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Abstract

Individual decisions are often subjectively affected by other-regarding preferences.

We present a model whereby a decision maker has a grand group of significant

others. Each sub-group of significant others is a possible social context, and the

decision maker has (potentially) different preferences in different social contexts.

An axiomatic characterization of such preferences is offered. The characterized

representation taking a simple Subjective Utilitarian form: (a) the decision maker

ascribes to each significant other a utility function, representing the decision

maker’s subjective perception of this other person’s tastes, and (b) in any specific

social context the decision maker evaluates alternatives by adding together her or

his own personal utility and the sum of all group members’ utilities as subjectively

perceived by the decision maker.
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1 Introduction

It is widely recognized in the economic literature that people may have other-regarding

preferences, namely preferences that are not strictly selfish, but also depend on others

in their society. People may be inequity averse, care about social welfare, or be sensitive

to their social status, to name only a few examples. That preferences and decisions of

an individual may be affected by others’ payoff was demonstrated in divers experiments

(see Cooper and Kagel [4] for a survey). On the theoretical side, various models were

designed to describe and explore forms of other-regarding preferences. Some examples

include Fehr and Schmidt [8] and Bolton and Ockenfels [2], who offer models in which

agents are inequity averse; Charness and Rabin [3] who present experiments and a

functional form that incorporates social welfare concerns into agents’ preferences; and

Dufwenberg et al [7], in which general equilibria is explored based on individual other-

regarding preferences that depend on all agents’ opportunities.1

In the majority of models of individual preferences that exhibit other-regarding

features, concern for the welfare of others in society is incorporated into the individual

preferences in one of two ways. Some models evaluate the welfare of all others using

one utility, either the personal utility related to the modelled individual, or some social,

universal utility. The approach in those models is paternalistic in that welfare of others

is not judged based on their own tastes. Such models are used to describe, for instance,

an individual’s concern for fairness, which is measured through this individual’s eyes or

according to some social norm. Other models in the other-regarding literature evaluate

the welfare of others using their actual utilities. These models use considerably more

observables than models of the first type. Whereas models of the first type require to

observe only the preferences of a single individual, models of the second type assume that

the preferences of all other individuals are available as well. These models are employed,

1For an extensive discussion of other-regarding models see Postlewaite [13]. An especially nice
example for the impact of other-regarding preferences on a standard model can be found in Bergstrom
[1].
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for example, when equilibria is investigated under an assumption of other-regarding

preferences of agents.

This paper offers a third way of incorporating concern for others’ welfare into the

preferences of an individual. Our model attempts to account for others’ tastes, yet does

not require to observe more than the preferences of the single individual. Before getting

into the specifics of the model, we motivate the discussion with two examples. First,

imagine a person buying takeout for dinner with friends. This person may personally

prefer Italian to Chinese food, but settle for Chinese food nevertheless, since her or his

friends prefer it to Italian. Similarly, consider a person booking a family vacation. She

or he may personally rather travel to Paris than to an all-inclusive resort, yet opt for

the resort if her or his children like the resort better.

In both examples, an individual choosing one alternative over another takes into

account the tastes of others that will be affected by this decision. The choice itself (e.g.,

the purchase of takeout food, the booking of a vacation) is made by the individual alone,

however consumption of the chosen commodities is shared with a group of significant

others (e.g., the decision maker’s friends, the decision maker’s family). We claim that

in cases of this sort, a decision is affected by the group with which consumption is

made just as it is affected by the purchased good itself (e.g., the group of friends

attending dinner affects the decision of which takeout food to buy, family members

affect the decision of which vacation to book). Thus we may see an individual preferring

one alternative over another on one occasion, but exhibiting the reversed preference on

another occasion, where this reversal is not a consequence of indifference or inconsistency,

but of considering consumption of the same goods with different groups of people.

The model proposed in this paper is designed to address decisions of the sort described

above. Within the model, the preferences of a single individual are considered. Groups

of others with which this individual consumes are made explicit, and taken into account

in the individual’s preferences. This allows us to accommodate a decision maker who

is affected by such groups, possibly exhibiting reversals of preferences over goods which
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result from considering different reference groups.

Formally, one of the primitives assumed is a grand group of significant others,

which is meant to include all those people who are important to the decision maker,

and may affect his or her decisions. Consumption is possible with any sub-group of

this grand group, and each of these sub-groups is called a social context, or a group

context. Alternatives take social contexts into account, in that the individual preferences

considered are over pairs of a lottery and a social context, namely a sub-group of

significant others with which the lottery will be consumed. The setup is therefore a

classic von-Neumann and Morgenstern one (vNM; [14]), with one simple addition of

groups of referent others. With this choice of setup it is possible to accommodate,

for instance, an individual whose strict preference is to spend a vacation with her or his

spouse in Paris rather than in an all-inclusive resort, but exhibits the reversed preference,

for the resort over Paris, when considering a vacation with the entire family. Moreover,

this setup allows us to address dual questions, such as, whether an individual prefers

to spend a vacation in Paris with her or his spouse alone, to spending it with her or

his spouse and kids. In fact, these types of questions, in which one component in the

compared alternatives is kept constant, are the only types of questions posed within the

model. Comparisons which involve both different lotteries and different groups are not

required to be determined. This is since we believe such comparisons are more complex

and hence difficult to determine, and furthermore not readily observed, even in cases

where they are determined.

A possible critique at this point would be, that a vacation with one’s spouse in Paris,

and a vacation with one’s entire family in Paris, are simply two different alternatives.

They can be modelled as such in an abstract manner, without imposing a structure which

contains a social context. Our reply is that an explicit modelling of a social context

allows us not only to distinguish between those two alternatives, but moreover to ask

if and how the decision maker’s evaluation of those alternatives differs as a function of

the social context involved. And indeed our aim is to identify a systematic dependency
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of preferences on a social context. To compare, vacation today and vacation tomorrow

are also two different alternatives. However, specifying time as part of an alternative’s

description facilitates a characterization of time discounted preferences.

