
1 23

Mathematical Programming
A Publication of the Mathematical
Optimization Society
 
ISSN 0025-5610
 
Math. Program.
DOI 10.1007/s10107-014-0796-7

Sandwich games

Ehud Lehrer & Roee Teper



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer-

Verlag Berlin Heidelberg and Mathematical

Optimization Society. This e-offprint is for

personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Math. Program., Ser. A
DOI 10.1007/s10107-014-0796-7

FULL LENGTH PAPER

Sandwich games

Ehud Lehrer · Roee Teper

Received: 26 November 2013 / Accepted: 18 July 2014
© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Abstract The extension of set functions (or capacities) in a concave fashion, namely
a concavification, is an important issue in decision theory and combinatorics. It turns
out that some set-functions cannot be properly extended if the domain is restricted
to be bounded. This paper examines the structure of those capacities that can be
extended over a bounded domain in a concave manner. We present a property termed
the sandwich property that is necessary and sufficient for a capacity to be concavifiable
over a bounded domain. We show that when a capacity is interpreted as the product of
any sub group of workers per a unit of time, the sandwich property provides a linkage
between optimality of time allocations and efficiency.

Mathematics Subject Classification 28B20 · 46N10 · 52A41 · 91A12 · 91B06

1 Introduction

Extensions of set functions in a concave fashion has proven to be an important issue
in fields like decision theory, optimization, combinatorics, etc. It turns out that an
extension may depend on the boundedness properties of the domain to which the set
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function is being extended. To see this we focus attention on the concave integral intro-
duced by Lehrer [7] and axiomatized by Lehrer and Teper [8] in a decision theoretic
context. The concave integral has a particularly interesting and natural interpretation
in the context of production as well. Thus, the formal issue of extensions is deferred
to the main text, where here we introduce an implication of this point to production.

To see the definition of the concave integral and the problem we are trying to address
in this note, consider a group of individuals (workers), say N , where the productivity
per unit of time of each sub-group S is v(S). Let xi ∈ R+ be the time worker i can
invest. How would one measure the group’s productivity when the time-investment
profile is x? One natural way is the following. Time can be allocated across different
sub-groups {αS : S ⊆ N } as long as the time-investment constraint1

∑
αS1S = x is

met. Each allocation {αS : S ⊆ N } of this kind yields a productivity level of
∑
αSv(S).

The concave integral of x is the productivity level of the time allocation that maxi-
mizes the productivity across all feasible time allocations (given the time-investment
constraint x). A time allocation that maximizes productivity is called optimal.

Assume now that only one sub-group of workers can produce at any given point in
time (that is, production is done sequentially). Among all optimal allocations, consider
one that minimizes total production time

∑
αS . This measures the minimal amount

of time needed to complete the task while maintaining optimality. It is clear that the
amount of time needed is bounded from below by the time available to the worker that
can invest the most. However, production may be inefficient in the sense that it will
last longer than that.

This point raises a question regarding the structure of set functions: under what
assumptions on the capacity, optimality can be sustained together with time efficiency?
It turns out that such capacities are characterized by a property we refer to as the sand-
wich property; a capacity satisfies the sandwich property if for every affine function
that dominates it (that is, assigns higher value than the capacity to every sub-group of
workers), there is a linear function that dominates the capacity but is dominated by
the affine function.

The following section provides an example that demonstrates the issues raised in
the introduction. Section 3 sets up the framework, formally describes the question we
raise and presents the definition of the sandwich property. Section 4 presents the main
characterization result and its proof, and provides additional insights as to how the
sandwich property relates to standard notions in the theory of capacities. Lastly, Sect.
5 concludes. The rest of the proofs appear in an appendix.

2 An example

Consider a group of 6 workers and the least monotonic production function v (per unit
of time) satisfying v(1, 4, 5) = v(2, 5, 6) = v(3, 4, 6) = 2

3 and v(N ) = 1. Assume
that workers are time constrained: workers 1, 2 and 3 can work half an hour while
workers 4, 5 and 6 can work a full hour. Also assume that only one sub-group of

1 1S is the indicator of S: it is an |N |-dimensional vector (1S(1), . . . , 1S(|N |)) such that 1S(i) = 1 if i ∈ S
and 1S(i) = 0 otherwise.
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workers can produce at any given point in time. What is the optimal production level
that can be extracted given the time constraints? Is it possible to obtain the level of
optimal production within one hour (which is the time constraint of the worker that
can invest the most)?

