
International Journal of Game Theory, Vol. 17, Issue 2, page 89-99 

An Axiomatization of the Banzhaf Value 

By E. Lehrer I 

Abstract: An axiomatization of the Banzhaf value is given. It is based on a version of three axioms, 
which are common to all the semi-values, and on an additional reduction axiom. 

1 I n t r o d u c t i o n  

A lot of  effort had been devoted to the research of  the semi values of  games [2], 

especially to the Shapley-value. An axiomatization was given to the Shapley value [6], 

and to the Banzhaf value [3, 4]. 

The axiomatization given in [4] is based on the tool of  the compound game and it 

does not determine the Banzhaf value uniquely. The axiomatization given in [3 ] treats 

a different approach. It is based on four axioms, three of  them are standard and in 

fact determine the semi values [2]. We adopt here these three axioms. 

We replace the fourth axiom of [3] by some reduction axiom, which has an 

intuitive meaning. This axiom says something about the value of  a game in terms of  

another game, with smaller number of  players. 

It is worthwhile to mention that the use of  such axioms is common in axiomatiza- 

tion o f  solution concepts (see for example: in [5] an axiomatization of  the prekernel, 

and in [7] an axiomatization of  the prenucleolus). 

We define here for each coalition T two T-games derived from the original game 

by amalgamting all the players of  T to one player called T. Our additional axiom 

says that for any two-players-coalition T = (i, ]} the sum of  the values o f  i and o f f  

in the original game is less or equal to the value of  IF in the T-games. According to this 

axiom a unification o f  any two players is profitable. 
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The main significance of the following axiomatization is the indication of  the 

difference between the Banzhaf value and the Shapley value. For example take the three ,1] 
player weighted majority game 1 ; 3 '  3 '  3 ; its Banzhaf value is ' 4 '  while 

its Shapley value is ' 3 '  3 " After amalgamating players 1 and 2 to a new player 

we will get the game 1;3,  = 1 2'  The Banzhaf value and the Shapley value 

coincide on the two player games and they are equal in this particular game to 

[1 1 \  1 1 1 1 1 l 
/ 5 ) 2 '  . Notice that ~ + ~ < 2 ,  while - +  > 2  3 3 - .  In other words, in this case ac- 

cording to the Shapley value unification is harmful while according to the Banzhaf 

value unification is never harmful, and in some cases it is profitable. 

2 Def in i t ions ,  t he  A x i o m  S y s t e m s ,  a n d  T h e o r e m s  

Before introducing the axioms we need several notations. A game in eoafitionalfunc- 
tion form is a pair (iV, v) where N is a finite set of  players and v is a real valued func- 

tion defined on the subsets of  N and v(r = 0. A simple game is a game (N, v) where 

v is ranged to {0, 1 }. In a simple game all the coalitions S C N with v(S) = 1 are called 

winning and all the rest losing. 
A monotonic game is a game (N, v) which satisfies the condition whereby S C T 

implies v(S) <~ v(T). 
Let TC_N, iNI = n the T-unanimity game denoted by U~-= (N, u } ) i s  defined to 

be u~(S) = 1 if T_C S and otherwise 0. Whenever IT[ = 1 U~ is called dictatorial. Let 

k ~< IT[, the k-T symmetric game denoted byS~ :n = (N, s~-) is defined to be s~(A) = 1 
if k ~< IT N A I and otherwise 0. 

We denote by G, SG and MSG the sets of  all games, all the simple games and all 

the monotonic simple games respectively. 

In order to simplify let us denote the game (N, v) by v whenever ambiguity can- 

not arise. 
Let v and u be two simple games. Define the games v v u and v ^ u as follows: 

For any coalition S 

v v u(S) = Max (v(S), u(S)) 

and v ^ u(S) = min (v(S), u(S)}. (1) 
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The Banzhaf value r/ corresponds to each (N, v )E  G a vector r~(v) in IRINIo 77(V) is 

defined as follows: 

1 
- S, v(S U ( i } )  - v(S) hi(v) 2 INl-1 s e n  1 <~i<~n. 