Having a setup which supports an investigation of preferences depending on a social

context, the question still remains, what kind of dependency does the model depict? We

suggested above that people take into account others’ tastes when forming a decision.

On the other hand, we insisted on a model that relies on observing the preferences of

a single individual. But without observing the preferences of others, it is impossible to

extract their tastes, and so how can their tastes be taken into account?

To answer this question, we return to the examples above. These examples describe

a person buying Chinese rather than Italian food on the premise that her or his friends

prefer Chinese, and another person booking a family vacation in an all-inclusive resort

based on the view that her or his kids prefer it to a vacation in Paris. The decisions in

both cases are made by one person alone. Relevant others do not affect these decisions

directly, but rather indirectly through the decision maker’s perception of their tastes.

This perception is by its nature purely subjective, and may or may not be aligned with

the others’ true tastes. Nevertheless, this purely subjective perception of tastes, as well

as the decision maker’s inclination to be considerate of others’ preferences, are what

drives the decision maker’s other-regarding behavior. The representation offered here

thus depends not on others’ true utilities (which are not observed), but on the way those

utilities are perceived by the decision maker.

Specifically, the decision maker in our model takes others’ tastes into account in

a subjective utilitarian manner. That is to say, the evaluation described is as if the

decision maker, on top of entertaining a personal vNM utility function, subjectively

ascribes a vNM utility function to each significant other. A lottery in a group context

is then evaluated through the utilitarian sum of the decision maker’s personal vNM

utility from this lottery, and the vNM utilities from this lottery of all group members, as

subjectively perceived by the decision maker. The work in the paper is axiomatic,
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behaviorally characterizing subjective utilitarianism. The main assumptions in the

identification of a subjective utilitarian individual require that the effect of considering

social contexts be consistent, both when considering groups with shared members, and

in the preference reversals that are inflicted. Preference reversals are interpreted as

representing compromises made by the decision maker in favor of significant others.

Formally, a pair (p,G) of a lottery p in the context of a group G is evaluated within

the representation by,

V (p,G) = u0(p) +
∑
j∈G

vj(p), (1)

where u0 is the personal vNM utility of the decision maker, and vj is the vNM utility

subjectively ascribed to individual j by the decision maker.

Central to the representation is the fact that the decision maker attributes to each

referent other one vNM utility once and for all, and this same utility is used whenever a

lottery is evaluated in the context of a group containing this referent other. We interpret

this utility as reflecting the tastes of this referent individual, as these are perceived by the

decision maker. The representation theorem furthermore delivers that utilities ascribed

to others are calibrated relative to the decision maker’s own utility. That is to say,

others’ utilities are unique once the decision maker’s personal utility is fixed. Therefore,

embedded into the vNM utilities ascribed to others, is the extent to which the decision

maker wishes to comply with the tastes they represent.

Our interpretation of the model is of an individual making decisions in consideration

of others’ welfare, as this welfare is perceived by her or him. An alternative, paternalistic

interpretation of the model is as depicting a decision maker who bases decisions on her

or his own judgement of what is better for significant others. For instance, the decision

maker may form preferences based on the contention that it is better for her or his

children to listen to a classical concert than to watch an action movie, even if the

children’s preferences are opposite. Another alternative interpretation of the model is

as describing a decision maker who is driven by spite. In that case the functions vj
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represent disutilities of referent others rather than their utilities.

The representation suggested here constitutes a subjective version of Harsanyi’s

utilitarianism [9]. Here as well the tastes of all individuals in society are taken into

account in an additive manner. However, while the choice of weights in Harsanyi’s model

poses difficult ethical questions regarding interpersonal utility comparisons in a society,

in the model discussed here the preferences at issue are of a single individual, therefore

no ethical dilemma arises. The calibration of others’ utilities within the subjective

utilitarian model simply reflects the degree to which the decision maker wishes to be

considerate of others’ tastes.

We conclude the introduction with a discussion of the most related literature. Most

closely related to our work are axiomatic papers which characterize other-regarding

representations of individual preferences. In all these models that we are aware of,

however, welfare of others is evaluated either based on the decision maker’s personal

tastes, or according to some social measure, which is the same for all. Namely, in

contrast to our model, welfare of others in those models is not evaluated in a manner

that accounts for others’ own tastes. Accordingly, these models cannot describe decision

makers who are considerate of other people’s preferences (even if subjectively), but

address issues such as status or fairness concerns.

Among the axiomatic models of individual other-regarding preferences is Maccheroni,

Marinacci, and Rustichini [11]. The model contains characterizations of individual

preferences over allocations of general acts to sub-groups of agents, portraying a decision

maker who is sensitive to her or his social status. The decision maker compares her or

his allocated acts to others’ allocated acts through a personal utility, or by applying one

other utility, the same for all agents, interpreted as a social value function. Another

axiomatic paper involving an individual with social status concerns is Ok and Koçkesen

[12], describing a preference over income distributions which representation reflects the

individual’s wish to occupy a higher status than others in society.

A different motivation for other-regarding preferences is expressed in Karni and Safra
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[10]. These authors describe an individual choice behavior which is driven by ethical

motives in addition to the more traditional purely-selfish motives. The paper offers a

representation which involves one function representing the purely selfish preferences of

a decision maker, and another one that represents his or her moral preferences. Lastly we

mention Dillenberger and Sadowski [6], characterizing an individual decision maker who

chooses between menus of payoff allocations to himself or herself and another individual,

motivated by a tradeoff between self interest and a wish not to appear selfish.

The paper is organized as follows. Section 2 describes the model, the axioms and the

main results. Section 3 contains comments and some extensions. All the proofs appear

in Section 4.