It is possible that all six workers work as one sub-group for half an hour, and
then subgroup {4, 5, 6} work as a subgroup for another half an hour. Subject to this
assignment, all time constraints are met and the total productivity is 1

2 · 1 + 1
2 · 0 = 1

2 .
However, if sub-groups {1, 4, 5}, {2, 5, 6} and {3, 4, 6} work consecutively for half
an hour each, then the time constraints are still met but productivity increases to
3 · 1

2 · 2
3 = 1. It turns out that this is the optimal time allocation and 1 is the optimal

productivity level possible given the workers time constraints. However, according
to this time allocation, production is inefficient in the sense that optimal production
cannot be obtained within one hour. Rather, it takes one hour and a half. In the rest of
this note we are going to show that any time allocation that achieves optimal production
is inefficient in this sense.

The question is what is the property of v that prevents all optimal time allocations
to be time inefficient?

3 Capacities and the sandwich property

3.1 Technical preliminaries

Let N = {1, . . . , n} be a set of players. A capacity defined on N is a function v : 2N →
R+ such that v(N ) = 1 and v(∅) = 0, and S ⊆ T implies v(S) ≤ v(T ).2 The sub-
capacity vS is the restriction of a capacity v to S ⊆ N . Denote by R

n+ the closed positive
orthant of R

n . A function h over R
n+ is (positive) homogeneous if h(ax) = ah(x) for

every a ∈ R+ and x ∈ R
n+. An affine function, �(·), over R

n+ is characterized by
a ∈ R and (b1, . . . , bn) ∈ R

n and defined �(x1, . . . , xn) = a + ∑n
i=1 bi xi for every

(x1, . . . , xn) ∈ R. It is linear if a = 0 (that is, it is affine and homogeneous). The
characteristic function of S ⊆ N , denoted 1S , is the vector in R

n+ whose i-th coordinate
is 1 whenever i ∈ S and is 0 otherwise.

3.2 The sandwich property

Let Q = [0, 1]n be the n-dimensional unit cube. A capacity v can be viewed also as
a real function defined over the extreme points of Q, {1S : S ⊆ N }. Let f and g be
functions defined on Q and v a capacity. We say that f dominates g if f (x) ≥ g(x)
for every x ∈ Q, and that a function f dominates v if f (1S) ≥ v(S) for every S ⊆ N .

Definition 1 A capacity v has the sandwich property if for every affine function f
over R

n+ that dominates v, there is a linear function � that is dominated by f and
dominates v.

2 We show in Sect. 5 that the results hold for non-monotonic set functions that may obtain negative values
as well.
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Example 1 Consider N = {1, 2, 3} and a capacity v defined over N such that v(S) = 1
if {2} � S (and v(S) = 0 otherwise). Suppose that f (x1, x2, x3) = a +b1x1 +b2x2 +
b3x3 is an affine function that dominates v. Define � as �(x1, x2, x3) = b1x1 + (a +
b2)x2+b3x3 if a+b2 ≤ 1 and as �(x1, x2, x3) = x2 otherwise. Since a, a+b2 ≥ 0, the
function � is dominated by f . Moreover, � is dominating v. Indeed, when a + b2 ≤ 1,
since a + b1 + b2 ≥ 1, we obtain, b1 ≥ 0. For the same reason b3 ≥ 0. Therefore, in
this case and in the case when a +b2 > 1, the function � is non-negative. Furthermore,
�(112) and �(123) are at least 1 (in the first case it is because �(112) = f (112) and
�(123) = f (123)). Hence v has the sandwich property.

The following example demonstrates a capacity for which the sandwich property
does not hold.

Example 2 Consider the example described in Sect. 2. We show thatv does not have the
sandwich property. Consider the affine function f (x1, . . . , x6) = 1

2 + 1
6 x1+ 1

6 x2+ 1
6 x3.