If v is an n players monotonic simple game, 2n- l~ i (v)  counts the number of  losing 

coalitions S that become winning after i joins them. Here we arrive at the definitions 

of  the T-games. Let (N, v) E G and T _C N. In case all the players in T are amalgamated 

into one player iP, two games can be derived: 

( N - T U ( I ' } , v T )  and ( N - T U { T ) , v ~ ) ,  

where for e a c h S C N - T  

vr ( s )  = v(s), vr(s u ( f ) )  = v(s u r )  

and z (2) 

v ~ ( S )  = v(S),  v~fl(S U (2?}) = Max v(S U B ) .  
~r 

Notice that whenever v is monotonic, VT = V~. 
We will use two axiom-systems, one for SG solely and the other for G. The two 

systems differ from one another only by the linearity 3 axiom used. 

The first system is: 

~ )  

(ET) 

(U/-) 4 

If  v(S U (i}) = v(S) + v({i}) for every coalition S such that i q~S then r = 
v((i}). 

If  for every coalition S C_ N \  ( i, j}  v(S u (i}) = v(S u (j}) then ~oi(v) = ~/(v). 

~(v v u) + ~(v ^ u) = ~(v) + ~(u). 

2 The m in v~ stands for max. 
3 We call it linearity because additivity (or super additivity) is reserved for the fourth axiom. 
4 For union-intersection. 
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(SA ) ~oi(v) + qO](V) ~ ~oT(vT) for every two-players-coalition T = { i , /  }. 

(SA m ) ~oi(v) + tp ](v) ~ ~ T(vtfl ) for every two-players-coalition T = (i, ] }. 

(D) 

(ET) 

(ui) 

is the dummy axiom used by Shapley [6]. 

is the equal treatment axiom. It says that whenever v remains unchanged after 

interchanging i by/ ' ,  r equals to ~0J(v). 

is an axiom due to Dubey [1 ] and serves as the linearity axiom when the discus- 

sion concentrates on SG. Reasoning for (UI) can be found in [3] 5 . 

If a question arises as for the amalgamtion of coalitions containing more than two 

players, one can argue that the amalgamation of  "big" coalitions (according to (SA)) 
is done step by step. First two players are amalgamated to one player and then a third 

player is amalgamated to the new one, and so on. A technical answer could be given 

as follows: a general super additivity, namely ~ ~i(v)~7~(VT) for all T C N ,  is 
i ~ T  

not consistent with the other three axioms. 

Theorem A: ~o satisfies (D), (ET), (UI) and either (SA) or (SA m) for every v, u ESG 

if and only if ~0 is the Banzhaf value. 

In fact the following holds. 

Proposition 1: 

(i) If v E SG then 

for every coalition T = {i,]} and equality holds for every T = {i,]} if and only if 

v E MSG. 

5 Thefourthaxiomof[3]is ]~ ~i(v)= E ~i(v). 
iEN i~N 
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(ii) If v E SG then 

hi(v) + ~J(v) : ~ f ( v r )  

for every coalition T =  {i,j). 
It means that (SA) together with the other axioms give additivity instead of  super 

additivity. 

Remarks: 

1. The Banzhaf value satisfies (U1) on SG as it will be shown below, while the Shapley 
value satisfies it on MSG and not on SG. 

2. The axiom (SA) distinguishes between the Shapley value and the Banzhaf value. 
In terms of vT the efficiency axiom can be written as 

~oi(v) = ~f'(VT) for every IT[ = IN[, 
i ~ T  

while Banzhaf value satisfies it for every [ TI = 2. 

3. Given that ~ is equal to the Banzhaf value in all the two players games (which 
coincide with the Shapley value), the "2-efficiency" axiom: 

~oi(v) = ~ofr(VT) for every IT[ = 2 
l E T  

determines the Banzhaf value uniquely (the proof  appears in the Appendix). 

Finally, we can use the standard linearity axiom of  Shapley in order to axiomize 
the Banzhaf values on G. 

(LI)  ~o(v) + ,;(u) = ~o(u + v). 

