

coalition S and reflects the time constraints faced by the coalition when contemplating

how much time (or, more generally, resources) to invest in each project.

The following example illustrates the structure of a multi-game based SVG. It will

play an important role in our subsequent analysis.

Example 1. Let N = {1, 2, 3}, k = 2, and define the following SVG: v(N) = {(w1, w2);

w1 + w2 ≤ 3},v(1, 2) = {(w1, w2); 2w1 + w2 ≤ 3},v(2, 3) = {(w1, w2); w1 + 2w2 ≤
3},v(1, 3) = {(w1, w2); w1 + w2 ≤ 2} and v(i) = {(w1, w2); w1 + w2 ≤ 1}, i = 1, 2, 3.

This SVG is multi-game based. Indeed, define two games v1, v2 in the following

manner. v1(N) = 3, v1(1, 2) = 1.5, v1(2, 3) = 3, v1(1, 3) = 2, and v1(i) = 1 for every

player i ∈ N . Similarly, v2(N) = 3, v2(1, 2) = 3, v2(2, 3) = 1.5, v2(1, 3) = 2, and

v2(i) = 1 for every player i ∈ N . It is easy to verify that v is a multi-game based on

v1, v2.

2.5 Additive SVGs

An SVG v is additive if for every two disjoint coalitions, S, T ⊆ N ,

v(S) + v(T ) = v(S ∪ T ), (3)

where on the left hand side of the equality we mean the Minkowski sum. It is clear

that v is additive if and only if for every S ⊆ N , v(S) =
∑

i∈S v(i). In terms of

productivity, each worker’s productivity is independent of the group she is working

with: her contribution to a group is always the set of vectors she can produce alone.

2.6 The induced game

The following definition will be helpful in analyzing the core of an SVG in subsequent

sections. Let λ 6= 0 be a non-negative vector in Rk (i.e., λ ∈ Rk+) and v be an SVG

over N .
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Definition 2. The λ-induced-game of v is the game vλ defined by8

vλ(S) = max
y∈v(S)

y · λ (4)

for every S ⊆ N .

Remark 1. Note that for every S ⊆ N , v(S) ⊆ {y ∈ Rk+; y · λ ≤ vλ(S)}.

3 The Core of an SVG

This section provides the definition of a central concept in the theories of cooperative

games and capacities: the core.

Definition 3. The core of an SVG v is defined as

CORE(v) :=

{
(xi)i∈N ; (a) for every i ∈ N, xi ∈ Rk+; (5)

(b)
∑
i∈N

xi ∈ v(N); and

(c) ∀S ⊆ N, if y ∈ v(S) and y ≥
∑
i∈S

xi, then y =
∑
i∈S

xi

}
.

When (xi)i∈N is in the core of v, member i of N would get the share xi, which is a

vector in Rk+. That is, a core member is a “payoff” to each player for each of the k

agendas. The total share of all the members of N is a feasible vector, namely in v(N).

Finally, it maintains stability in the sense that there is no coalition S that could find

a better y ∈ v(S). That is, there is no y ∈ v(S) that dominates (Pareto) the total

share of the S-members,
∑

i∈S x
i. Note that when k = 1 the definition of the core of

an SVG as in Eq. (5) coincides with the classical definition of the core (as in Eq. (1)).

Example 1 (cont.) Recall the SVG in Example 1. Consider x1 = (0, 1), x2 = (1, 0),

and x3 = (0, 1). The sum, x1 + x2 + x3 = (1, 2) is on the Pareto frontier of v(N).

Furthermore, x1 + x2 = (1, 1), x1 + x3 = (0, 2), x2 + x3 = (1, 1), x1,x2, and x3, are on

the Pareto frontiers of v(1, 2), v(1, 3), v(2, 3), v(1), v(2) and v(3), respectively. Thus,

(x1, x2, x3) is in the core of v.

8 y · λ denotes the inner product of y and λ.
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4 Multi-Game Based SVGs and Logrolling

SVGs that are multi-game based where introduced in Section 2.4. For an SVG in this

family it is natural to study the relation between the cores of the base games and the

core of the SVG itself.

Bloch and de Clippel [3] and Gayer and Persitz [5] also study multi-agenda disputes,

but, as explained in the Introduction, take a different approach. Both papers are

conceptually different than the current study, and consider the sum of the base games

and study notions of the core in this set up. The core of the sum and the core of an

SVG live in different spaces, however the relation between these approaches can be

studied. We point to the relation and distinction between the approaches.