2 The Model and Main Results

2.1 Setup

Suppose a finite set of prizes X, and a set Y of lotteries over X, namely probability

distributions over X with a finite support. We are interested in the preferences of

an individual when the individual operates in a group context. The individual whose

preferences we examine is called ‘Individual Zero’, and the grand set of referent individuals

for Individual Zero is denoted I = {1, . . . , N} with N > 2, each i = 1, . . . , N being a

‘significant other’ for Individual Zero. A social context, or a group context is a subset

G ⊆ I. Consuming lottery p when Individual Zero is with a group G, which we refer to

as consuming p in a context G, is denoted (p,G). Consuming p when Individual Zero is

alone is written simply as p (shortening (p, ∅)). Individual Zero’s preferences, denoted

%, are over such pairs of lotteries and contexts, but we only require that preferences

be expressed once one of these components is constant. Thus, the modelled individual

performs either comparisons of the form (p,G) % (q,G), or of the form (p,G) % (p,H).

The former is interpreted as stating that when with group G, the individual finds lottery

p as at least as preferred as lottery q. The latter is interpreted as stating that the
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individual weakly prefers to consume lottery p with group G than to consume it with

group H. Formally, % ⊆ R, for

R =

(⋃
G⊆I

⋃
p,q∈Y

((p,G), (q,G))

)⋃(⋃
p∈Y

⋃
G,H⊆I

((p,G), (p,H))

)
.

The symmetric and asymmetric components of % are respectively denoted ∼ and �.

A structural assumption is imposed at the outset, whereby it is postulated that

there are purely individualistic better and worse prizes in X. These are prizes which

consumption is unaffected by a context, and are equally preferred when consumed with

or without a group of others. For instance, Individual Zero may prefer red apples to

green ones, and eating either of these apples with or without a group is not likely to

make a difference.

C0. Individualistic ranking.

There are x∗, x∗ ∈ X such that x∗ � x∗, and for any group G, (x∗, G) ∼ x∗ and

x∗ ∼ (x∗, G).

2.2 Basic representation

Our first step in characterizing Individual Zero as a subjective utilitarian is to identify

when the preferences of this individual, both within and across contexts, are represented

by a family of vNM utilities. The first assumption in this basic characterization directly

asserts that given a fixed context, the preferences of Individual Zero over lotteries in

this fixed context satisfy the axioms of von-Neumann and Morgenstern (vNM; see [14]).

Thus, within any fixed context, Individual Zero’s preferences admit a representation by

a vNM utility function.

8



C1. vNM Preferences.

Let G ⊆ I be a group. Then % over {(p,G) | p ∈ Y } satisfies the vNM [14] axioms

(Weak order, Independence, Archimedeanity).

Note that G can also be the empty group, hence the preferences of Individual Zero

alone also admit a vNM representation.

The above axiom trivially implies the use of vNM utilities in comparing lotteries

within the same group context. The next three axioms pertain to the preferences

of Individual Zero across contexts. Firstly, it is assumed that given a fixed lottery,

Individual Zero’s preferences over groups with which to consume this lottery are complete

and transitive.

C2. Weak order over contexts.

Let p be a lottery and G,H and K groups. Then either (p,G) % (p,H) or (p,H) %

(p,G), and if (p,G) % (p,H) and (p,H) % (p,K) then (p,G) % (p,K).

Next, a form of independence of the preference across contexts is presumed: given

separate preferences to consume each of two lotteries with one group over another, the

same holds for any mixture of these two lotteries.

C3. Independence over contexts.

Let p, q be lotteries and G,H groups. If (p,G) % (p,H) and (q,G) % (q,H) then for

every α ∈ (0, 1), (αp+(1−α)q,G) % (αp+(1−α)q,H). Moreover, the conclusion holds

strictly whenever any of the two antecedents holds strictly.

Lastly transitivity is strengthened, to prevent the relation over lottery-group pairs

from generating cycles.
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C4. Transitivity across contexts.

Let p, q be lotteries and G,H groups. If (p,G) % (p,H), (p,H) % (q,H), and (q,H) %

(q,G), then (p,G) % (q,G). If any one of the first three relationships is strict, then the

relationship in the conclusion is strict as well.

In the proposition that follows, it is stated that under the structural assumption of

individualistic better and worse prizes (C0), axioms C1-C4 are equivalent to a vNM

representation of preferences both within and across contexts. Within each context

the result follows trivially from the assumption of vNM preferences (C1). The fact that

those same utilities may be used to compare the consumption of a lottery across contexts

is implied by the other three axioms (C2-C4).

Proposition 1. Let % ⊆ R and suppose that C0 holds. Then C1-C4 are satisfied, if

and only if, there exist vNM utility functions uG, G ⊆ I, such that for any two lotteries

p and q and groups G and H,

(p,G) % (q,G) ⇐⇒ uG(p) ≥ uG(q)

(p,G) % (p,H) ⇐⇒ uG(p) ≥ uH(p)

Furthermore, these utilities are unique up to joint shift and scale.2

2.3 Subjective utilitarianism

Following the previous proposition, Individual Zero applies a family of vNM utilities,

one per group of significant others, to compare lotteries both within and across contexts.

To further obtain that these utilities take a subjective utilitarian form, three additional

axioms are imposed. The first, termed Compromise, addresses reversals of personal

preferences when Individual Zero is joined by groups of referents. Compromise states

2That is to say, if ûG, G ⊆ I, is any other array of utilities representing % in the same manner, then
there are σ > 0, τ such that, ûG = σuG + τ , for every G. For G = ∅, the utilities uG and ûG are the
utility functions of Individual Zero alone.
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that if a personal preference is reversed in the context of group G as well as in the context

of group H, then it will also be reversed when consumption is made with members of

both these groups together. The axiom supports the interpretation that reversal of

personal preferences is the result of compromising with others whose preferences are

opposite. For if the opposite preferences of members of G are strong enough to make

Individual Zero reverse his/her personal preference, and the same holds separately for

H, then the preferences of members of G and H together give even more of a reason

to compromise. This condition eliminates the possibility of cross-effects when referent

individuals are joined together.

