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We study the set of limit points of equilibrium payoffs in n-player repeated
games, with bounded recall, when the memory capacities of all the players grow
to infinity. Two main issues are explored: (i) whether differential information
enables players to play correlatively, and (ii) the extent to which boundedly rational
players can learn others’ behavior patterns and conceal their own. Journal of
Economic Literature Classification Number: 026.  © 1994 Academic Press, Inc.

INTRODUCTION

The notion of bounded rationality in the context of repeated games
was introduced first by Aumann (Aumann, 1981). In his survey, Aumann
mentions two ways to model a player with bounded rationality: with
finite automata and with bounded recall strategies. Neyman (1985) and
Rubinstein (1986) were the first to see the impact of restricting the set of
strategies available to a player to those strategies that can be implemented
by finite automata.

In this paper we address repeated games played by players with bounded
recall. Two types of bounded recall in repeated games are found in the
literature. The first one, adopted by the author in Lehrer (1988) and here,
is that in which a player, when taking an action, can rely on his opponents’
previous actions as well as on his own. The second type (see Aumann
and Sorin, 1989) restricts the player to relying solely on his opponents’
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actions. One of the reasons for adopting the second type, proposed by
Aumann and Sorin, was the avoidance of the possibility of ‘‘trigger”’
strategies.

This article supports that reason in showing that, even though the recall
(of the first type) of a player is bounded, he can play some kind of *‘trigger’’
strategy. A player executes this strategy by signaling to himself with
his own actions and thereby keeping the deviation alive in his memory.
This grim strategy, for instance, cannot be carried out if a player can rely
solely on his opponents’ actions because the deviation (of the punished
player) will disappear from the punisher’s memory after a while. However,
in a case where the players are capable of memorizing their own actions,
the punisher can remind himself by a certain behavior pattern, which is
identified with the deviation, that a deviation has occurred and that he
should follow the punishing strategy.

We investigate the asymptotic behavior of the Nash equilibrium payoff
set, when the memory capacities of all the players grow to infinity. The
same problem for two-player games was handled in the context of finite
automata by Ben-Porath (1989) and in the context of bounded recall by
Lehrer (1988).

These two papers show, in their respective contexts, that as long as
the ‘‘strong’’ (the one with the higher computational capacity) player’s
memory does not improve rapidly (i.e., exponentially) compared to the
“‘weak’’ player’s memory, the latter can conceal his particular behavior
pattern. In other words, the ‘‘strong’’ player knows the distribution ac-
cording to which the ‘““weak’’ player’s strategy is chosen, but he fails to
reveal which particular pure strategy was chosen.

This issue of concealing one’s own chosen strategy is also addressed
here, in the context of finitely many players. It is shown that in order to
ensure a certain security level, a player should hide his realized strategy.
Otherwise, other players, after a while, learn enough about him and his
weak spots to push his payoff below the security level. In order to prove
that what is meant to be hidden is indeed concealed, we employ an informa-
tion-theory technique—the memory capacity of a player is measured by
its entropy.

The second main new idea contained in this paper is the correlation
between players, based on their differential information. Different players
have different memory capacities. Thus, during the game, players base
their actions on different information. This results in correlated actions
played at every stage. We study the extent to which players can correlate
their moves by utilizing the histories as a correlation device. It turns out
that, under some assumptions on the speed of growth of memory capacit-
ies, players can fully coordinate their strategies and act as if there were
one player. This is done when one player, say, player i, is found to be
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deviating and all other players punish him. If players are ordered and
labeled according to their memory capacity, player i is actually punished
by i players: i — 1 players with shorter memory and all *“‘stronger’’ players
acting as one (by using the histories properly). The phenomenon of correla-
tion by utilizing the histories was treated, in different contexts, by Gilboa
and Schmeidler (1989), by Lehrer (1991), and by Kalai and Lehrer (1990).

As a motivation of the topic, imagine a situation where, after playing
a long term game, the capabilities of all the participants improve (possibly
as a result of an evolutionary development). The question of the asymp-
totic behavior of the equilibrium payoffs is the question of the worth of
developing quickly. Namely, what is the value, in terms of equilibrium
payoffs, of a larger information-handling capability ? Our main result states
that a greater recall affects only the individually rational level. In other
words, longer memory players (the *‘strong’’ ones) can only ensure them-
selves a greater minimal payoff. On the other hand, the lower security
level of the “‘weak’’ players ensures, in some cases, more opportunities
for others.

The paper is organized as follows. Section 2 presents the model and
the main results. In Section 3, the repeated game played with bounded
recall strategies is described in detail. Sections 4 and 5 are devoted to
proofs and in Section 6 we consider the issue of perfectness. We assert
that the same result holds also for perfect equilibrium.

2. NOTATIONS AND MAIN THEOREMS

The game G, consists of

(1) the set of players M = {1, ..., n};
(i) ~ finite sets of actions %, ..., 3,

(Denote X = XL,%);

(iii) n payoff functions &, ..., 4,; h;: Z— R, i € M, where R is the
set of the real numbers (without loss of generality, we can assume
that 4; = 0); and

(iv) n integers I,(k), ..., L (k).