It is easy to check that f dominates v. In order to verify that indeed v does not have
the sandwich property, suppose that �(x1, . . . , x6) = ∑

ai xi is a linear function
dominated by f and dominates v. In particular

1

2
= f (1456) ≥ �(1456) = a4 + a5 + a6. (1)

Furthermore, �(1145) ≥ v(1, 4, 5), �(1256) ≥ v(2, 5, 6) and �(1346) ≥ v(3, 4, 6).
Summing up these inequalities results in,

a1 + a2 + a3 + 2(a4 + a5 + a6) ≥ 3 · 2

3
= 2. (2)

Due to Eq. (1), the LHS of Eq. (2) is smaller than or equal to a1 + a2 + a3 + 1.
Thus, a1 + a2 + a3 ≥ 1. Since 1 = f (1123i ) ≥ �(1123i ) for every i = 4, 5, 6, it
must be that a4 = a5 = a6 = 0. Due to Eq. (2), a1 + a2 + a3 ≥ 2, which implies
that �(1N ) ≥ 2 > f (1N ). This contradicts the assumption that f dominates �. We
conclude that v does not have the sandwich property.

Note that the argument uses the facts that f dominates v and that v(1, 4, 5) =
v(2, 5, 6) = v(3, 4, 6) = 2

3 and v(N ) = 1. Any v that satisfies these conditions does
not have the sandwich property.

3.3 Concave extensions of v

3.3.1 The concave integral

In this section we consider two concave extensions of v to Q. We start with the concave
integral introduced and axiomatized in Lehrer [7] and Lehrer and Teper [8]. For every
x ∈ Q, the concave integral is defined as

∫ cav

x dv = max

⎧
⎨

⎩

∑

S⊆N

αSv(S);
∑

S⊆N

αS1S = x, αS ≥ 0

⎫
⎬

⎭
. (3)
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Remark 1 The maximum here is well defined due to compactness of the constraints
and the continuity of the objective function

∑
S⊆N αSv(S).

The concave integral can be thought of as a generalization of the totally balanced
cover;3 while the totally balanced cover is defined on the same domain as v, the
extreme points of Q, the concave integral is an extension of v to all of Q.

Proposition 1 Fix a capacity v. Then,

(i)
∫ cav · dv is the least concave and homogeneous function that dominates v.

(ii)
∫ cav x dv = min{�(x); � is linear and dominates v} for every x ∈ Q.

(iii) There is a compact and convex set C of linear functions dominating v, such that

∫ cav

x dv = min
�∈C

�(x)

for every x ∈ Q.

Proof The proofs of (i) and (ii) are standard and appear in Lehrer and Teper [9]. (iii)
is an immediate consequence of (ii) due to the compactness of Q. �	

We say that
∑

S⊆N αS1S is a decomposition of x if
∑

S⊆N αS1S = x .

Definition 2 A decomposition
∑

S⊆N αS1S of x is optimal if it attains the maximum
for Eq. (3), that is,

∫ cav x dv = ∑
S⊆N αSv(S).

Denote,

ev(x) = min

⎧
⎨

⎩

∑

S⊆N

αS;
∑

S⊆N

αS1S = x,
∫ cav

x dv =
∑

S⊆N

αSv(S)

⎫
⎬

⎭
.

Definition 3 An optimal decomposition of x ,
∑

S⊆N αS1S , is sharp if the sum of its
coefficients,

∑
S⊆N αS , is equal to ev(x).

Lemma 1 For any capacity v, ev is homogeneous and satisfies ev(x) ≥ max x for
every x ∈ Q.

Fix x ∈ Q and permute N by π : N → N such that π(i) ≥ π( j) if
xi ≥ x j . That is, xπ−1(i) is increasing with i . In particular, it is easy to see that
x = xπ−1(1)1{π−1(1),...,π−1(n)} + ∑n

i=2(xπ−1(i) − xπ−1(i−1))1{π−1(i),...,π−1(n)} and
that xπ−1(1) + ∑n

i=2(xπ−1(i) − xπ−1(i−1)) = max x . We refer to such a decom-
position as the Choquet decomposition. The reason we refer to such a decom-
position as the Choquet decomposition is that the Choquet integral (Choquet
[5]) of x with respect to v is xπ−1(1)v({π−1(1), . . . , π−1(n)}) + ∑n

i=2(xπ−1(i) −
xπ−1(i−1))v({π−1(i), . . . , π−1(n)}). Note however, that the Choquet decomposition

3 The totally balanced cover of a capacity v is a capacity v̂ defined by v̂(S) = ∫ cav 1S dv, for every S ⊆ N .
A capacity v is totally balanced if v = v̂.
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need not be optimal for every capacity v and x ∈ Q. The next example shows that it
is possible to find a capacity v such that the Choquet decomposition is not optimal for
some x and that ev(x) > max x .