4.1 Base games, cores, and their sums

We formally introduce the ideas in Bloch and de Clippel [3] and Gayer and Persitz

[5]. Let v1, ..., vk be a family of (base) games, and v = v1 + · · · + vk be the sum of

these games. Bloch and de Clippel [3] study the relation between the cores of the

base games and that of v. Gayer and Persitz [5] then introduce the notion of a multi-

core of v1, ..., vk. Conceptually, a multi-core element is a payoff to each individual for

participating in the game v, where: 1. for each individual there may be a (different)

subjective assessment of how these individual payoffs are generated from the payoffs

for the base games; and 2. given these subjective assessments, no individual thinks that

she can jointly deviate with some of the other agents and increase their payoffs. That

is, a payoff (wi)i∈N is in the multi-core of v if for each agent p ∈ N there is a feasible

payoff vector y(p) ∈ Rn×k, where y(p)ij is agent p’s subjective assessment of i’s payoff

in game j, such that:

•
∑k

j=1 y(p)ij = wi for every p, i ∈ N ;

•
∑N

i=1 y(p)ij = vj(N) for every p ∈ N and j ∈ {1, ..., k};

• For every coalition S ⊆ N and p ∈ S,
∑

i∈S y(p)ij ≥ vj(S) for every j ∈ {1, ..., k}.

A result of interest is Theorem 3 in Gayer and Persitz [5] stating that given any

collection of base games, the sum of their cores is a subset of the multi-core, which is

a subset of the core of the sum of the base games.
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To begin understanding the relation of all of these concepts to the core of an SVG,

consider the following example. It turns out that it is possible that the cores of the

vj’s, the sum of the cores, the core of the sum, and the multi-core of the vj’s, are all

empty, while the core of the multi-game SVG based on v1, ..., vk is not.

Indeed, consider the SVG presented in Example 1. We saw in Section 3 that the

core of the SVG is not empty. Now, both v1 and v2 are not balanced. For example,

v̂1(N) ≥ v1(2, 3) + v1(1) = 4 > 3 = v1(1, 2, 3).

A similar calculation holds for the game v2. Thus, the cores of v1 and v2 are empty,

and we obtain that the sum of the cores is empty. In addition, the core of the sum

v1 + v2 is empty as well. Letting v = v1 + v2, we have that

v̂(N) ≥ v(2, 3) + v(1) = 6.5 > 6 = v(1, 2, 3),

implying v is not balanced, and thus has an empty core. By Theorem 3 in Gayer and

Persitz [5], the multi-core of v1, v2 is empty as well.

Now consider the agendas, v1, ..., vk. We show that if the core of each vj is not

empty, then every “convex combination” of elements (across the k cores), is in the core

of the multi-game SVG based on v1, ..., vk.

Proposition 1. Let v be a multi-game SVG over N based on v1, ..., vk, and assume

xj is in the core of vj for every j. Let zi = (αjx
i
j)
k
j=1 (where αj ≥ 0 for every j and∑k

j=1 αj = 1). Then (zi)i∈N is in the core of v.

Proof. For each j, let xj be a core member of vj. For every player i ∈ N , let

zi = (αjx
i
j)
k
j=1. We show that (zi)i∈N satisfies the three conditions in Eq. (5). Indeed,

(a) is clearly satisfied. As for (b), since xj is in the core of vj, we have that
∑

i∈N z
i =

αjvj(N), and thus
∑

i∈N z
i ∈
{

(β1v1(N), ..., βkvk(N)) ∈ Rk+; βj ≥ 0 ∀j,
∑k

j=1 βj ≤ 1
}

=

v(N). And lastly, to see that condition (c) holds, fix a coalition S ⊆ N and consider

a vector (β1v1(S), ..., βkvk(S)) ∈ v(S) such that (β1v1(S), ..., βkvk(S)) ≥
∑

i∈S z
i =

(α1

∑
i∈S x

i
1, ..., αk

∑
i∈S x

i
k). Since xj is in the core of the respective vj, we have that∑

i∈S x
i
j ≥ vj(S).Thus, (c) is satisfied and the proof is completed.

A similar result can be stated regarding the multi-core of the sum of the base games.

The following proposition states that every subjective assessment of a member in the
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multi-core is also a member in the core of the SVG. The proof is identical to that of 1

and is therefore omitted.

Proposition 2. Let v be a multi-game based SVG over N based on v1, ..., vk, and

assume (y(p))p∈N is a subjective justification vector (for some member of the multi-

core of (v1, ..., vk)). For every player p ∈ N and game j, let x(p)j = (y(p)ij)i∈N and

z(p)i = (αjx(p)ij)
k
j=1 (where αj ≥ 0 for every j and

∑k
j=1 αj = 1). Then (z(p)i)i∈N is

in the core of v, for every p ∈ N .