C5. Compromise.

Let p, q be lotteries and G,H disjoint groups. If q % p, (p,G) % (q,G), and (p,H) %

(q,H), then (p,G ∪H) % (q,G ∪H).

Another form of consistency is imposed on the individual preference, whereby a

decision with which of two groups to consume a lottery p is determined only by those

individuals that belong only to one of these groups. For an example suppose that

Individual Zero prefers to go to a classical concert with one friend rather than with

another. Then this axiom postulates that Individual Zero would also prefer going to the

concert with her or his spouse and the first friend, rather than going with the spouse

and the second friend. This is since the basic preference is presumably because the first

friend likes classical music better than the second, and as the spouse will go in both

alternatives, regardless of his or her preference for classical music, the decision will still

be determined by the friends’ liking of classical music. As in the previous assumption,

this condition rules out cross effects between different individuals.

C6. Consistent Influence.

For every three pairwise-disjoint groups, G,H and K, (p,G) % (p,H) if and only if
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(p,G ∪K) % (p,H ∪K).

Lastly, we impose a Richness condition, which allows us to pinpoint uniquely the

subjective vNM utilities that the individual ascribes to each of the referent individuals.

C7. Richness.

For any three nonempty, pairwise-disjoint groups G,H and K, there are a lottery p such

that (p,G) � (p,H) � (p,K) � p, and a lottery q such that (q,G) � (q,H) � q �

(q,K).

In order for the assumptions above to be necessary and sufficient for a subjective

utilitarian representation, a condition on the resulting utilities is required, that implies

the Richness assumption (C7). This is the condition formulated next.

Definition 1. A collection of utilities (uG)G⊆I is diversified if for every choice of pairwise-

disjoint groups G,H, and K, every convex combination of uG−uH , uH−uK , and uK−u∅,

as well as any convex combination of uG− uH , uH − u∅, and u∅− uK , yields at least one

strictly positive coordinate.

Our main theorem states that under the structural assumption C0, axioms C1

through C7 are equivalent to a subjective utilitarian representation: Individual Zero

ascribes to each referent individual a subjective vNM utility function, and evaluates a

lottery in a group context by adding to his or her own personal utility from this lottery

the sum of the subjective utilities from this lottery, of all group members. In other

words, Individual Zero’s evaluation of lotteries in the context of a group is utilitarian,

comprised of the individual’s personal utility and the subjective utilities of all group

members. Importantly, the utility of each referent individual is the same in all groups

to which this individual belongs.
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Theorem 1. Let % ⊆ R be a binary relation and suppose that C0 holds. Then the

following two statements are equivalent:

(i) Assumptions C1-C7 hold.

(ii) There exist vNM utilities, u0, v1, . . . , vN , such that for any lotteries p and q and

groups G and H,

(p,G) % (q,G) ⇐⇒ u0(p) +
∑
j∈G

vj(p) ≥ u0(q) +
∑
j∈G

vj(q)

(p,G) % (p,H) ⇐⇒
∑
j∈G

vj(p) ≥
∑
j∈H

vj(p)

Furthermore, u0, v1, . . . , vN are unique up to a joint scale and a shift of u0, and

the resulting utilities, uG = u0 +
∑

j∈G vj, for G ⊆ I, are diversified.3

The proof appears in Section 4.

The representation together with C0 implies that for every referent other j, vj(x∗) =

vj(x
∗) = 0. The outcomes x∗ and x∗ hence serve as a threshold for the decision maker,

being outcomes towards which others are indifferent, à-la the decision maker. It follows

that individual j’s evaluation of a lottery p, as this is perceived by the decision maker, is

positive, if and only if, vj(p) > vj(x∗). Consequently, for a fixed lottery p, the decision

maker will be better off if a referent other j with vj(p) > vj(x∗) joins the social context

in which p is consumed, and worse off if strict inequality in the other direction holds for

an individual joining the group.

When there are less than three additional individuals, a less specific representation

can be derived.

Remark 1. When I = {1} the result follows trivially. When I = {1, 2} we can

prove that assumptions C1-C6, together with a richness condition that postulates the

3The utility u∅ is simply u0, the personal utility of the individual under consideration.

13



existence of a lottery p for which (p, {1}) � (p, {2}) � p, are equivalent to the existence

of vNM utilities, u0, v1, and v2, unique up to a joint scale and a shift of u0, such that

for any lottery p the alternative (p,G) is evaluated by: u0(p), for G = ∅; u0(p) + vi(p),

for G = {i}, i=1,2; u0(p) + λ1v1(p) + λ2v2(p), for G = {1, 2}, where λ1, λ2 ≥ 0 and not

both are zero.

3 Comments

3.1 Measuring others’ influence

In our model, a preference of a decision maker over lotteries may be reversed when

the decision maker consumes those lotteries with others. Given such influence of other

individuals, a natural comparative question that arises pertains to the degree of influence

each of these others has. To answer this question, the notion of ‘influence’ needs to

be precisely defined. Generally speaking, we consider ‘influence’ to be a case when a

significant other causes a reversal of the decision maker’s choice. Thus, for a fixed pair

of lotteries p and q, a referent other influences the decision maker whenever the decision

maker chooses q over p without that referent other, yet reverses this preference to p over

q with that same referent. This kind of reversal can occur when a referent other joins

only the decision maker, or when the preference of the decision maker in the context

of a group is reversed once that referent other joins the group. Instances of influence

across different pairs of lotteries are combined by taking the average over all possible

pairs (p, q).