Example 3 (Example 2 continued) Consider x = (0.5, 0.5, 0.5, 1, 1, 1). The Cho-
quet decomposition of x is 1

2 1{123456} + 1
2 1{456} with value 1

2v(1, 2, 3, 4, 5, 6) +
1
2v(4, 5, 6) = 1

2 · 1 + 1
2 · 0 = 1

2 . However, it can also be decomposed as x =
1
2 1{145} + 1

2 1{256} + 1
2 1{346}, which implies that

∫ cav x dv ≥ 3 · 1
2 · 2

3 = 1. Thus, the
Choquet decomposition is not optimal. We show that ev(x) > 1. Assume that

∑
αS1S

is an optimal decomposition of x and
∑
αS = 1. Note that v(E) ≤ 2

3 whenever
E 
= N . Thus,

∑
S⊆N αSv(S) = ∑

S�N αSv(S) + aNv(N ) ≤ 2
3

∑
S�N αS + αN =

2
3 (1 − αN ) + αN = 2

3 + αN
3 ≤ 5

6 <
∫ cav x dv (the inequality is because

∑
αS1S is

decomposition of x and therefore, αN cannot exceed 1
2 ). This is a contradiction.

3.3.2 A non-homogeneous concave extension

For every x ∈ Q, define

ψv(x) = max

⎧
⎨

⎩

∑

S⊆N

αSv(S);
∑

S⊆N

αS1S = x, αS ≥ 0 and
∑

S⊆N

αS ≤ 1

⎫
⎬

⎭
.

The definition ofψv is different than that of the concave integral appearing in Eq. (3) in
that it restricts the sum of weights (and hence the weightsαS themselves) to be bounded
by 1. We say that a decomposition

∑
S⊆N αSv(S) is ψv -feasible if

∑
S⊆N αS ≤ 1.

The main question we are interested in is whether, or under what conditions, ψv =∫ cav ·dv. It is clear that ψv(x) ≤ ∫ cav x dv for every x ∈ Q, however the inequality
can be strict. For instant, in Example 2 above, since ev(x) > 1 it must be thatψv(x) <∫ cav x dv.

The following is a dual characterization of ψv; since it is not a homogeneous
extension, duality should not take into account only homogeneous functions.

Proposition 2 Fix a capacity v. Then,

(i) ψv(·) is the least concave function φ that dominates v.
(ii) ψv(x) = min{ f (x); f is affine and dominates v} for every x ∈ Q.

(iii) There is a compact and convex set C of affine functions that dominate v, such
that

ψv(x) = min
f ∈C

f (x)

for every x ∈ Q.

Proof The proofs of (i) and (ii) are standard. (i) appears in Azrieli and Lehrer [2] and
(ii) in Lehrer and Teper [9]. Again, (iii) is an immediate consequence from (ii) due to
the compactness of Q. �	
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4 Main result

4.1 The characterization result

Example 2 shows v that does not have the sandwich property. Example 3 shows
that for the same capacity v there is x ∈ Q such that ev(x) > max x , implying
ψv(x) <

∫ cav xdv. These three properties are not coincidental, as the following
theorem states.

Theorem 1 Fix a capacity v. The following are equivalent:

(i) v has the sandwich property;
(ii) ev(x) = max x for every x ∈ Q;

(iii) ψv(x) = ∫ cav xdv for every x ∈ Q; and

Proof We begin by showing that (ii) is equivalent to (iii). Indeed, ψv(x) ≤ ∫ cav x dv
for every x ∈ Q, and there is equality for x if and only if the sharp decomposition of x
is feasible in the definition of ψv . Now if ev(x) = max x for x ∈ Q, then the optimal
decomposition of x isψv-feasible, and thusψv(x) = ∫ cav x dv. If this holds for every
x ∈ Q then ψv = ∫ cav · dv. As for the inverse implication, assume that there exists
x ∈ Q for which ev(x) > max x . Since ev is homogeneous, ev(

x
max x ) > 1, implying

that the optimal decomposition of x
max x is not ψv-feasible. Therefore, ψv( x

max x ) <∫ cav x
max x dv.