Theorem B: ~o satisfies (D), (ET), (LI) and either (SA) or (SA m) for every v, u E G 
if and only if ~o is the Banzhaf value on G. 
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3 P r o o f s  

Proposition 1 Proof." Let (N, v )ESG,  where [NI = n, then by the definition of r/ 

2n-loTi(v) +@(v ) )  = ~ [v (SU { i ) ) - v ( S ) ]  + 2~ [v(S U { j } )  
S C N  SC_N 

- v ( S ) ]  = N [v(S U { i } )  - v(S) + v(S U { i ,  f } )  - v(S U { j  })] 
S c_ N\{,',/} 

+ Y~ [v(S U { j } )  - v(S) + v(S U { i , ] ) )  - v(S U {i})] 
S c_ N\{i,j} 

= 2 ~ [v(S U { i , j } )  - v ( S ) ]  
S C_ N\ ( i , ]  } 

The last term is equal to 2 �9 2n-27?r(VT) for T = (i,j} (this gives the proof  for (ii)) 

and furthermore it is less or equal to 

2" 2n- lr lT(v~)  = 2 ~ Max v(S UB) -v (S) .  
~BC_(i,i) 

v E MSG if and only if for every {i, j )  and S C_ N\{i, j } 

v(s u {i,i)) = M a x  v(s u s ) .  
~Bc_{i , /}  

So equality holds iff v EMSG as desired at (i). 

Theorems A and B Proofs." It is known that ~ satisfies (D), (ET) and (LI). Proposition 1 

shows that r/satisfies also (SA) and (SAm). Thus in order to show that r/satisfies all 

the axioms it remains to show that for every v, u E SG 

~(v v u) + ~(v ^ u))= ~0(v) + ~(u). 

Let S C N a n d  i C N  

2n-107i(v V U) + 77i(v ^ n) = Z Max (v(S U i), u(S U i)} 
S a N  

- Max {v(S), u(S)} + ~ Min (v(S U i), u(S U i)} 
S a N  
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- Min (v(S), u(S)) = 
SC_N 

= 2n-loTi(v ) + ni(bl)). 

[v(S  v i) + u (S  v i) - v ( s )  - u(S)] 

The first step in order to prove the other direction of Theorem A will be to show that 

the axiom system determines the values o f r  on the unanimity games. This step is proved 

through two inductions simultaneously, the first one is on the players number and 

the second is on the number of the non-dummy players in the unanimity game. We 
give here the induction step. 

We assume that ~o is already determined on the simple games with n players 
and on the games of the type U~. +1 where IT[ ~< k. Furthermore, we assume that 

~i(u~.+l) = 1/2 hTL-1 i f i E  Tand otherwise 0. 

Let T_C {1 . . . . .  n + 1) where ITI = k + 1, and i E  T. Denote 

T' =T\{i}. 

By (U/): 

u n  + l ", r rn+l  t0(U~ + l  v {i} ) + ~ ~  A t.J(i ) ) = ~ o ( U ~ ' + l ) §  

By (D) and (ET) there are constants a, b and e s.t. 

(3) 

a j E T  
~ J ( u ~  +~) = 

0 I ~ T  
(4a) 

and 

b j E T '  

~ ( U ~  '+1 v u(i}rrn+l")= c j = i  (4b) 

0 otherwise. 
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By the induction hypothesis and by (4a), (4b) 

a + b = 1/2 Ic-1 (5a) 

and with (D) we get 

a + c = 1. ( S b )  

Now, in order to apply (SA) (or (SAm)) take two players i,j from T and amalgamate 
them to one player. The game which derives is U}, (after identifying j E T' with the 
new player tff). 

Hence by (SA) (or by (SAm)) 

2a<~l/21T'i -1 = 1/2 k-1 .  (6a) 

Un+l Secondly, amalgamate the player i with any player from T' in the game Up ,+ 1 v {i} . 
The game which derives is a dictatorial game so, 

b + c~<l .  (6b) 

Add (6a) to (6b) to get 

1 
2a + b + c ~< 1 + 2k_--- T (7) 

(5a), (5b) and (7) bring us to conclude that the inequalities in (6a) and (6b) become 
equalities. In particular 

1 
2 a -  2k_ 1 . 