To capture reversal of preferences given fixed lotteries p and q, and to facilitate the

measurement of others’ influence, a simple game is defined:

wp,q(S) =

 1 (p, S) % (q, S)

0 otherwise

for every group S ⊆ I.
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Let v1, . . . , vN be the subjectively ascribed utilities from Theorem 1. A referent other

i ∈ I may swing a coalition from being a losing coalition in wp,q to being a winning

coalition, if vi(p) > vi(q), and may swing a coalition from winning to losing if a strict

inequality in the other direction holds. The Banzhaf value of each player i ∈ I in the

above game may be computed as follows:

βi(wp,q) =
1

2|N |−1

∑
S⊂I\{i}

[wp,q(S ∪ {i})− wp,q(S)] .

Since a player i with vi(q) > vi(p) can swing coalitions from being winning to being

losing, the Banzhaf value of players may be negative. However, we are interested in an

influence of significant others, no matter in which direction of preference. Moreover, a

player who gains a negative Banzhaf value in wp,q will gain a positive Banzhaf value

in the symmetric game wq,p. In order to measure influence per se, without indicating

in which direction of preference is takes place, and since the measure we aim at will

eventually average over all pairs of lotteries p and q, we define:

Bi(p, q) = max (βi(wp,q), 0) .

Altogether, the influence of referent individual i on the decision maker is the average,

Bi =

∫
(p,q)

Bi(p, q)dλ,

where λ is the Lebesgue measure over Y 2. Note that by taking this average, swings are

counted whenever they occur (either for p over q or the other way around).

We lastly show that the influence measure defined is sub-additive in the following

sense: consider a decision problem derived from the original one by amalgamating two

referent individuals into a single individual, whose utility is the sum of the two referents’

utilities. Then the influence of the amalgamated individual on the decision maker can

never be more than the sum of influences of the two separate referent individuals.
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Formally, let i, j ∈ I, i 6= j. For a pair of lotteries p and q, define the game w̄p,q in

which i and j are amalgamated into one player īj by,

w̄p,q(S) =

 wp,q(S) īj /∈ S

wp,q(S ∪ {i, j} \ {īj}) īj ∈ S

for every S ⊆ I \ {i, j} ∪ {īj}. Denote B̄īj(p, q) = max (βi(w̄p,q), 0), and B̄īj the

corresponding average over pairs of lotteries p and q. Then,

Proposition 2. B̄īj ≤ Bi +Bj .

A subjective utilitarian decision maker is considerate of the welfare of each significant

other individually, in that the personal tastes of each such other are always taken under

advisement, and to the same extent, regardless of the group to which this referent

other joins. This is conveyed through our axioms of Compromise (C5) and Consistent

Influence (C6), and is translated to additivity in the subjective utilitarian functional.

As a result, the only non-additive effect on influence of uniting two individuals together

can be when their tastes are opposite, and so their individual influences cancel out when

they are considered together. This is the effect described in the proposition.

Proposition 2 states that the influence of a couple of individuals who decide to marry

reduces compared to their total influence when they are separated.

3.2 When do subjective utilities equal true utilities?

The model presented in this paper focuses on the preferences of a single individual,

asking how these change as a function of the group with which the individual consumes.

The expression of others’ tastes in the representation is purely subjective, namely, it

represents the decision maker’s perception of others’ tastes, rather than their actual

tastes. Put differently, observed decisions of an individual may be based on misperceived

preferences of others. Nonetheless, in cases where others’ actual preferences may be
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observed, it is interesting to understand when perceived and actual preferences coincide.

Perhaps not surprisingly, such coincidence is essentially a result of a Pareto-type condition.

Denote by %i the actual preferences of individual i, with symmetric and asymmetric

components ∼i and �i, respectively. Suppose that those as well are vNM preferences.

On top of this, two assumptions are made at the outset:

(a) For x∗ and x∗ the individualistic better and worse outcomes from assumption C0,

x∗ ∼i x∗.

(b) There are x0, x0 ∈ X such that both x0 � x0 and x0 �i x0.

That is to say, individual i is indeed indifferent between the two individualistic

outcomes of Individual Zero that appear in the structural assumption C0, and individual

i and Individual Zero agree on some strict ranking of outcomes. Under these two

assumptions, and supposing that the conditions of Theorem 1 hold, the utility of i

as subjectively perceived by Individual Zero coincides with i’s true utility, if and only

if, whenever individual i and Individual Zero personally agree on a ranking of lotteries,

this same ranking holds for the preferences of Individual Zero in the company of i. This

is stated in the following proposition.

Proposition 3. Let %i be a binary relation over Y , represented by a vNM utility

function. Let % ⊆ R be a binary relation that satisfies C0 and (ii) of Theorem

1. Denote by vi the subjective utility ascribed by Individual Zero to referent individual i.

Suppose that assumptions (a) and (b) above are satisfied. Then vi represents %i, if and

only if, for every two outcomes x and y, if x � y and x �i y, then (x, {i}) � (y, {i}).

4 Proofs

4.1 Proof of Proposition 1

According to C1, for every group G ⊆ I, % over {(p,G) | p ∈ Y } is represented by a

vNM utility function. For each G ⊆ I denote the corresponding utility function by uG,
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calibrated to as to assign uG(x∗) = 0 and uG(x∗) = 1, for x∗ and x∗ the consequences

which existence is postulated in C0. Therefore for any group G and every α ∈ (0, 1),

uG(αx∗+(1−α)x∗) = α, and by C0, C2 and C3, for any two groups G and H and every

α ∈ [0, 1], (αx∗ + (1− α)x∗, G) ∼ (αx∗ + (1− α)x∗, H).

