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Abstract. In a decision problem with uncertainty a decision maker receives partial
information about the actual state via an information structure. After receiving a
signal he is allowed to withdraw and get 0. We say that one structure is better than
another when a withdrawal option exists, if it may never happen that the latter
guarantees a positive profit while the former guarantees only 0. We characterize
this order between information structures in terms that are different from those
used by Blackwell’s comparison of experiments.

We also treat the case of malicious nature that chooses a state in an adverse
manner. It turns out that Blackwell’s classical characterization holds also in this
case.
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1. Introduction

A decision problem is defined by a state space, a prior distribution, an action set and

a utility function. Before taking an action a decision maker (DM) may obtain partial

information about the true state of nature. The information is obtained through an

information structure which chooses a signal with a probability that depends on the

realized state. Comparing between information structures1 has been the subject of

many papers2.

One possibility is to order information structures according to the expected utility

they yield for the DM in a given decision problem. This ordering, however, is too

specific, as one information structure may be better than another in a certain problem

and worse in another. Blackwell [1] proposed a partial order that takes into account

expected utility in the following way. It is said that one structure is better than an-

other if whatever the decision problem is, the expected utility it guarantees is higher

than that guaranteed by the other structure. This definition induces a partial order

over information structures. Blackwell showed that this order can be equivalently

defined in several different ways, some of them purely probabilistic. Blackwell char-

acterized this partial order by three different means: stochastic matrices, expectation

of convex functions, and mean preserving stochastic maps.

Although Blackwell’s partial order is quite intuitive, it is too restrictive. It requires

solid data about all possible decision problems. We propose another ordering between

information structures. This ordering also induces a partial order, but it is defined

on a wider range than Blackwell’s order.

In this note we deal with a situation where a DM is always given a withdrawal

option: to withdraw upon receiving a signal without any cost (i.e., getting the payoff

0). In the presence of such an option, the DM can always guarantee himself a non-

negative payoff. It is said that a structure is better than another when a withdrawal

option exists, if for every decision problem, it yields a positive payoff when the other

structure does. That is, when a structure is better than another when a withdrawal

option exists, it never happens that a positive profit is guaranteed when the DM gets

his information via the latter structure, while a it is not guaranteed if the DM gets

his information via the former structure.

1In the statistics literature, information structures are commonly referred to as statistical
experiments.

2For a comprehensive survey of this literature see Torgersen [3]. A shorter review can be found
in Le Cam [2].
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Section 3 presents a characterization of the partial order “being better than when a

withdrawal option exists” by means analogous to that of Blackwell’s characterization.

It turns out that one structure is better than another when a withdrawal option exists,

if the latter results from the former by a multiplication with a non-negative matrix.

In other words, the characterization is similar to that of Blackwell with non-negative

matrixes replacing stochastic matrices.

In the same vein, in our characterization, non-negative convex functions replace

convex functions and equality of two measures is replaced here by another relation

between measures, absolute continuity.

In Section 4 we refer to a malicious nature that chooses a state in an adversary

manner. Under theses circumstances, one can define an order between information

structure in Blackwell’s fashion: one structure is better than another when nature

is malicious, if for every decision problem, when nature chooses a state in order to

minimize payoffs, the expected utility it guarantees is higher than that guaranteed

by the other. It is shown that this order coincides with ‘being better than’ defined

by Blackwell.

2. Decision problems with incomplete information

Let K be a finite state set. The elements of K are called states of nature. An

information structure provides an agent with partial information about the actual

state. When the state of nature is k the agent receives a random signal s whose

distribution depends on k. Formally, an information structure is a pair (S, σ), where

S is a finite set of signals and σ = {σk,s}k∈K,s∈S is a stochastic matrix.3 When the

actual state is k, the agent receives the signal s with probability σk,s.

Upon getting a signal s the agent needs to take an action from a finite set A. If

a is the action taken and k is the actual state, the agent receives the payoff u(k, a).