The converse statements of Propositions 1 and 2 do not hold. We saw in Example 1

that it is possible that the base games have an empty core, while the core of the multi-

game based SVG is not empty. The following example shows that even if the base

games have non-empty cores, they do not necessarily span the core of the multi-game

based SVG.

Example 2. Consider a variation of the game described in Example 1. Let N =

{1, 2, 3}, and define u1(N) = 3, u1(1, 2) = u1(1, 3) = 1.5, u1(2, 3) = 3, and u1(i) = 0

for all i ∈ N . Similarly, let u2(N) = 3, u2(1, 3) = u2(2, 3) = 1.5, u2(1, 2) = 3, and

u2(i) = 0 for all i ∈ N .

The core of u1 consists only of the allocation (0, 1.5, 1.5), and the core of u2 consists

only of the allocation (1.5, 1.5, 0). It is simple to verify that x1 = (0, 1), x2 = (1, 0),

and x3 = (0, 1) is in the core of the multi-game SVG u based on u1 and u2. However,

(x1, x2, x3) is not spanned (in the sense of Proposition 1) by the cores of u1 and u2.

In addition, defining u = u1 + u2, we obtain that u(N) = 6, u(1, 2) = u(2, 3) =

4.5, u(1, 3) = 3, and u(i) = 0 for all i ∈ N . We see that the only core member of u is

(1.5, 3, 1.5), which is also the sum of the cores of u1 and u2. Again, by Theorem 3 in

Gayer and Persitz [5], we obtain that the multi-core comprises only of (1.5, 3, 1.5).

4.2 Logrolling

For the remaining of this section we show that for a class of multi-game based SVGs,

the core of the SVG is not a convex span of the cores of the base games. This class

consists of base games with a unique core element. An example for such games is the

family of additive games: a game v is additive if v(S) =
∑

i∈S v(i) for every coalition

S ⊆ N . In this case the unique core element, x, of v is given by xi = v(i) for every
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player i ∈ N . Note also that the sum of additive games is additive, implying that the

core of the sum is the sum of the cores of the base games. In particular, for such games

the multi-core coincides with the sum of the cores, and consists of the unique element

only.

Example 3. Consider two additive two-player base games, u, v, where v(i) = u(i) = 1

for every player i. The core element of each of these games assigns payoff 1 for each

of the players.

From the propositions above, the core of the SVG based on these two games contains

the convex span of the cores of the base games. In particular, (x1, x2), where x1 =

x2 = (0.5, 0.5), is in the core of of the SVG. However, notice that (x̂1, x̂2), where

x̂1 = (0, 1), x̂2 = (1, 0) is also in the core of the SVG, and is not a convex span of the

cores of the two base games.

The example shows that by reallocating payoffs between players the SVG provides

a space for advantageous cooperation beyond what is given by the separate base games,

or their sum. The next example shows that not every reallocation is possible if one

wishes to maintain stability.

Example 4. Consider two additive two-player base games, u, v, where v(1) = u(3) =

1, v(2) = u(2) = 2, and v(3) = u(1) = 3. Say that players tried to reallocate their

payoffs as follows: player 3 provides 1 payoff unit in game v for player 1 in favor of 1

unit payoff in game u, and considering the 0.5 − 0.5 mixture between the two games.

The resulting payoffs are x1 = (0, 2) (where the left coordinate corresponds to the payoff

in agenda v), x2 = (1, 1), and x3 = (2, 0). We show that this allocation is not in the

core of the SVG based on v and u.

In this case, the coalition comprising of players 1 and 2 has an incentive to deviate

and play on their own. Indeed, if they consider a p, 1 − p mixture of the base games,

their joint payoff as a function of p will satisfy 3p ≥ 1 and 5(1 − p) ≥ 3 for any

0.4 ≥ p ≥ 0.333.... That is, for any p strictly in between these values, players 1 and 2

have an incentive to deviate as a coalition. We obtain that (xi)i as suggested above is

not a core member.

It is possible, however, to find another payoff reallocation between players 1 and 3

that would give rise to a new core element that is not in the convex span of the cores

of the base games. Indeed, x1 = (0.75, 1.25), x2 = (1, 1), and x3 = (1.25, 0.75) is such
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a reallocation.9 The coalition comprising of players 1 and 2 would deviate if 3p ≥ 1.75

and 5(1 − p) ≥ 2.25, implying that 0.55 ≥ p ≥ 0.58333...—such a p does not exist.

Similarly, The coalition comprising of players 3 and 2 would deviate if 5p ≥ 2.25 and

3(1 − p) ≥ 1.75, which is satisfied only for 0.41666.. ≥ p ≥ 0.45. Again, there is no

such p.