Let m denote the lottery 0.5x∗ + 0.5x∗. Let p be a lottery and G and H groups,

and suppose that (p,G) % (p,H). following C1, C2 and C3, for every λ ∈ (0, 1),

(p,G) % (p,H), if and only if, (λp+ (1−λ)m,G) % (λp+ (1−λ)m,H), and there exists

a large enough such λ such that 0 < uG(λp+ (1−λ)m), uH(λp+ (1−λ)m) < 1. Denote

λp+ (1− λ)m for such a large enough λ by pm.

For any α ∈ [0, 1], C4 implies that if (pm, H) % (αx∗+ (1−α)x∗, H) then (pm, G) %

(αx∗+(1−α)x∗, G). Using the vNM utilities uG and uH , this is equivalent to concluding

that uG(pm) ≥ α whenever uH(pm) ≥ α, for every α ∈ [0, 1]. If, on the other hand,

(pm, H) � (pm, G) then, again by C4, for every α ∈ [0, 1], uG(pm) ≥ α implies uH(pm) >

α. It follows that (pm, G) % (pm, H) if and only if uG(pm) ≥ uH(pm). Since uG(pm) =

λuG(p) + (1 − λ)0.5, and similarly for uH(pm), it is established that (p,G) % (p,H), if

and only if, uG(p) ≥ uH(p).

For the uniqueness up to a joint shift and scale, suppose that ûG, G ⊆ I, is another

array of vNM utilities representing % in the same manner as the utilities uG. Since both

arrays are of vNM utilities, then for each group G, ûG = σGuG+τG, for σG > 0 and some

τG. However, for every group G, û0(x∗) = σ0u0(x∗)+τ0 = τ0 = ûG(x∗) = σGuG(x∗)+τG,

hence all the shifts τG coincide, and, û0(x∗) = σ0 + τ = ûG(x∗) = σG + τ , hence all the

scales σG coincide.

The other direction is immediate.
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4.2 Proof of Theorem 1

4.2.1 Sufficiency: the representation holds

We employ the utilities uG, G ⊆ I, calibrated so that uG(x∗) = 1 and uG(x∗) = 0, for

x∗ and x∗ the maximal and minimal consequences which existence is postulated in C0.

Denote agent zero’s utility on his/her own (i.e., for G = ∅) by u0. The proof is conducted

in the Euclidean space XR. Each uG is given by a vector of real numbers in this space,

where this vector’s x-th coordinate indicates the utility uG(x), namely the utility from

the prize x in the context of group G. For each of these vectors, the x∗-coordinate is 0

and the x∗-coordinate is 1, according to the chosen normalization. The utility assigned

to any lottery p in the context of a group G is uG(p) = uG · p.

Let G and H be two nonempty, disjoint groups. According to Richness there is a

lottery p such that (p,G) � (p,H) � p, namely uG(p) > uH(p) > u0(p). Similarly

to the proof of Proposition 1, let m = 0.5x∗ + 0.5x∗, and λ ∈ (0, 1) be such that

uG(pm), uH(pm), and u0(pm) are all between zero and one, for pm = λp + (1 − λ)m.

C3 yields that uG(pm) > uH(pm) > u0(pm). According to C0 and C3 and the chosen

normalization for the utilities under consideration, for every α ∈ (0, 1), uG(αx∗ + (1 −

α)x∗) = uH(αx∗+ (1−α)x∗) = u0(αx∗+ (1−α)x∗) = α. Hence there exists an α : 1−α

mixture of x∗ and x∗ such that, uG(pm) > uH(pm) > α = uG(αx∗ + (1 − α)x∗) =

uH(αx∗ + (1 − α)x∗) = u0(αx∗ + (1 − α)x∗) > u0(pm). In other words, there exist two

lotteries that uG and uH rank in the same manner, while u0 ranks them differently.

Hence u0 is not a convex combination of uG and uH .

Consider the sets conv(u0, uG∪H) and conv(uG, uH). It is proved by negation that the

intersection of these two sets cannot be empty. Suppose on the contrary that it is empty.

Then by a standard separation theorem, there exist a separating linear functional over

XR, denote it a, and a constant c, such that: a · ϕ ≥ c > a · ψ for every ϕ ∈ [uG, uH ]

and every ψ ∈ [u0, uG∪H ], thus specifically for ϕ = uG, uH and ψ = u0, uG∪H . Suppose

w.l.o.g that c ≥ 0 (otherwise the inequalities to follow may be reversed, and an analogous
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proof, with reversed rankings of lotteries, yields the desired result). Separating a into

its positive and negative parts, a+ and a− respectively, yields the inequalities,

c+ a− · u0 > a+ · u0

a+ · uG ≥ c+ a− · uG

a+ · uH ≥ c+ a− · uH

c+ a− · uG∪H > a+ · uG∪H

Let M > 0 be large enough so that
∑

x a
+
x ≤ M,

∑
x a
−
x ≤ M , and c ≤ M , and

multiply both sides of all the inequalities by 1
2M

. For all the involved utilities, namely

for u = u0, uG, uH , uG∪H , the fact that u(x∗) = 0 and u(x∗) = 1 and the choice of M

result:

c

M
= u(b), b = (x∗, c/M ;x∗, 1− c/M)

a−

M
· u = u(q), for q s.t. q(x) =

a−x
M

for x 6= x∗ and q(x∗) = 1−
∑

x 6=x∗ a
−
x

M
a+

M
· u = u(p), for p s.t. p(x) =

a+
x

M
for x 6= x∗ and p(x∗) = 1−

∑
x 6=x∗ a

+
x

M

Therefore, the inequalities above state (with δx∗ being the lottery yielding x∗ with

probability 1),

u0(
1

2
b+

1

2
q) > u0(

1

2
p+

1

2
δx∗)

uG(
1

2
p+

1

2
δx∗) ≥ uG(

1

2
b+

1

2
q)

uH(
1

2
p+

1

2
δx∗) ≥ uH(

1

2
b+

1

2
q)

uG∪H(
1

2
b+

1

2
q) > uG∪H(

1

2
p+

1

2
δx∗) ,

generating a contradiction of Compromise (C5).
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The above implies that the intersection of conv(u0, uG∪H) and conv(uG, uH) cannot

be empty. That is, there exist α ∈ (0, 1] and θ ∈ [0, 1] such that αuG∪H + (1 − α)u0 =

θuG + (1− θ)uH , where α is strictly positive following the above proof that u0 is not in

itself a convex combination of uG and uH .