Next we show that (i) is equivalent to (iii). Suppose ψv = ∫ cav · dv. Thus, by
Proposition 1 (iii) and Proposition 2 (ii), there is a compact and convex set C of linear
functions that dominate v such that

min
�∈C

�(x) = min
{

f (x); f is affine and dominates v
}
.

It implies that for every affine function f that dominates v and every x ∈ Q there is a
linear � ∈ C that satisfies f (x) ≥ �(x).

Fix an affine function f that dominates v and consider the following zero-sum
game. The action set of player 1 (PI) – the maximizer– is Q, while that of player
2 (PII) is C . The actions sets are both compact and convex. When PI is choosing x
and PII � ∈ C , the payoff is �(x) − f (x). Note that the payoff function is linear in
each player’s actions. Moreover, by the previous paragraph, we obtain that for every
action of PI there is an action of PII that guarantees that the payoff is non-positive.
The minmax theorem implies that the value of the game is non-positive and that there
is one action, say �∗, such that �∗(x) − f (x) ≤ 0 for every x ∈ Q. In particular, f
dominates �∗. This shows that v has the sandwich property.

As for the inverse direction, suppose that v has the sandwich property. Fix x ∈ Q.
By Proposition 2 (ii) there is a affine function f that dominates v and satisfiesψv(x) =
f (x). Due to the sandwich property there is a linear function � dominated by f and
dominates v. In particular f (x) ≥ �(x). By Proposition 1 (ii), �(x) ≥ ∫ cav x dv and
therefore, ψv(x) = f (x) ≥ ∫ cav x dv implying ψv(x) = ∫ cav x dv. This completes
the proof. �	
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4.2 Reformulating the sandwich property

An alternative way to look at the issue raised in the Introduction is the following. While
ψv is a concave extension of v like the concave integral, it is not homogeneous. Thus,
asking when ψv = ∫ cav ·dv is equivalent to asking under what assumptions on v, the
extensionψv is homogeneous. Put differently, when is the least concave function over
Q that dominates v homogeneous?

Theorem 1 provides a clear answer. It is immediate that point (i i i) of the theorem
is equivalent to the homogeneity of ψv , implying the following corollary.

Corollary 1 Fix a capacity v. Then, v has the sandwich property if and only if ψv is
homogenous.

Considering this point of view, we obtain a Shapley-Bondareva like condition (see
Bondareva [4] and Shapley [14]) for the sandwich property. For every x ∈ Q, let

D(x) =
{

(S, (αS)S∈S) ; S ⊆ 2N ,
∑

S∈S
αS1S = x, αS ≥ 0 and

∑

S∈S
αS ≤ 1

}

.

When ψv(x) = ∑
S∈S αSv(S) we say that (S, (αS)S∈S) ∈ D(x) is a ψv-optimal

(decomposition of x). The following result follows Corollary 1.

Proposition 3 Fix a capacity v. Then, v has the sandwich property if and only if for
every x ∈ Q, γ ∈ (0, 1), ψv-optimal (S, (αS)S∈S) ∈ D(x), and (T , (βT )T ∈T ) ∈
D(γ x), one has

∑

S∈S
γαSv(S) ≥

∑

T ∈T
βT v(T ).

4.3 Other implications

Lemma 2 Let v be capacity. Then, v has the sandwich property, if and only if each
of its sub-capacities has the sandwich property.

The core (Bondareva [4] and Shapley [14]) of a capacity v is the set of linear
functions that dominate v and attain the same value as v on 1N . Such a linear function
is called a core allocation of v. A capacity is totally balanced if for every S ⊆ N the
core of the sub-capacity vS is non-empty.

Claim 1 ev(1N ) = 1 if and only if v has a non-empty core.