The next Theorem states that we can always find a core member of an SVG based

on additive games (with strictly positive individual payoffs) that cannot be obtained

by the convex span of the base games. The proof relies on a simple economic intuition

behind the notion of comparative advantage adapted to the current setup (that is,

where there are more than two agents). It shows that we can always reallocate some

“value” between two of the players—the one with the lowest comparative advantage in

one agenda and the one with the highest comparative advantage in that same agenda—

and construct a new core member that is not in the span of the cores of the base games.

Theorem 1. Let v be an SVG based on the additive games v1, ..., vk, not all are

equivalent10 and vj(i) > 0 for every j = 1, ..., k and i ∈ N . Then, there exists a

core element of v, x1, ..., xn, such that there are no αj ≥ 0 ∀j,
∑k

j=1 αj = 1 where

xi = (α1v1(i), α2v2(i), ..., αnvn(i)), i ∈ N .

Proof. We first assume that k = 2. Let r = (v1(N),−v2(N)) ∈ R2, and for i ∈ N let

βi = v2(i)− v2(N)
v1(N)

v1(i) and yi = (1
2
v1(i),

1
2
v2(i)). For every S ⊆ N let y(S) =

∑
i∈S y

i.

Note that y(S) is on the Pareto efficient frontier of v(S) and is strictly positive in both

coordinates. Thus, y(S) + γ
∑

i∈S βir is also strictly positive in both coordinates for

sufficiently small γ > 0.

For i ∈ N define xi = yi + γβir, and for S ⊆ N let x(S) =
∑

i∈S x
i. By assumption

not all of v1, ..., vk, are equivalent. This implies that βi 6= 0 and thus xi 6= yi for at

least one i. We show that x1, ..., xn is a core element of v.

Note that
∑

i∈N βi = v2(N) − v2(N)
v1(N)

v1(N) = 0 . Thus, x(N) = y(N) and therefore

x(N) ∈ v(N). Now fix S ⊆ N . We show that x(S) is not dominated by any point in

9These payoffs correspond to reallocation of half a payoff unit between players 1 and 3 across the

two base games (player 3 provides 0.5 in game v for player 1 in favor of 0.5 in game u), and considering

the 0.5− 0.5 mixture between the two games.
10Two additive games v and u are equivalent if v(i)

u(i) is constant across i.
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v(S). To this end we show that

v2(S)

v1(S)
≥ v2(N)

v1(N)
if and only if

∑
i∈S

βi ≥ 0.

This equivalence means that the frontier of v(S) is steeper than that of v(N) if and

only if x(S) − y(S) =
∑

i∈S γβir. That is, x(S) − y(S) is a vector r multiplied by

a nonnegative coefficient (γ(
∑

i∈S βi)r).
11 Since y(S) is on the frontier of v(S), this

implies that x(S) lies beyond this frontier.

Indeed,∑
i∈S

βi =
∑
i∈S

v2(i)−
v2(N)

v1(N)
v1(i) = v2(S)−v2(N)

v1(N)
v1(S) ≥ 0 if and only if

v2(S)

v1(S)
≥ v2(N)

v1(N)
,

as desired.

As for a general k, one can restrict attention to two non-equivalent games, say

w.l.o.g. v1 and v2, and consider yi = (1
2
v1(i),

1
2
v2(i), 0, ..., 0), i ∈ N as the original core

member of v. Then define r = (v1(N),−v2(N), 0, ..., 0) ∈ Rn to be the vector by which

yi is shifted. The proof proceeds along the same line as in the case of k = 2.

In case there are only two players Ricardo defined the notion of comparative advan-

tage. In our context there are many players. The advantage of player i is measured in

comparison with the grand coalition. We say that player i has a comparative advantage

in project 2 if v2(i)
v1(i)
≥ v2(N)

v1(N)
.

The proof of Theorem 1 is based on the idea that when player i has a comparative

advantage in project 2, he can give up some value related to project 2 and get in return

some value related to project 1. The rate at which this logrolling/trade-off is carried

out is determined by the grand coalition, and formally by the vector r. Player i would

receive (in addition to yi) the vector γβir.

The trade-off of player i depends not only on the project at which player i has

a comparative advantage, but also on two additional factors: the magnitude of the

comparative advantage (i.e., v2(i)
v1(i)
− v2(N)

v1(N)
) and the “power” of player i (measured as

v1(i)). This is the reason why player i’s trade-off across all projects, represented by

xi − yi, is proportional to v1(i)
(
v2(i)
v1(i)
− v2(N)

v1(N)

)
r.