1{k) is interpreted as the memory length of player i in the kth game. In
the sequel, [ (k) will be greater than [(k) whenever i > j.

The set of [, = [(k) bounded recall strategies of player i, denoted by
Sk, is {(x, ¢)|x € 3k, ¢: 3h— 3}. For any tuple o = (oy, ..., 0,) €
x2Sl and 1 € N, define aj(o) = the payoff of player i at stage ¢, and
H (o) = the Cesaro limit of a}(0).
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For a set A, A(A) denotes the set of all the distributions over A.

The range of the payoff function H,(®) can be extended naturally to
X" A(SYH). Let H = (H,, ..., H,). The n-player game G, = (A(S]), ...,
A(S'); H) has, by the Nash theorem, a nonempty set of Nash equilibrium
payoffs, denoted by N,.

In the following notation, p, ¢, and r are random variables taking actions
(or action combinations) as values.

Notation 2.1. (1) Let i € M. Denote d; = Min, Max, Min, E, , (h),
where E is the expectation functional, the distributions of ¢, p, and r
are in X, ;A(X), AX), and A(X,. %), respectively, and, moreover, p is
independent of g and r, and r is g-measurable.

The meaning of d; is the following. The players with memories shorter
than i play g where the actions are not correlated. Player i knows the
distribution g but not its particular realization. However, players with
memories longer than i (j > i) play correlatively and they may know the
realization of the action combination g. Thus, r may be g-measurable.
These players (j:j > i) know the distribution of p but not its realization.
To sum up, d; is a security level of player i with differential information:
all the players ‘‘stronger’’ than / know the particular pure strategy played
by the “‘weaker’’ players. However, player i himself does not know it.

d, is defined like d; with the further restriction that g and r are indepen-
dent. Thus, the players with memories longer than i do not know the
realization of g. In the following it is shown that player / can guarantee
himself d, and other players can ensure that player i does not get more
than d; when he is punished.

(2) Define

F = {x € R"|xis feasible and x; = d,, i € M},
F = {x € R"| is feasible and x, = d,, i € M},

and
F* is defined like F with strict inequalities.

F and F are the feasible payoffs which are greater than the respective
security level. Note that both are greater than the set of the folk theorem
(see Aumann, 1981) in which the individually rational level is the minmax
one.

Notation 2.2. Let {B,} be a sequence of sets in R".

(1) tim inf, B, = {x &€ R"|there is a sequence x; € B, which converges
to x};
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(2) lim sup; B, = {x € R"|x is an accumulation point of a sequence
Xy = Bk}'

THEOREM 1. [Iflim,_,, (log [(k)/,(k})] = 0, then lim sup,_. N, C F.

__THEOREM 2. Iflim,_,. [;, ((K)/1{k)] = = for every | <i=n — 1, then
F C lim inf,_,, N,, provided that F* # .

3. A DETAILED DESCRIPTION OF G,

DEFINITION 3.1. Let A be a set.

(1) x is an A-word if x is a finite string of symbols of A; i.e., x € A!
for some integer /.

(2) If x is an A-word, |x| denotes the length of x.

(3) x is an (m — A)-word if x is an A-word and |x]| = m.

(4) Let o, B be integers suchthat l = a = g8 = |[x|and x = (x, ...,
Xn), then x(a, B) = (x,, ..., Xpug-1)-

Let o; = (x;, ¢;) € Sl be a pure bounded recall strategy of player i,
who has [-bounded recall. At the first stage player i plays ¢(x,). Denoting
zy = (p(x)), ..., d,x,)), player i gets the payoff a! = h(z,) at that stage.
At the second stage player i plays ¢{x(2, [), z;). Denoting z; = (¢,{x,(2,
L), z))s ..., 0,502, L), 1)), player i gets the payoff a? = hJz,) at that
stage. At the third stage player 7 plays $(x,(3, ), z,, z,), and so on.

For every t and o = (o4, ... , 0,), aj{o) denotes the payoff of player i
at stage ¢, when o is played, and by H (o), the Cesaro limit of ai(c):
Hya) = lim;(1/T)XL al(a). If o is a tuple of mixed strategies (probability
distributions over S, i € M) then a/(c) denotes the expectation of player
i’s payoff at stage ¢, and H!(o) denotes its Cesaro limit.

We know that every n-player game (one-shot), where player i has a
finite set of actions, has a nonempty set of Nash equilibria in mixed
strategies. The game defined by the sets S/i(k) and by the payoff functions
H e} is finite. Therefore, it has a nonempty set, N, of Nash equilibrium
payoffs.

4. THE ProoOF oF THEOREM 1

We show that lim sup, N, C F. For this purpose we define a strategy
ok of player i in G, which ensures him at least the payoff d;, — § versus
any tuple (of, ..., ob\, ok, ..., 08 € X8/, for any 8 > 0 and
sufficiently large k. The strategy o is defined in such a way that the
probabilistic propositions of Lehrer (1988), quoted below, can be applied.