The payoff matrix corresponding to A, u, is the matrix
(
u(k, a)

)
k,a

that has |K| rows

and |A| columns.

A decision problem is given by (p, A, u) where p ∈ ∆(K) is a probability distribution

over K, A is a finite set of actions and u : K × A → R is the utility function. Given

an information structure S = (S, σ), the decision problem is described as follows: a

state of nature k ∈ K is randomly chosen according to p, then the agent receives

3A matrix
(
σk,s

)
is stochastic (resp. sub-stochastic) if σk,s ≥ 0 for every k, s and

∑
s σk,s = 1

(resp.
∑

s σk,s ≤ 1) for every k.
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stochastic signal according to S. Given the signal, the agent chooses an action a ∈ A

and receives payoff u(k, a). Denote by R(S; p, A, u) the best payoff the agent can

receive in the decision problem.

Definition 1. We say that S is better than T if for every decision problem (p, A, u),

R(T ; p, A, u) > 0 implies R(S; p, A, u) > 0.

Remark 1. (i) If R(S; p, A, u) ≥ R(T ; p, A, u) for every p, A, u, then S is better than

T . Conversely, assume that S is better than T . If R(S; p, A, u) < R(T ; p, A, u) for

some p, A, u, then define a new utility function u′ = u − R(S; p, A, u). One obtains,

R(S; p, A, u′) = 0 < R(T ; p, A, u), which is a contradiction. Thus, saying that S
is better than T is equivalent to saying that R(S; p, A, u) ≥ R(T ; p, A, u) for every

p, A, u.

(ii) Let p0 the uniform distribution over K. Note that if R(S; p0, A, u) ≥ R(T ; p0, A, u)

for every A, u, then R(S; p, A, u) ≥ R(T ; p, A, u) for every p, A, u. Indeed, fix p, A, u

and define, u0(k, a) = u(k, a) p(k)
p0(k)

. Then, R(S; p, A, u) = R(S; p0, A, u0) ≥
R(T ; p0, A, u0) = R(T ; p, A, u).

Every information structure S = (S, σ) induces a probability measure mσ over

∆(K) in the following way: Consider the probability space K × S equipped with

the probability measure p(k, s) = 1
|K|σk,s. Then the posterior distribution of k given

s is a ∆(K)-valued random variable defined over this probability space. We denote

by mσ the distribution of this random variable, and call it the standard measure

associated with S. This is a probability measure with finite support. Its atoms are

the normalized columns of σ.

A stochastic transformation over ∆(K) is a function T (x, E) defined for every

x ∈ ∆(K) and a Borel subset E of ∆(K) such that E 7→ T (x, E) is a probability

measure over ∆(K) for every x ∈ ∆(K), and such that x 7→ T (x, E) is measurable

for every Borel subset E of ∆(K). For every probability measure m over ∆(K), the

function M(E) =
∫

T (x, E) dm(x) is a probability measure over ∆(K). We denote

M = Tm. T is called mean preserving if
∫

y T (x, dy) = x for every x ∈ ∆(K). The

following theorem is due to Blackwell [1].

Theorem 1. (Blackwell [1]) Let S = (S, σ) and T = (T, τ) be two information

structures. Then the following conditions are equivalent:

(1) For every p, A, u, if R(T ; p, A, u) > 0 then R(S; p, A, u) > 0.



4 EHUD LEHRER AND ERAN SHMAYA

(2) There exists a stochastic matrix ε = {εs,t}s∈S,t∈T such that τ = σε, the product

of the matrices σ and ε.

(3) There exists a mean-preserving stochastic map T over ∆(K) such that Tmτ =

mσ.

(4) For every convex and continuous function h : ∆(K) → R, if
∫

h dmτ > 0

then
∫

h dmσ > 0.

3. Decision problems with a withdrawal option

Assume that after having received a signal the agent is allowed to withdraw and

to obtain the payoff 0. Formally, the decision problem (p, A, u) with a withdrawal

option is the decision problem (p, A0, u), where A0 = A ∪ {0} and u(k, 0) = 0 for

every k ∈ K. Denote by Rw(S; p, A, u) the agent’s optimal payoff, R(S; p, A0, u).