11In other words, it is vector in the “south-western” orthant whose slope (like that of r) is smaller

than that of the frontier of v(S).
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Remark 2. The vector r = (r1, r2) has been chosen so that |r2|/r1 = |v2(N)|/v1(N). Notice,

the same proof would hold if r is such that

|r2|
r1
≤ min

{
v2(S)

v1(S)
;
v2(N)

v1(N)
<
v2(S)

v1(S)
, S 6= ∅

}
,

and
|r2|
r1
≥ max

{
v2(S)

v1(S)
;
v2(N)

v1(N)
>
v2(S)

v1(S)
, S 6= ∅

}
.

It implies that the set of possible logrolling opportunities has a full dimension (i.e.,

two).

5 Non Bondareva-Shapley and SVGs

5.1 The cores of v and vλ

In this section we point to the relation between the core of v and that of the induced

game vλ. This relation will be significant in terms of finding conditions for the non-

emptiness of the core of v. Prior to this we need to introduce the notion of a cover of

an SVG.

Definition 4. Let v be an SVG. The cover of v at the coalition N is

v̂(N) =

{∑̀
j=1

αjyj;
∑̀
j=1

αj1Aj
= 1N , yj ∈ v(Aj), αj ≥ 0, Aj ⊆ N, j = 1, ..., `

}
. (6)

Notice that v̂(N) is a convex set.

Proposition 3. Fix λ ∈ Rk+, λ 6= 0. The core of vλ is not empty if and only if there

exists x ∈ v(N) such that

x ∈ argmax
{

y · λ; y ∈ v̂(N)
}
. (7)

Proof. Assume first that there is x ∈ v(N) such that x ∈ argmaxy∈v̂(N)y · λ. The sets

v̂(N) and C := {y; y ≥ x} (the latter being the positive orthant relative to x) are

convex. Due to Eq. (7), λ ∈ Rk+ is a separating vector:

y · λ ≤ z · λ for every y ∈ v̂(N) and z ∈ C. (8)
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We show that the core of vλ is non-empty. Otherwise, by the Bondareva-Shapley

Theorem, v̂λ(N) > vλ(N). It implies that there is a decomposition of 1N , 1N =∑`
j=1 αj1Aj

, with αj ≥ 0, j = 1, ..., `, such that
∑`

j=1 αjvλ(Aj) > vλ(N). Thus, for

every j = 1, ..., ` there is xj ∈ v(Aj) such that

∑̀
j=1

αjxj · λ > max
w∈v(N)

w · λ ≥ x · λ. (9)

Since
∑`

j=1 αjxj ∈ v̂(N), Eq. (9) contradicts Eq. (8). We conclude that the core of vλ

is not empty.

Now assume that no x ∈ v(N) satisfies Eq. (7). Since v(N) ⊆ v̂(N), it implies that

maxy∈v̂(N) y · λ > max
y∈v(N)

y · λ. Therefore, v̂λ(N) > vλ(N), which by the Bondareva-

Shapley Theorem implies that the core of vλ is empty.

The following proposition will be useful in the subsequent section. This result also

appears in Fernandez et al. [4]. The proof is provided for completeness.

Proposition 4. Suppose that there exists λ ∈ Rk+ such that the core of the induced

game vλ is not empty. Then, CORE(v) 6= ∅.

Proof. Let (wi)i∈N be in the core of vλ, in particular,
∑

i∈N wi = vλ(N). Denote

x := argmaxz∈v(N)z · λ. By definition, vλ(N) = x · λ. Also denote, w := vλ(N) and

xi := wi

w
x (recall, x ∈ Rk+, wi

w
∈ R and

∑
i
wi

w
= 1).

We obtain: (a) xi ∈ Rk+; (b)
∑

i∈N x
i =

∑
i∈N

wi

w
x = x ∈ v(N); and (c) for every

S ⊆ N ,
∑

i∈S wi ≥ vλ(S), implying

(
∑
i∈S

xi) · λ = (
∑
i∈S

wi
w
x) · λ = (

∑
i∈S

wi
w

)vλ(N) =
∑
i∈S

wi ≥ vλ(S) = max
y∈v(S)

y · λ.

This implies that if y ∈ v(S) and y ≥
∑

i∈S x
i, then y =

∑
i∈S x

i.

5.2 A sufficient condition for the non-emptiness of the core

The next theorem provides a sufficient condition for the non-emptiness of the core.

The following notion is useful.

Definition 5. Let D ⊆ Rk be compact. We say that x ∈ D is D-efficient if y ∈ D and

y ≥ x imply y = x.
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Theorem 2. Let v be an SVG. If there exists x ∈ v(N) which is v̂(N)-efficient, then

the core of v is not empty.

Before presenting the proof, note that the condition in the theorem is a generaliza-

tion of the classical notion of balancedness of a game. Indeed, a game v is said to be

balanced if v̂(N) = v(N).

