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A UNIFORM TAUBERIAN THEOREM
IN DYNAMIC PROGRAMMING*

EHUD LEHRER AND SYLVAIN SORIN

We prove that, in dynamic programming framework, uniform convergence of v, imples
uniform convergence of v, and vice versa. Moreover, both have the same limit.

1. Introduction. A deterministic dynamic programming problem is defined by a
set of states S, a (nonvoid) correspondence T from § to itself and a bounded real
function on S, say with values in [0, 1].

Given the state s, one chooses ¢ in I'(s) and gets a payoff of f(s). A strategy is
such a sequence of (history dependent) choices at each stage n = 0,1,.... Any
strategy induces a play at s, i.e., a sequence h = (s = 5, 5(,...,5,,...)with s, ., €
['(s,). Each play 4 induces an n-average payoff f,(h) = (1/n)L" .} f(s,) and a
A-discounted payoff f(h) = (1 — A)X% _,A"f(s™). Taking the supremum on all
strategies of the above functions defines the n-stage value v,(s) and the A-discounted
value v,(s).

We will consider here the asymptotic behavior of these two families of functions (as
n — »or A — 1) and prove that the uniform convergence of one implies the uniform
convergence of the other, and both to the same limit. Note that without the
uniformity condition limv, and limv, may exist and differ (see Example (§2)).
Moreover, this condition does not imply the equality with v, (defined through
fLh) = liminf f,(h)) (Lehrer and Monderer 1989).

The proofs and the result extend easily to the general (stochastic) case (see §6).

Formally, let

(A) v, =, _,,v, uniformly on S and

(B) v, = ,, W, uniformly on S.

The purpose of this paper is to prove the following.

THEOREM. (a) If (A) then (B) and v = w;
(b) If (B) then (A) and v = w.

2. Example. Take S = N* X N, where N* = N\ {0}, I'(n,0) = {(n + 1,0), (n, 1)}
and I'(n,m) = {(n,m + D)} for m > 0. f(n,m) =1iff 1 <m < n and 0 otherwise.
In words, at each state (n, 0) either you choose to get 1 for the next n stages and then
always 0 or you proceed to state (n + 1,0) and get 0 at that stage.

Let s = (1, 0). The feasible sequences of payoffs are of the form: » times 0, »n times
1 and then only O (say, on a play 4, at s); or always 0. Obviously, limv,(s) = 3.
fi(h,) = X* — A*"; hence limv,(s) = 1 and, finally, v(s) = 0.
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3. Preliminary results. Let us begin by proving properties that hold in a general
framework. The first one shows that lim sup is decreasing on plays.

ProvposITION 1. For any play h = (s,,) at s one has
limsup v,(s,,) < limsup v,(s) and
lim sup v,(s,,) < limsup v,(s) forallm.

Proor. Given m, choose N > 2m/e and a play at s,,, #', satisfying f,(h) =
limsup v,(s,,) — €/2 with n > N. Then

Foon(S0s S1sensSm_1, h') = limsup v,(s,,) — €.

Similarly, in the discounted case, let A, with AT > (1 — €/2) and A" at s,, satisfying
fi(h") > limsup v)(s,,) — €/2 with A = A,. Then

fi(Sgs--esSm_1, h") = limsup v,(s,,) —€. //

The second property is that, given an n average on a play, there exists a state (on
this play) from which all averages of small length (compared to n) give at least this
amount. Note that this result may be useful for related problems (cf. Lehrer and
Monderer 1989).

PROPOSITION 2. Let € > 0. For all s, n there exist a play h = (s)) at s and a stage L
such that:

T-1

(1/T) Y f(Spom) = Ua(s) —€ forall1 <T <[ne/2].

m=0

Proor. Otherwise there exist s and » such that on each play A4 at s and each
stage L, there is some T = T(h, L) such that:

1<T<[nes2) and (1/T) Tilf(sL+m) <v,(s) — €,

m=0

in particular, if 4 is a play at s satisfying f,(h) > v,(s) — €/2. But then we can divide
this play into segments of length at most [ne /2] on each of which, except at most the
last one, the average payoff is less than v,(s) —e. (Taking Ly =0, then L, =
T(h, L,), L, = T(h, L,), and so on.) It follows that f,(h) <v, — € + €/2, a contra-
diction. //

We now compare v, and v,. Recall that any normalized power series with
parameter in [0, 1) can be written also as a convex combination of the finite averages.
Since we will need it later, we provide here the explicit formula.

If {a,} is a bounded sequence and 0 < A < 1, then for all n € N U {+ 0}

(1) (1-2) ioamAm =(1- A)znz__:OAm(m + 1)( 'f‘,a,/(m + 1))

=0

n

Y a/(n+1)

=0

+(1 = )M (n + 1)
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This relation will allow us to examine the asymptotic behavior of families of geomet-
ric distributions. We start with the following simple observation.

LEmMa 3. Let M(a, B; M) = (1 — A)?ZEA™(m + 1)

(i) There exist Ny and €, such that ¥n > N, Ve < €,
(2) M([(1 = e)n],n;1 —1/n) = €/2e.

(i) V& > 0, there exist Ny and €, such that Vn > N,, Ve < €,
(3) M([en],[(1 - €)n];1 = 1/nVe) =1 — 5.

Proor. Use (1) with n = +w to get

M(a, Bi2) = (o + DA = ad1) = (B + 28" = (B + 1)As*2).