For every nonempty group T define vT = uT−u0. The resulting function over lotteries

vT is a vNM utility function, which for every T satisfies vT (x∗) = 0. Using these utility

functions, the above conclusion may be written as, vG∪H = 1
α

(θvG + (1− θ)vH), for

nonempty disjoint G and H, for some α and θ as above. Translating Consistent Influence

(C6) to the v-utilities therefore delivers that for any three nonempty, pairwise-disjoint

groups G,H, and K there are α, β ∈ (0, 1] and θ, λ ∈ [0, 1], such that,

vG(p)− vH(p) ≥ 0 ⇐⇒
1

α
(θvG(p) + (1− θ)vK(p)) ≥ 1

β
(λvH(p) + (1− λ)vK(p)) ⇐⇒ (2)

θ

α
vG(p)− λ

β
vH(p) ≥

(
1− λ
β
− 1− θ

α

)
vK(p) .

In other words, there are nonnegative a, b, and some scalar c, such that,

vG(p)− vH(p) ≥ 0 ⇐⇒ avG(p)− bvH(p) ≥ cvK(p) , (3)

where c can w.l.o.g be assumed to be nonnegative as well, otherwise the analogue

equivalence, using vH(p)− vG(p), can be employed. First it is argued that neither a nor

b can be zero, on account of Richness. If b = 0 let p be a lottery such that (p,H) �

(p,G) � p � (p,K), then vG(p)−vH(p) < 0 but avG(p)−bvH(p) = avG(p) ≥ 0 ≥ cvK(p).

Otherwise if a = 0 let p′ be a lottery such that (p′, K) � (p′, G) � (p′, H) � p′, hence

vG(p′)− vH(p′) ≥ 0 but avG(p)− bvH(p) = −bvH(p) < 0 ≤ cvK(p). We conclude that a

and b are strictly positive.

It is next proved by negation that c must be zero. Suppose on the contrary that

c > 0, and assume first that a ≤ b. Let p be a lottery such that (p,K) � (p,H) �
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(p,G) � p and p′ a lottery such that (p′, K) � (p′, G) � (p′, H) � p′. Then there

exists a mixture of p and p′, denote it p0, such that vG(p0) − vH(p0) = 0, and still

vK(p0) > 0. Since a ≤ b and vG(p0) > 0, then avG(p0) − bvH(p0) ≤ 0, implying that

cvK(p0) > avG(p0)− bvH(p0) while vG(p0)− vH(p0) ≥ 0. A contradiction to Consistent

Influence (C6) is inflicted. Hence c > 0 and a ≤ b is ruled out. Suppose now that

c > 0 and a > b (recall that a and b are strictly positive). Employing Richness once

more, there is a lottery q such that (q,H) � (q,G) � q � (q,K), hence cvK(q) < 0

and vG(q) − vH(q) < 0. If also vG(q) − b
a
vH(q) ≥ 0 then q induces a contradiction to

Consistent Influence (C6). Otherwise, Richness implies that there is a lottery q′ such

that (q′, G) � (q′, H) � q′ � (q′, K), hence there exists a proper mixture of q and q′,

denote it q̂ that satisfies both vG(q̂)− vH(q̂) < 0 and vG(q̂)− b
a
vH(q̂) ≥ 0. This mixture

still maintains cvK(q̂) < 0, and a contradiction to Consistent Influence (C6) ensues. It

is thus concluded that c must be zero.

Substituting c = 0 in (3) yields that there are positive coefficients a and b such that

for every lottery p,

vG(p)− vH(p) ≥ 0 ⇐⇒ avG(p)− bvH(p) ≥ 0 ,

which by using the same arguments as above implies a = b. Recalling the definitions

of a, b and c, and the fact that a and b are strictly positive, it is concluded that in the

equivalence in (2), α = β and λ = θ 6= 0, therefore for any nonempty group K there are

coefficients λK ≥ 0 and δK > 0 such that for any nonempty group T which is disjoint

from K, vK∪T = λKvK + δKvT .

Consider the groups {i} and {j} and denote vi = v{i}, vj = v{j}. For the group {i, j},

v{i,j} is a vNM utility function, satisfying both v{i,j} = λivi+δivj and v{i,j} = λjvj +δjvi.

As all v-functions assign a utility of zero to x∗, these two representations must be

a positive multiplication of one another, and once the same scale is chosen they are

identical. Richness implies that vi and vj are linearly independent, hence λi = δj and
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δi = λj. However when the vNM utility for the group {j, k}, for instance, is considered,

and represented as a combination of vj and vk, the coefficient of vk is also either δj or

λk, which by the same arguments are identical. Hence λk = λi. And this argument may

be applied to any pair of individuals, to yield that for every such pair, the coefficient

of each vi in the combination representing the v-utility function for this pair is the

same. In other words, there exists λ > 0 such that for any two individuals i and j,

v{i,j} = λvi + λvj. As v{i,j} is a vNM utility function, we may choose λ = 1 to obtain

v{i,j} = vi+vj. Together with a recursive application of the conclusion from the previous

paragraph, we obtain vG =
∑

i∈G vi for every nonempty G. Uniqueness up to a joint

scale and a shift of u0 is implied by the uniqueness result of Proposition 1.