Proof. Let x ∈ v(N) be v̂(N)-efficient. Define, C := {z; z ≥ x}. The sets v̂(N) and C

are two convex sets. Due to the fact that x is v̂(N)-efficient, the intersection of these

sets contains only x. The set C is of full dimension and therefore there is a non-zero

vector λ ∈ Rk+ separating v̂(N) and C. That is, y · λ ≤ z · λ for every y ∈ v̂(N)

and z ∈ C. We have that x satisfies Eq. (7) with respect to λ. Due to Proposition 3,

the core of vλ is not empty which implies, by Proposition 4, that the core of v is not

empty.

The condition of Theorem 2 has the same spirit as that of the Bondareva-Shapley

Theorem. Indeed, when k = 1, this condition is equivalent to that of the Bondareva-

Shapley Theorem and is therefore not only sufficient, but also necessary. The following

example shows that the core of v can be non-empty, while the core of vλ is empty

for every λ ∈ Rk+. It implies that the condition of Theorem 2 is not necessary. This

example requires only two agendas.

5.3 The sufficient condition is not necessary

In Section 3 we saw that the core of the SVG in Example 1 is not empty. On the

other hand, we show now that for every λ ∈ Rk+, the core of vλ is empty. For this end,

it is sufficient, by Proposition 3, to show that the efficient frontier of v(N) is strictly

dominated by a point in v̂(N). That is, for every x ∈ v(N) there is y ∈ v̂(N) such

that yi > xi, i = 1, 2. However, since the efficient frontier of v(N) is a straight line,

since v̂(N) is convex, it is sufficient to show that this statement is true for the two

v(N)-efficient points that lie on the axes. The v(N)-efficient point on the vertical axes

is (0, 3). However, consider the decomposition 1N = 1
2
(1{1,2} + 1{2,3} + 1{1,3}) and the

most upper points in v(1, 2),v(2, 3),v(1, 3) that lie on the vertical axes. These points

are, respectively, (0, 3), (0, 1.5) and (0, 2). Thus, the point 1
2
((0, 3) + (0, 1.5) + (0, 2)) =

(0, 3.25) ∈ v̂(N). This point is strictly above (0, 3). A similar argument applies to
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the horizontal axes. We therefore conclude that the two v(N)-efficient points that lie

on the vertical axes are strictly dominated by points in v̂(N) and the argument is

complete.

To summarize, this example shows that the core of v is not empty despite the facts

that the core of any vλ is empty and that any v(N)-efficient point is strictly dominated

by a point in v̂(N).

6 Extended Bondareva-Shapley

In this section we provide a necessary and sufficient condition for the non-emptiness of

the core of an SVG in the case where the set v(N) is convex and, moreover, the set of

points in Rk+ that dominate v(T ) is convex for every T  N .

6.1 The one-dimensional case

We start out with the one-dimensional case which is tightly connected with classical

cooperative games and the Bondareva-Shapley characterization of core non-emptiness.

Section 6.3 below, and Theorem 3 therein, generalizes these results to multi-dimensions

and SVGs.

Let x1, ..., xl ∈ Rn and A1, ..., Al ⊆ R be non-empty, convex and closed. Assume

that each Ai is either bounded or polyhedral. Define X to be the l × n dimensional

matrix whose i-th row is xi. In addition, define the following two sets: A = A1× ...×Al
and B = {Xc; c ∈ Rn}. Both sets are closed and convex.

Proposition 5. There exists c ∈ Rn such that xi · c ∈ Ai for every i = 1, ..., l if and

only if for every vector s = (s1, ..., sl) ∈ Rl,∑
i

sixi = 0 implies 0 ∈
∑
i

siAi. (10)

Note that the condition in Eq. (10) is equivalent to the following condition:

sX = 0 implies that there exists a ∈ A such that s · a = 0. (11)
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6.2 Implication: the core of a game

The problem related to the non-emptiness of the core of a game v with n players is

defined by the following parameters. The vectors xS = 1S, S ⊆ N are in Rn, and the

sets AS = [v(S),∞) when S ( N and AN = {v(N)}. The existence of c ∈ Rn such

that xS · c ∈ AS for every S ⊆ N is equivalent to the existence of c ∈ Rn such that

1S · c ≥ v(S) for every S ( N, and 1N · c = v(N). (12)

Such a vector c is a core member of v. Proposition 5 therefore states that the core of

v is non-empty if and only if the condition of Eq. (10) is satisfied.

To see that the condition Proposition 5 is equivalent to the Bondareva-Shapley

consider the equation sX = 0, where s = (sT )T⊆N . In case there are two proper

coalitions R, T ( N such that sRsT < 0, then sRAR + sTAT = R. This implies in

particular that 0 ∈
∑

T sTAT . In other words, when the product sRsT is negative, the

proposition’s condition is fulfilled automatically.