Following the proof of Claim 1, it can be shown that ev(1S) = 1 if and only if v is
totally balanced. This leads to the following corollary.

Corollary 2 ev(1S) = 1 for every coalition S ⊆ N if and only if v is totally balanced.

The following corollary is an immediate consequence of Claim 1 and Theorem 1.
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Corollary 3 If v has the sandwich property, then it is totally balanced.

Claim 2 Any totally balanced capacity with three players has the sandwich property.

A capacity v is convex (Shapley [15]) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ),
for every S, T ⊆ N . The following claim follows Lovasz [10], which shows that the
concave integral coincides with Choquet integral if and only if the capacity is convex.

Claim 3 If v is convex, then it has the sandwich property.

Note that the capacity in Example 1 is totally balanced but not convex. Thus, Claim
3 does not imply Claim 2.

A capacity v is exact (Schmeidler [12]) if for every S ⊆ N there is a core allocation
p such that4 p(S) = v(S). A capacity has a large core (Sharkey [16]; See also Estévez-
Fernández [6]) if for every linear function � that dominates v, there is a core allocation
that is dominated by � and dominates v.

Remark 2 There are two differences between the definition of the sandwich property
and large core. First, the definition of the sandwich property relates to every affine
function f that dominates v, while that of a large core relates to every linear function
� that dominates v. Second, while the definition of large core requires that the linear
function dominated by � and dominating v be a core allocation, the sandwich property
does not require this.

The following is an example of a capacity that has the sandwich property but is
neither exact (and therefore not convex (Schmeidler [12]), implying that the inverse
of Claim 3 is incorrect), nor has a large core.

Example 4 (Example 1 continued) Note that the core of v is non-empty and it consists
of a single point (0, 1, 0). In particular, there is no core allocation p that satisfies p(2) =
v(2). Thus, v is not exact. Finally, consider the linear function �′(x1, x2, x3) = x1+x3.
This function dominates v, but dominates no core allocation of v. Therefore, v does
not have a large core.

Example 1 shows that there are capacities with the sandwich property that have a
core that is not large. The next example shows that inverse implication does not hold
either: largeness of the core does not imply the sandwich property.

Example 5 Consider the set N = {1, . . . , 6} and v defined over it, as in Example 2.
Recall that v does not have the sandwich property. Consider N ′ = N ∪{7}. That is, N ′
contains the additional player 7. Define w over N ′ as follows. w(S) = v (S \ {7}) if
S 
= N ′ and w(N ′) = 7. (In words, player 7 contributes nothing to S, unless S = N ,
in which case his contribution amounts to w(N ′)− v(N ) = 7 − 1 = 6.) By definition
wN = v. Recall that v does not have the sandwich property and therefore, by Lemma
2, w does not have this property either.

We now show that w has a large core. Assume that �(x1, . . . , x7) = ∑7
i=1 ai xi

is a linear function that dominates w. It implies that ai ≥ 0 for every i ∈ N ′ and∑7
i=1 ai ≥ 7.

4 For a vector x ∈ RN and a coalition S ⊆ N , by x(S) we mean the inner product 〈x, 1S〉 = ∑
i∈S xi .
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Table 1 5 vectors whose sum is
2

1 2 3 4 5 6 7

x1
2
3

2
3

2
3 0 0 0 0

x2 0 0 0 1
3

1
3

1
3 1

x3
1
3 0 0 1

6
1
6

1
2

5
6

x4 0 0 1
3

1
6

1
2

1
6

5
6

x5 0 1
3 0 1

2
1
6

1
6

5
6

Define, ai (β) = min[ai , β ·ai +(1−β)], i = 1, . . . , 7. Whenβ = 0,
∑7

i=1 ai (β) =
∑7

i=1 min(ai , 1) ≤ 7 and when β = 1,
∑7

i=1 ai (β) = ∑7
i=1 ai ≥ 7. Thus, there is

β∗ ∈ [0, 1] such that
∑7

i=1 ai (β
∗) = 7. Define p(x1, . . . , x7) = ∑

i∈N ai (β
∗)xi .