A decision maker who needs to choose between obtaining information via S or via T
before knowing the payoff function has no problem when S is better than T . However,

the “better than” order is not complete and quite often neither S is better than T
nor T is better than S. However, suppose that a withdrawal option is available.

Moreover, suppose that the only information about the information structures is that

whenever a positive profit is guaranteed when getting signals through T , it is always

the case when getting signals through S. In the sense that it may never happen that

getting signals through T ensures a positive profit while getting signals through S
ensures only zero profit, S is better than T . This order is formally defined as follows.

Definition 2. We say that S is better than T when a withdrawal option exists, if for

every decision problem (p, A, u), Rw(T ; p, A, u) > 0, implies Rw(S; p, A, u) > 0.

It is clear that when S is better than T when a withdrawal option exists, it is in

particular better than T . Theorem 1 states that S is better than T iff there exists

a stochastic matrix ε such that τ = σε. In the following theorem the fact that S is

better than T when a withdrawal option exists, is characterized by weaker conditions

than that of Theorem 1. For instance, τ = σε, where ε is merely a matrix whose

entries are nonnegative.

Example 1. Let the number of states of nature be 4 and σ, τ be given by

σ =


1
2

0 1
2

0
1
2

0 0 1
2

0 1
2

1
2

0
0 1

2
0 1

2

 and τ =


1 0
1 0
0 1
0 1

 .



TWO REMARKS ON BLACKWELL’S THEOREM 5

There exists no stochastic matrix ε such that τ = σε. However, denote,

ε =


2 0
0 2
0 0
0 0

 ,

one obtains τ = σε. Thus, there exists a matrix ε with nonnegative entries such

τ = σε and, by the following theorem, the information structure corresponding to σ

is better than that corresponding to τ when a withdrawal option exists.

Condition (1) of Theorem 1 means that there exists a stochastic transformation

(i.e., a linear transformation that maps probability measures over S to probability

measures over T) which maps the k-th row of σ to the k-th row of τ . Our main result

is analogous to Theorem 1. It characterizes when one information structure is better

than another when a withdrawal option exists. However, instead of using terms of

stochastic matrices, it uses terms of matrices that have nonnegative entries.

A matrix ε = {εs,t}s∈S,t∈T with nonnegative entries induces a linear transformation

that maps measures (not necessarily probability) over S to measures over T . The fact

that τ = σε, with ε being a matrix with nonnegative entries, means that there exists

such a transformation that maps the k-th row of σ (which is a probability measure

of S) to the k-th row of τ (a probability measure over T ).

Theorem 2. The following conditions are equivalent:

(1) S is better than T when a withdrawal option exists.

(2) There exists a matrix ε with nonnegative entries such that τ = σε.

(3) For every convex, continuous and nonnegative function h : ∆(K) → R, if∫
h dmτ > 0 then

∫
h dmσ > 0.

(4) There exists a mean-preserving stochastic map T over ∆(K) such that Tmτ

is absolutely continuous with respect to mσ.

Proof. (1) ⇒ (2): Assume that there exists no matrix ε with non-negative entries

such that τ = σε. In particular, there exists some column τ∗t of τ that is not a

conic combination4 of the columns of σ. By the separation theorem there exists a

|K| × 1 matrix α such that5 〈τ∗t, α〉 > 0 but 〈σε, α〉 ≤ 0 for every |S| × 1 matrix ε

4A conic combination of vectors is a linear combination with nonnegative coefficients
5For matrices X,Y of the same dimension, we denote 〈X, Y 〉 = tr(XtY )= the sum of the entries

along the main diagonal of the matrix XtY .
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with nonnegative coefficients. (Note that the action set A corresponding to α is a

singleton.) Let p be the uniform distribution over K.