We can therefore assume that sT ≥ 0 for every proper coalition T . It must be

then that sN < 0. Therefore sX = 0 implies
∑

T 6=N sTxT = |sN |1N . If sN 6= 0, it

means that we have a balanced collection, as referred to in the theory of cooperative

games, with sT/|sN | being the balancing coefficients. The Bondareva-Shapely condition

dictates that a balanced collection must satisfy
∑

T 6=N(sT/|sN |)v(T ) ≤ v(N). The

latter inequality is equivalent to 0 ∈
∑

T 6=N sTAT + sNAN , which is what stated in Eq.

(11).

6.3 The multi-dimensional case

Let x1, ..., xl ∈ Rn and A1, ..., Al ⊆ Rk be non-empty, convex and closed. As above X

is defined as the l × n dimensional matrix whose i-th row is xi. Let A is the set of all

l × k matrices whose i-th row is a vector in Ai.

Definition 6. We say that x1, ..., xl;A1, ..., Al are balanced if for every k×l-dimensional

matrix S,

SX = 0 implies that there exists a ∈ A such that Sa = 0. (13)
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The term ‘balanced’ is inspired by the similarity between Eqs. (11) and (13) and,

given this, the following is an extended Bondareva-Shapley theorem.

Theorem 3. Assume that each Ai is a union of a bounded convex and closed set and

a polyhedron.12 There exits an n× k dimensional matrix C such that

xiC ∈ Ai for every i = 1, ..., l

if and only if x1, ..., xl;A1, ..., Al are balanced.

Proof. The ‘only if’ direction is simple and is therefore omitted. For the inverse direc-

tion define B = {XC; C is an n× k matrix}. Note that both sets A and B are closed

and convex.

In case A ∩B 6= ∅, the proof is complete. Otherwise, A and B are disjoint.

Lemma 1. There exists a separating k × l-dimensional matrix S 6= 0, such that13

tr(Sb) > tr(Sa) for every b ∈ B and a ∈ A. (14)

The proof is postponed to the Appendix.

Lemma 1 states that there exists a matrix S such that tr(SXC) > tr(Sa) for every

n × k-dimensional matrix C and a ∈ A. We claim that SX = 0 (0 being the all-0

matrix). Otherwise, one can find a matrix C such that tr(SXC) < tr(Sa) for some

a ∈ A. Indeed, fix one a ∈ A. If SX 6= 0, then there is an entry, say (i, j), of the matrix

SX which is not 0, namely (SX)ij 6= 0. Now consider the matrix C whose (j, i) entry

is equal to −2|tr(Sa)|
(SX)ij

, and all other entries are 0. We obtain that tr(SXC) = −2|tr(Sa)|,
which is strictly smaller than tr(Sa).

As SX = 0, we obtain that for every n× k dimensional matrix C, SXC = 0C = 0

implying

tr(SXC) = 0. (15)

On the other hand, balanceness condition (i.e., Eq. (13)) guarantees that due to the

fact that SX = 0, there is a ∈ A such that Sa = 0 and therefore

tr(Sa) = 0. (16)

12A polyhedron is a set defined by a finite number of weak linear inequalities. Such a set might be

unbounded.
13tr is the trace operator: tr(E) is the sum of the diagonal entries in the matrix E.

19



Eqs. (15) and (16) violate Eq. (14). We conclude that A ∩B 6= ∅ which completes the

proof.

7 Non-emptiness of the Core in the Convex Case

In this section we discuss the non-emptiness of the core of an SVG under some convex-

ity conditions, and its characterization by the extended Bondareva-Shapley condition

presented in Theorem 3.

7.1 The problem behind core non-emptiness

In order to explain the difficulty behind the non-emptiness of the core, define (compare

with Eq. (5))

C(v, T ) =

{
(xi)i∈N ; (a) for every i ∈ N, xi ∈ Rk+; (17)

(b)
∑
i∈N

xi ∈ v(N); and

(c) if y ∈ v(T ) and y ≥
∑
i∈T

xi, then y =
∑
i∈S

xi.

}

Note that

CORE(v) =
⋂
T⊆N

C(v, T ). (18)

Thus, in order for the core of v to be non-void, the intersection of all C(v, T ), T ⊆ N ,

must be non-empty. Condition (c) in Eq. (17) can be also expressed as

min
y∈v(T )

max
j=1,...,k

∑
i∈T

xij − yj ≥ 0,

which is equivalent to14

∀S ⊆ N,
∑
i∈T

xi ∈ cl(Rk
+ \ v(T)).