This gives the value of ~ on U~ +1 
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Theorem B's proof has the same procedure and we'll give here the induction step: 

Let IZl = k +  1 by (LI) 

~((IZl- 1)U~ "+1 ) + ~o(S~ :n+l  ) = ~(U~  ,'+1 ) (8) 
T'CT 
IT'l=k 

By (ET) and (D) there are constants a and b s.t. 

~i(w~, +1 ) = 
a i E T  

0 i N T  

and 

~i(s~n +1) = 
b i E T  

0 iq~T. 

By (8) and by the induction hypothesis 

ka +b = ( [ T I -  1)/2 k - I  = k/2 k-I  �9 (9) 

Amalgamate i t o j  (i,] E T) in U~- +1 and derive the game U~, (as above T' = T\(i}). 
Hence by (SA) (or (SAm)) 

1 
2a ~< 2k_---- T . (10a) 

Similarly by amalgamating i to/' in S~' n + x (for some i and j in T) we will derive the 

game 

((N~{i, j ) )  U {~}, v')where 

1 ~ E a a n d k - 2 < ~ l ( Z \ ( ~ ) ) n T I  
v ' ( A )  -- 

0 otherwise. 
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By the induction hypothesis (v' is a game with a smaller number of players), 

r = k/2 k - l ,  thus 

2b <~ k/2 k - I  . (lOb) 

From (10a) and (10b) we get 

ka+b<~k/2  k +k/2 k = k/2 k-1 (11) 

(9) and (11) give equalities in (10a) and in (10b) instead of inequalities. In particular 
a = 1/2 ~c as desired. By the same way ~i(c" U~,) = c/2 tTl-1 whenever i E T and other- 

wise 0, for any c > 0 and T C N. 

From now on, both proofs are matters of linearity. As shown in [3] (UI) deter- 
mine together with the value of ~p on the unanimity games the values of ~o on MSG. 
To conclude the proof of  Theorem A it will be noticed first that a simple game (N, v) 

can be represented as V W~, where W}(S) = 1 only when S = T, and second that 
by (UI) v(T) =l 

, ( v ~ )  = , ( v ~  - w~ ~ w~) = ~ ( u ~ -  w~ ~ w~) + , ( u ~  - w~ ^ w~) 

= , ( u ~ -  w~) + , ( w ~ )  

SO, 

~,(w~,) -- ~,(u~) - ~ ( u ~  - w:~). 

~(U~) and tp(U,~- W~) are already determined because Up and U ~ -  W~, are both 

in MSG. 
From the point in which ~0 is determined on the set (c" u~Ntlc > O, T C_ N} on, 

the proof of Theorem B is essentially standard (see for example [4]). 
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Appendix 

Proof o f  Remark 3: The proof  is through induction on the players number. By the 

assumption ~o is already determined on the two-players-games. Let V = ((1}, v) a game 

with one player, then v(1) = c, to get ~0(v) take the following two players game u: 

u(S) = c when S = (1, 2} and 0 otherwise. After amalgamating 1 to 2 in u we will get 

v. By the assumption, r  is known (~o(u) = r/(u)) so ~ l (v)  = @(u)  + ~2(u) by  "2-ef- 

ficiency" axiom. 

In order to establish that the Banzhafvalue is determined uniquely on all the games, 

assume inductively that the Banzhaf value is already determined on all the games with n 

players or less. Take a game V = ({ 1 . . . .  , n + 1 }, v) o f  n + 1 players. By amalgamating 

i and j in V to a new player i] we will get the game V{i,]}, which is of  n players. By 

"2-efficiency" axiom we get xi't 'x j =~iJ'-(VQ,j})wherexi=~oi(g).Wehavegot ( n + l ) 2  

/ \ 

equations with n + 1 variables; an equation for each pair i , j  E (1 . . . . .  n + 1}. Obvious- 

ly this equations system has degree n + 1. It is consistent because r = rli(V) + 
r~J(V), by Proposition 1, and by the induction hypothesis. Thus it has a unique solu- 

tion which is xi = r j (V) .  
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