Note that ai (β
∗) ≤ ai (i = 1, . . . , 7) with equality only when ai ≤ 1. Clearly,

w(N ′) = 7 = p(1N ′) and p is dominated by �.
We proceed to show that p is a core member of w. Fix S 
= N ′. Either (a) p(1S) ≥

1 (which occurs, for instance, when for one i ∈ S, ai (β
∗) ≥ 1), in which case

p(1S) ≥ 1 ≥ w(S); or (b) 1 > p(1S). This happens only when 1 > ai (β
∗) = ai for

every i = 1, . . . , 7, and therefore, p(1S) = �(1S). Since �(1S) ≥ w(S) we obtain,
p(1S) ≥ w(S). This completes the proof that p dominatesw. We conclude that indeed,
p is a core member of w and is dominated by �, showing that w has a large core.

The example suggests the following claim.

Claim 4 If any sub-capacity of v has a large core, then v has the sandwich property.

The following example shows that in the spirit of the example above, we can extend
v to be exact, showing that exactness does not imply the sandwich property.

Example 6 Consider Table 1.
Define w(S) = mini xi (S) for every S ⊆ N ′. For instance, when S = {1, 2, 3} the

minimum is obtained at x2 where x2(S) = 0, and when S = {1, 4, 5}, the minimum
is obtain at all xi ’s, and xi (S) = 2

3 . The purpose of x3, x4 and x5 is to ensure that for
any S that contains all members of N but one from {1, 2, 3}, w(S) ≤ 5

6 (e.g., when
S = {2, . . . , 6}, w(S) = x3(S) = 5

6 ). As a minimum of homogeneous functions that
attain the same value at 1N ′ , w (defined on N ′) is exact.

Consider wN . As in Example 2, f (x1, . . . , x6) = 1
2 + 1

6 x1 + 1
6 x2 + 1

6 x3 dom-
inates wN . Moreover, in Example 2 we showed that v does not have the sandwich
property. The argument was using f as a dominating affine function, and the facts
that v(1, 4, 5) = v(2, 5, 6) = v(3, 4, 6) = 2

3 and v(N ) = 1. These equalities are
also satisfied by wN . We therefore conclude that wN also does not have the sandwich
property, and by Lemma 2, w neither. To sum up, w is exact and does not have the
sandwich property.

5 A final comment

In this note we address the issue of the structure of a set function v for which the
concave integral, as an extension of v to a bounded domain, abides to the boundedness
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assumptions. When described formally, we ask when is the concave integral coincides
with the more restrictive extension ψv . We show that a property termed the sandwich
property is a necessary and sufficient condition for that to occur.

We have discussed above monotonic set functions (or, capacities). However one
can think of an example in line with the introduction, for which v(S) = p(S)− c(S),
where p(S) is the (gross) productivity of coalition S per unit of time, and c(S) the
cost of convening S per unit of time. That is, v(S) captures the net gain from coalition
S producing during a unit of time. In this case v is no longer a capacity as it is not
necessarily monotonic or non-negative.

However, our analysis holds for general set functions if we consider one modifica-
tion. In this case the definition of the concave integral should be slightly amended as
follows (compare with Eq. (3)):

∫ cav,≤
x dv = max

⎧
⎨

⎩

∑

S⊆N

βSv(S);
∑

S⊆N

βS1S ≤ x, βS ≥ 0

⎫
⎬

⎭
. (4)

The difference between Eqs. (3) and (4) is that in the former the decomposition∑
S⊆N βS1S is forced to be equal to x while in the latter it is allowed to be smaller or

equal to x . In other words, Eq. (4) allows all possible sub-decompositions in which x
does not have to be fully exhausted.

One can also consider an alternative definition of an integral with respect to a
(non-monotonic) set function. For a set function v let v∗ be a capacity defined by
v∗(S) = max{v(T ) : T ⊆ S}, for every S ⊆ T (see Murofushi et al. [11]). It is easy
to see that v∗ is monotonic. Now it is possible to consider the definition of the concave
integral as in Eq. (3), with the difference that it is taken with respect to v∗. However,
the two definitions above coincide. That is,

∫ cav,≤ · dv = ∫ cav · dv∗. The proof is
similar to the one of point (i i) of Lemma 1 in Lehrer and Teper [9] and is omitted.