14 cl() is the closure operator.
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While the first two conditions of Eq. (17) are convex (when v(N) is convex), typically

Rk+ \ v(T ) is not convex, hence the last condition is not. Condition (c) makes it clear

why the set defined in Eq. (17) is not convex. It therefore seems that finding a necessary

and sufficient condition for the non-emptiness of the intersection of sets that are not

convex (see Eq. 18), goes beyond straightforward duality.

In what follows we address this issue and provide a characterization of when the

core of a SVG is not empty in cases where v(N) is convex, and Rk+ \ v(T ), T ( N are

convex, or a finite union of convex sets. The question remains open in more general

cases.

7.2 Characterization of the core of a SVG: the convex case

Theorem 3 implies the following.

Theorem 4. Let v be a set-valued game defined on the set N . Define xT = 1T for

every T ⊆ N . Also, for every T  N define AT = cl(Rk+ \ v(T )) and AN = v(N).15

Suppose that AT is convex for every T ⊆ N . Then, the core of v is not empty if and

only if (xT , AT )TjN is balanced.

Proof. For every T ⊆ N the set v(T ) is bounded. Thus, there is a constant m > 0 such

that set M := {x ∈ Rk+;x ≤ (m, ...,m)} contains v(T ) for every T ⊆ N : v(T ) ⊆ M .

Denote D1
T := cl(M ∩ AT ) and D2

T := cl(Rk+ \D1
T ). By assumption, for every T ( N ,

AT is convex, hence D1
T is compact and convex. Finally, D2

T is a polyhedron and

AT = D1
T ∪D2

T . This feature of AT is required in order to employ Theorem 3.

By Theorem 3, there exists an n× k dimensional matrix C such that

xTC ∈ AT for every T ⊆ N (19)

if and if (xT , AT )T⊆N is balanced. To complete the proof note that C is a core member

if and only if it satisfies Eq. 19.

In the current context, the interpretation of the equation SX = 0 is the following.

As we have seen above, in the one-dimensional case sX = 0 means that s is a vector of

balanced coefficients. Here SX = 0 is interpreted as a multiple balanced coefficients:

every row of the matrix S is a vector of balanced coefficients.

15Note that l in consideration equals to 2n − 1, the number of coalitions in the game.
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Remark 3. In the case where for every T ( N the set of the points in Rk+ that

dominate v(T ) is a union of finitely many convex sets, one can list a finite number of

problems, namely, AjT ⊆ Rk, T ⊆ N, j = 1, ..., L, such that the core of v is not empty

if and only if there is at least one j and a matrix C such that xTC ∈ AjT for every

T ( N and xTC ∈ v(N). An example of such a case is where v(N) is convex and each

v(T ), T ( N is a polytope (i.e., bounded polyhedron).

We conclude that Theorem 4 provides a characterization of the non-emptiness of

the core also in cases where each set Rk+ \ v(T ), T  N and v(N) is a finite union of

convex sets.
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8 Appendix

For any two convex sets E,F in the same Euclidean space, define d(E,F ) := inf{‖e−
f‖; e ∈ E, f ∈ F}.

Proof of Lemma 1. A and B are disjoint. Thus, in order to prove the lemma it is

sufficient to show that d(A,B) > 0. If otherwise, d(A,B) = 0, we obtain that for every

i = 1, ..., l,

d(Ai, Bi) = 0, (20)

where Bi = {xiC; C is an n × k matrix}. We show that Eq. 20 implies Ai ∩ Bi 6= ∅.
This would imply that A and B are not disjoint, which is a contradiction.

Bi is a subspace while (by assumption) Ai is a union of a convex and compact set,

say Di, and a polyhedron, say Pi. If d(Di, Bi) = 0, then due to the compactness of

Di, Di ∩ Bi 6= ∅ and the proof is done. It must be then that d(Di, Bi) > 0, while

d(Pi, Bi) = 0.

By Minkowski-Weyl Theorem (see [6]) Pi, as a polyhedron, is a Minkowski sum of

a convex hull of finitely many points,

C = conv{c1, ..., cs} = {
s∑
i=1

αici;αi ≥ 0,
s∑
i=1

αi = 1},

and a finitely generated cone,

V = cone{v1, ..., vt} = {
t∑
i=1

βici; β i ≥ 0}.

In other words, Pi = {c + v; c ∈ C, v ∈ V }. Since d(Pi, Bi) = d(C + V,Bi) = 0, we

obtain d(C,Bi−V ) = 0. However, C is convex and compact and Bi−V is convex and

closed, hence C ∩ (Bi−V ) 6= ∅. This, in turn, implies that Pi ∩Bi = (C +V )∩Bi 6= ∅
which completes the proof.
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