For a =[(1 ~€)n], B=n and A =1— 1/n the first term is of the order of
(2 —e)exp(—1 + €) and the second of 2/e. For a = [en], B =1[(1 - e)n] and
A =1 — 1/nVe we obtain, respectively, (1 + Ve )exp(— Ve ) and 1/ Ve exp(—1/ Ve),
providing that » is much larger than 1/e. //

ProrosiTiON 4. Ve > 0, VN, there is A, such that for all A > \, and all s in S there
exists n > N with v,(s) > v,(s) — e.

Proor. Given € > 0 and N let A, be such that:

N-1
(1=2)2 Y M(m+1)<e/2 fork >,

m=0

By (1) this implies that on an € /2 optimal play at s for v,, say h, there exists some
n > N with f,(h) >v(s) —e. //

CoroLLARY 5. limsup v, > limsup v,.

4. Proof of part (a). We assume (A).
LEmMMA 6. Ve > O, there is an N such that n > N implies v, < v + e.

Proor. Otherwise, let € > 0 such that for all N there exist n > N and s in $
with v,(s) > v(s) + €. Let A such that ||v, — v|| < €/8 (by (A)) and N such that

[ne/4]—-1
1-2)> Y x(m+1)=21-e/8 forn=AN.
m=0
We now use Proposition 2 with € /2 to get a play 4 at s and a stage L with:
-1
(1/T) X f(Spem) 2 0,(s) —€/2>0(s) +€/2 foralll < T < [ne/4].
m=0

(1) then implies that

vN(sy) 2 v(s) +€/2 —€/8.
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Hence,
v(s,) zv(s) +e/2-€/8 —¢€/8,
a contradiction to Proposition 1. //

LeEMMA 7. Ve > 0, there is an N such that n > N implies v, > v — €.

Proor. Otherwise, let € > 0 such that for all N there exist n > N and s with
v,(s) < v(s) — €. In particular, for N large enough, on any play % at s one has:

T-1
(1/T) z_‘,of(sm) <uv(s) —e/2 for[(1 —€/2)n] <T <n.

Choose N large enough and e small enough to get that the weight of these stages is
at least 8 = e/4e for A = 1 — 1/n; i.e.,, M{(1 — €/nl,n;1 — 1/n) = €/4e (by (2)
in Lemma 3). Finally, let K be such that v(s) < v(s) + de/8 for n > K, by Lemma
6. Choose N large enough to guaranteeforn > Nand A =1 — 1/n: |lv, — vll < 8e/5
(by (A)), and furthermore, (1 — A)?ZX_LA"(m + 1) < €8/8. This implies by (1) that:

Fi(h) < €8/8 + 8(v(s) — €/2) + (1 — 8 — €8/8)(v(s) + de/8)
< u(s) - 5e/4,

a contradiction. //

Lemmas 6 and 7 give (a).

Remark. Notice that the previous proof shows also that uniform convergence of
a sequence V,, where A; — 1, implies uniform convergence of the sequence V,,
where n; = [1/(1 — A,)]. Moreover, both converge to the same limit.

5. Proof of part (b). We assume (B).

LemMA 8. For any € > 0 small enough, there exists N such that for all n > N and
all s, there is a play h = (s,) at s satisfying:

T-1
(1/T) X_:Of(sm) >w(s) —e forall[en] < T < [(1 - €)n].

Proor. Use (B) to get N such that |lv, — w|l < & for n > [eN] with § = €*/3.
Given n > N let h = (s,) at s with f,(h) > v,(s) — 8. For T < [(1 — €)n] we obtain
on h:

U,_r(sp) <w(sp) +8 <w(s) +8

by Proposition 1. Thus,

71
n(v,(s) —8) < X f(s,) + (n—T)(w(s) +8).
m=0

Hence,
T-1
(1/T) X f(s,) 2 w(s) —n/T- 38
m=0

>w(s) —e forT>[en]. //
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LEMMA 9. V& > 0, there exists A, such that A > A, implies v, = w — 8.

Proor. Choose €, and N, as in (3) (Lemma 3) with § /3. Then use Lemma 8 to
get with € < &/3 for any n large enough and any s, the existence of a play 4 at s
with:

[(1—e)n]

Ah)y 2 (-2 ¥ A(T+1)

T=[en]

T-1
uﬂogﬂ%ﬂ

>(1-8/3)(w—6/3) forA=2A,=1-1/nye.
Note that A, <A <A, ., implies
L/ =a) <fi(h)y/(A=X) <f, (B)/(1 = A,0).

Hence, the result for A large enough. //
LEMMA 10. V8 > 0, there exists A, such that A > A, implies v, <w + 8.

Proor. Follows from Proposition 4, using (B). //

6. Comments. The result extends to the stochastic case as follows. Consider first
a countable-Borel framework where § is a countable set of states, 4 is a Borel set of
actions, ¢ is a transition probability from § X 4 to S and f is a measurable bounded
payoff function from § X A to R. (Recall that if S and A are finite, v, w and v, exist,
are equal and realized with a pure stationary strategy (Blackwell 1962).)

Define, for any Markov strategy o (Blackwell 1965), a play starting from s by a
sequence {w,} of probabilities on § with wy = &, w,, (S = [;q(S'| ¢, o, ()w,(dt),
for all Borel sets '  S. The corresponding sequence of payoffs is {x,} with

n=pvawwmw»

The proof goes then word-for-word.

If one leaves the countable state set up, a selection theorem is needed in
Proposition 1. Hence, one can use an analytic framework (Blackwell, Freedman and
Orkin 1974), where plays are defined by strategies.
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