Appendix

Proof of Lemma 1 Fix a capacity v. The homogeneity of ev is implied by the definition
of

∫ cav ·dv. Now, fix x ∈ Q and consider a decomposition of x ,
∑

S⊆N αS1S = x .
Letting i∗ = arg maxi∈{1,...,n} xi , we get that

∑
S⊆N αS ≥ ∑

S⊆N ,i∗∈S αS = xi∗ =
max x . Since ev(x) is the minimum over all such decomposition, we obtain ev(x) ≥
max x . �	

Proof of Lemma 2. Let v be a capacity defined over N and vS its sub-capacity. If
vS does not have the sandwich property, then there is an affine function fS(x) =
a + ∑

i∈S ai xi (where x ∈ [0, 1]S) that dominates vS , and there is no linear function
dominated by fS and that is dominating vS . Denote,

b = max
A⊆S

B⊆N\S

[v(A ∪ B)− v(A)].

123

Author's personal copy



E. Lehrer, R. Teper

b is the maximal contribution of a coalition B in N\S to a coalition A in S. Define
the following affine function over Q, f (x) = a + ∑

i∈S ai xi + ∑
i∈N\S bxi . It is

clear that f dominates v. Suppose, to the contrary of the assumption that v does
have the sandwich property and that there exists a linear function �(x) = ∑

i∈N ci xi ,
dominated by f and is dominating v. Then, �S(x) = ∑

i∈S ci xi is dominated by fS

and is dominating vS . This is a contradiction.
On the other hand, if v has the sandwich property, let fS be an affine function that

dominates vS . Define f in the same way as defined above. By assumption, there is a
linear function � that is dominating v and is dominated by f . The restriction of � to
S, �S , is dominating vS and is dominated by fS , implying that vS has the sandwich
property. �	

Proof of Claim 1. Suppose that the core of v is non-empty and let
∑
αS1S be a decom-

position of 1N , then by the Shapley-Bondareva theorem (Bondareva [4] and Shapley
[14]),

∑
αSv(S) ≤ v(N ). Thus, the decomposition 1N of itself is optimal, implying

that ev(1N ) ≤ 1, and by Lemma 1, ev(1N ) = 1.
Now suppose that ev(1N ) = 1. It implies that any sharp decomposition of 1N ,∑
αS1S , satisfies S = N whenever αS > 0. Thus, the decomposition is in fact 1N

itself. �	

Proof of Claim 2. Let x ∈ Q and
∑
αS1S be its sharp decomposition. W.l.o.g,α{12} ≤

α{13}, α{23}. Thus we can replaceα{12}112+α{13}113+α{23}123 by 2(α{12}1123+(α{13}−
α{12})113 + (α{23} − α{12})123).

We conclude that one may assume that in a sharp decomposition the coefficient
of 112 is 0. Furthermore, based on the total balancedness of v, a similar argument
would imply that no two coalitions with positive coefficients in the decomposition are
disjoint. Thus, at most one singleton has a positive coefficient and the one that has a
positive coefficient, if exists, is included in the other coalitions whose coefficients are
positive.

We now show that there is i ∈ N that is a member of all coalitions whose coefficients
are positive. This shows that e(x) = max x and with the help of Theorem 1 completes
the proof.

Case 1: α{1} > 0. Then, α{2} = α{3} = α{23} = 0, which means that 1 ∈ S when
α{S} > 0. Case 2: α{2} > 0. Then, α{1} = α{3} = α{13} = 0 implying that 2 ∈ S if
α{S} > 0. Case 3: α{3} > 0. Similar to the previous case. Finally, Case 4: α{i} = 0 for
every i ∈ N . Since α{12} = 0, 3 ∈ S whenever αS > 0. This completes the proof. �	

Proof of Claim 3. By Lovazc [10] (pp. 246–249), when v is convex for any x ∈ Q,
the Choquet decomposition is optimal. Thus, e(x) = max x . �	

Proof of Claim 4. Assume that any sub-capacity of v has a large core. This implies
that v is totally balanced. Thus, every sub-capacity of v is totally balanced and has
a large core. As such, any sub-capacity is exact (Sharkey [16]), implying that v is
convex (Biswas et al. [3]). By Claim 3, v has the sandwich property. �	
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