Consider the strategy (in the game played under τ) that prescribes playing the

action a when obtaining the signal t, and withdrawing otherwise. The expected

payoff of this strategy is
∑

k τkt

|K| 〈τ∗t, α〉 > 0. Thus, Rw(T ; p, A, u) > 0. However, the

expected payoff of any strategy γ is 〈σγ, α〉 ≤ 0. This means that Rw(S; p, A, u) = 0,

which proves the desired assertion.

(3) ⇒ (2): If there exists no matrix ε with non-negative entries such that τ = σε,

let α be as in the previous paragraph and define, h(x) = max(xα, 0) (α is a |K|
dimensional vector and xα the inner product of x and α). The function h is non-

negative and as a maximum of two linear function, it is convex. Finally, the properties

of α imply that
∫

h dmτ > 0 but
∫

h dmσ = 0, contrary to (3).

(2) ⇒ (1): let A be the set of actions. A strategy of the agent is given by a sub-

stochastic matrix γ = {γs,a}s∈S,a∈A: if the signal is s the player takes action a with

probability γs,a. Assume w.l.o.g. that p is the uniform distribution over K. Then

the expected payoff to the player is given by 1
|K|〈τγ, α〉, where α is the payoff matrix

corresponding to A, u. Assume that this is strictly greater than 0. By assumption,

τ = σε for some matrix ε with nonnegative entries. Thus, εγ = Cγ′ for some sub-

stochastic matrix γ′ and a constant C > 0. If the agent uses the strategy γ′ in the

S-game, then his payoff is

Rw(S; p, A, u) =
1

|K|
〈σγ′, α〉 =

1

C|K|
〈τγ, α〉 =

1

C
Rw(T ; p, A, u) > 0.

(2) ⇒ (4): Let x be an atom of µτ , which corresponds to a column of τ . By (2),

this column is a conic combination of some columns of σ. It follows that x is in the

convex hull of the atoms of mσ. Therefore there exists a probability measure, µx,

over ∆(K) which is absolutely continuous w.r.t. mσ such that x =
∫

y dµx. We let

T (x, E) = µx(E) for every atom x of mτ and T (x, E) = δx(E) for every x outside the

support of mτ . Here δx is Dirac’s atomic measure at x. Then T is mean preserving

and Tτ is absolutely continuous w.r.t. σ.

(4) ⇒ (3): Let h : ∆(K) → R be convex, continuous and nonnegative function

over ∆(K), such that
∫

h dmτ > 0. Since h is convex and T is mean-preserving it
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follows that
∫

h dTmτ ≥
∫

h dmτ > 0. Since h is nonnegative and Tmτ is absolutely

continuous w.r.t. mσ it follows that
∫

h dmσ > 0.

�

Remark 2. Unlike the case without a withdrawal option, Condition (2) of The-

orem 2 does not imply that for every decision problem (p, A, u), Rw(T ; p, A, u) ≥
Rw(S; p, A, u). The latter is equivalent to R(T ; p, A, u) ≥ R(S; p, A, u) for every deci-

sion problem (p, A, u). Indeed, by adding a large positive constant M to u, the with-

drawal option becomes irrelevant. Therefore, if for every decision problem (p, A, u),

Rw(T ; p, A, u) ≥ Rw(S; p, A, u), then R(T ; p, A, u + M) = Rw(T ; p, A, u + M) ≥
Rw(S; p, A, u + M) = R(S; p, A, u + M) for every (p, A, u). The latter implies that

R(T ; p, A, u) ≥ R(S; p, A, u) for every (p, A, u).

4. A Malevolent Nature

In the previous section we let the decision have an extra withdrawal option. In

this section we let Nature have an extra power. Consider a situation in which Nature

chooses her state strategically to minimizes the agent payoff. For an information

structure S = (s, σ) and a set of actions A, the agent (the maximizer) and Nature

(the minimizer) play a zero-sum game. Nature chooses a state k, then a signal s is

chosen according to S and informed to the agent, who then chooses an action a. The

payoff is u(k, a). Let

Rm(S; A, u) = min
p∈∆(K)

R(S; p, A, u)

be the value of this game. The value exists since each player has finitely many

strategies. It turns out that the partial order induced over information structures

when Nature is malevolent coincides with that of Theorem 1. Formally,

Theorem 3. Let S = (S, σ) and T = (T, τ) be two information structures. Then the

following conditions are equivalent:

(1) For every A, if Rm(T ; A, u) > 0 then Rm(S; A, u) > 0.