4.2.2 Necessity: the axioms hold

Suppose that % is represented as in (ii) of Theorem 1. Assumption C1-C4 immediately

follow. For Compromise (C5) suppose that for a lottery p and two disjoint groups G

and H, it holds that,

u0(q) ≥ u0(p)

u0(p) +
∑
j∈G

vj(p) ≥ u0(q) +
∑
j∈G

vj(q)

u0(p) +
∑
j∈H

vj(p) ≥ u0(q) +
∑
j∈H

vj(q) .

It follows that,

∑
j∈G

(vj(p)− vj(q)) ≥ u0(q)− u0(p) ≥ 0 , and∑
j∈H

(vj(p)− vj(q)) ≥ u0(q)− u0(p) ≥ 0 .
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Hence, ∑
j∈G∪H

(vj(p)− vj(q)) ≥ 2(u0(q)− u0(p)) ≥ u0(q)− u0(p) ,

yielding that (p,G ∪H) % (q,G ∪H), as required by Compromise.

For richness, let G, H and K be three distinct and pairwise-disjoint sets. Consider

the zero-sum game with 1x, x ∈ X as the strategies of the first player (the maximizer),

uG − uH , uH − uK , and uK − u0 the strategies of the second player, and payoffs which

are the multiplication of the strategies played. The first condition for the diversification

of the utilities implies that for every possible mixed strategy of the second player there

is strategy of the first player that ensures him a strictly positive payoff. Hence, by the

Minimax Theorem, there is a lottery p ∈ Y such that p ·(uG−uH) > 0, p ·(uH−uK) > 0,

and p · (uK − u0) > 0, delivering the first set of preferences stated in Richness. A

symmetric argument, employing the second condition in the definition of diversified

utilities, yields the second set of Richness preferences.

Lastly, for Consistent Influence (C6), let G,H and K be pairwise-disjoint, and

suppose that (p,G) % (p,H). According to the representation assumed, it follows that∑
j∈G vj(p) ≥

∑
j∈H vj(p), yielding that

∑
j∈G∪K vj(p) ≥

∑
j∈H∪K vj(p), as the sets are

pairwise-disjoint. Adding u0(p) to both sides of this inequality delivers the required

preference.

4.3 Proof of Proposition 2

It is shown that sub-additivity as in the proposition holds for every pair of lotteries p and

q, for every marginal contribution to a group S ⊆ I \ {i, j}. Fix such p, q, and S. Note

first that if both vi(q) > vi(p) and vj(q) > vj(p), then neither i, j nor īj can contribute to

any group, as only positive contributions are accounted for, and the inequality trivially

holds. Now examine the case in which both vi(p) > vi(q) and vj(p) > vj(q). If īj

contributes zero to S (namely, īj does not swing S) then the inequality for p, q and S is

trivially true. Otherwise, if īj swings S, then the corresponding marginal contribution
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to B̄īj(p, q) is 1
2|N|−2 . It is shown that the sum of marginal contributions, of i to S and

to S ∪ {j}, and of j to S and to S ∪ {i}, is also 1
2|N|−2 . If both wp,q(S ∪ {j}) = 0 and

wp,q(S ∪ {i}) = 0, then i swings S ∪ {j} and j swings S ∪ {i}, and both do not swing

S. Therefore each marginally contributes 1
2|N|−1 , adding up to 1

2|N|−2 . Otherwise, if both

wp,q(S ∪ {j}) = 1 and wp,q(S ∪ {i}) = 1 then each of i and j swings S, and none swings

S with the other, so that their marginal contributions are again 1
2|N|−1 each and sum to

1
2|N|−2 . If wp,q(S∪{j}) = 1 and wp,q(S∪{i}) = 0 then i does not swing S nor S∪{j}, but

j swings both S and S ∪ {i}, twice delivering a contribution of 1
2|N|−1 hence altogether

1
2|N|−2 .

If vi(p) > vi(q) and vj(q) > vj(p), then only i can be a swinger. If īj contributes zero

(namely, īj does not swing S) then the inequality for p, q and S holds trivially. If īj

swings S, yielding a marginal contribution of 1
2|N|−2 , then it must be that i swings both

S and S ∪ {j} (as j only adds to the desirability of q over p, having vj(p)− vj(q) < 0).

Hence i contributes a total of 1
2|N|−2 . The symmetric case, switching i and j, is analogue.

The above is true for every S ⊆ I \ {i, j}, therefore for every pair of lotteries p and

q, B̄īj(p, q) ≤ Bi(p, q) +Bj(p, q), and the proof for the average follows.

4.4 Proof of Proposition 3

Denote by ui the vNM utility that represents %i over Y . Suppose that (ii) of Theorem 1

holds, with vi the vNM utility subjectively ascribed to individual i by Individual Zero.

Assume first that vi represents %i. If both x � y and x �i y, then equivalently,

u0(x) > u0(y) and vi(x) > vi(y), which immediately implies that u0(x)+vi(x) > u0(y)+

vi(y). Hence (x, {i}) � (y, {i}).

Now suppose that whenever x � y and x �i y, it also holds that (x, {i}) � (y, {i}).

By this and (b) it follows that u{i} = λ0u0 + λiui + τi, for λ0, λi ≥ 0, λ0 + λi > 0 (see

De Meyer and Mongin [5]). Normalizing u0(x∗) = u{i}(x∗) = 0 yields τi = −λiui(x∗), so

that for x∗ it holds that u{i}(x
∗) = λ0u0(x∗) +λiui(x

∗)−λiui(x∗). Applying (a) and the

fact that u{i}(x
∗) = u0(x∗) by C0, it follows that λ0 = 1, so that u{i} = u0 + λiui + τi.
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Richness (C7) implies, in particular, that there are p and q such that u{i}(p) > u0(p)

and u0(q) > u{i}(q), hence λi 6= 0. Finally, (ii) of Theorem 1 means that u{i} = u0 + vi,

therefore u0 + vi = u0 + λiui + τi, yielding vi = λiui + τi. Namely, vi represents %i.
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