(2) There exists a stochastic matrix ε = {εs,t}s∈S,t∈T such that τ = σε.

Proof. (2) ⇒ (1): Suppose that τ = σε for a stochastic matrix ε, and let A be a finite

set of actions, such that Rm(T ; A, u) > 0. If p ∈ ∆(K) is an optimal strategy for

Nature in the S-game, then R(T ; p, A, u) ≥ Rm(T ; A, u) > 0. By Theorem 1,

Rm(S; A, u) = R(S; p, A, u) > 0.
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(1) ⇒ (2): Assume that there exists no stochastic matrix ε = {εs,t}s∈S,t∈T such

that τ = σε. Let Q1 be the set of all matrices of the form σε where ε ranges over

all stochastic matrices ε = {εs,t}s∈S,t∈T . Let Q2 be the set of all matrices of the form

δτ where δ is a diagonal |K| × |K|-matrix with nonnegative entries. Q1 is a compact

convex set and Q2 is a convex cone in the vector space of all |K| × |T | matrices.

Assume first that Q1 ∩Q2 6= ∅. Let δτ ∈ Q2 belongs also to Q1. As any matrix in

Q1, δτ is stochastic. This may happen only if δ is the identity matrix, in which case

τ ∈ Q1, that is τ = σε and (2) is satisfied.

Now assume that Q1 ∩Q2 6= ∅. By the separation theorem there exists a |K| × |T |
matrix α that strictly separates Q1 and Q2. That is, 〈α, x〉 < 0 for every x ∈ Q1 and

〈αx〉 > 0 for every x ∈ Q2. Define A to be the set of the columns of α and let u be

the utility function that turns α to be the payoff matrix that corresponds to A, u.

Suppose first that the game is played under S, and that Nature’s mixed strategy

is uniform over K. Let an agent’s strategy be given by a stochastic matrix ε =

{εs,t}s∈S,t∈T (that is, when he receives the signal s he chooses the t-column of α with

probability εs,t.) The agent’s payoff is then, 1
|K|(σε)·α, which is strictly smaller than

0 since σε ∈ Q1. It follows that Rm(S; A) < 0.

Suppose now that the game is played under T , and that the agent’s strategy pre-

scribes him to play the signal he received. If Nature picks state k (it is a pure strategy

of Nature), then the payoff is 〈ηkτ, α〉, where ηk is the |K| × |K|-matrix whose only

non-zero entry is the (k, k)-th entry which is 1. Since ηkτ ∈ Q2 for every k, it fol-

lows that the agent has a positive payoff against every pure strategy of Nature and

therefore against any of its mixed strategies. Thus, Rm(T ; A) > 0. �

5. Final remarks

5.1. Different withdrawal options. Assume that, instead of a constant zero payoff,

the withdrawal option yields a payoff b ∈ RK that depends on the realized state of

nature. For every decision problem (p, A, u) and information structure S, denote by

Rw(S; p, A, u; b) the DM’s optimal payoff if he is allowed the withdrawal option b.

Then it turns out that the Theorem 2 can be stated as follows:

Theorem 4. (1) There exists a matrix ε with nonnegative entries such that τ = σε.

Implies



TWO REMARKS ON BLACKWELL’S THEOREM 9

(2) For every decision problem (p, A, u), if Rw(T ; p, A, u; b) > R(T ; b), then

Rw(S; p, A, u; b) > R(S; b).

We do not know the analogue condition in the case of several withdrawal options.

5.2. General measures and signal spaces. The results above can be stated in

more general terms, not necessarily with finite signal spaces. In order to keep this

note concise, we choose to omit the details.
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