Fix an integer k. Player i knows at each stage ¢ the memories of all
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players j, j < i. Thus, if u € X/ is the memory of player i, then he knows
the expected strategy of each player j < i, denoted by g;(u). Let g(u) =
(g\(), ..., qi-\(u)). Denote

Viq(«)) = Max, Min, E, ,,, ,(h,),

where the minimum is taken over all r with distribution in A(X ;%) and
the maximum is taken over all p independent of g(«) and with distribution
in A(Z)). Denote a mixed strategy in A(%) which ensures V{(g(«)) (when
q{u) is played by j < i) by p(u).

Let p™(u) be a strategy of player i which assigns to every action at least
probability » and which is the closest strategy of this kind to p(«). Pre-
cisely, p™u) is the closest point (with respect to ||®|,) to p(x) in the set
{p|p is a mixed strategy of player i, and p, = 7 for every s € 3}.

We now define for every w € ) a pure strategy o “(w) by using n > 0,
which is specified later. The initial memory of player i in oHw), X5, is
arbitrary, and for all u € X' define ¢ ¥(w)(u) = Z,(w), where Z,, is a random
variable, defined on Q, and ranged to X;, which has the same distribu-
tion as p"(u). Furthermore, all Z,, 4 € 3%, are mutually independent.
Let o¢=@% ¢%),anddenote o= (o%,...,a%, ...,7%. Note that
o ¥ is a random variable, defined on {2 and ranged to Si—in other words,
a mixed strategy of player i in G,. In order to show that H,(c*) > d, — §
for k sufficiently large, we need a few lemmata.

Notation 4.1. Letx = (x;, ..., x,) bean (n — A)-word, and let / < n.
x has an l-cycle if thereare | =g <j=ns.t. (x,, ..., x5-) =, ...,
X;+-1), wWhere an integer n' > n is identified with n’'(mod n).

Denote s(k) = L (k) (k).

PropoSITION 4.2. Let X, X,, ... Xy, be mutually independent Ber-
noulli random variables, where prob(X; = 1) = 1 — prob(X; = 0) = p;,.
Assume furthermore that there is anm > 0s.t.p =p, <1~ 9 for all k
and 1 = j < s(k). Denote c{k) = problX,, ..., X(k) has an l(k)-cycle}.
Then

lim,s(k) - ck) = 0.

This proposition is an extension of Proposition 1 in Lehrer (1988), which
we quote here.

ProOPOSITION 4.3. Let Y,, Y,, ... be a sequence of identically distrib-
uted mutually independent nontrivial Bernoulli random variables. Then
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lim,f(k) - problY,, ..., Yy, has an [(k) cycle} = 0,

provided that log f(k)/1(k) tends to zero as k goes to infinity.

In the sequel we make use only of the fact that ¢ (k) tends to zero. The
proof of the weaker version is not easier and therefore the strong version
is provided.

Now we can turn to the proof of Proposition 4.2.

Proof of Proposition 4.2. We show thatif Y, Y,, ... arei.i.d. Bernoulli
random variables with prob(Y, = 1) = n then ¢,(k) = e,(k) = s*(k) - prob{Y,,
..., Y, has an [,(k)-cycle}. Since log s(k)/[(k) — 0, and since prob{Y;,

., Y, has an [(k)-cycle} = prob{Y,, ... , Y2y, has an [i(k)-cycle},
Proposition 4.3, applied for f(k) = s%(k), provides a proof for Proposition
4.2

Define the continuous function 8, on A® x A® (A® is the unit simplex of
RY) as

Bb(xls LS ,va ylv L ’yb) = znxfj(l - xj)l~gjyj£j(l - yj)l_ejv

where the summation is over all the vectors (g, ... , &,) € {0, 1}°. Let
B, ={Y,=Y,..., Yy = Yy _}. Now let g and j be two integers
st.g+l—1=sj=sk)-1I+ 1

The probability of the event D, ; = {X, = Xj, ..., Xooy oy = Xjyy i} 18
a union of pairwise disjoint events,

U{Xg = Xj = sg’Xg+l = /Yj'%l T &g e ’Xg+li—1 = /Yijl = 8g+l‘»—l}s

where the union is taken over all (g, ..., &,,,_,) € {0, 1}%. Because of

the independence of the random variables, the probability of this union
is (denoting z = j — g)

Zn{e;{f—l pi(l — ps)l_g’p.f’ﬂ(l - ps+z)]_sx'

Denote v = (p,, ... s Pori-ts Djs - - - ,p#,l__,). Note that prob(D, ;) = B,(v)
and prob(B, ) = B,(», ..., m). Since B,(v) = B,(, ... , ) (see Appendix),
prob(D, ) = prob(B, ) when g, j are as above. As for the other g and j,
the event D, ; is defined with overlapping cycles (the string starting at g
and the one starting at j overlap). This means that there are some strings
(shorter than /) that appear more than twice. By defining a multilinear
function, similar to 8, above, which takes account of any repetition of
symbols in the string X, X ., ..., X\, one can show that

prob(D, ;) < prob(B, ) forevery g #j.
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Now c(k) =%, . prob(D, )and %, prob(B, ) =< e;(k). The second inequal-
ity holds because there are less than s*(k) different selections of g and j
(g # Jj). Thus, one obtains

Cl‘(k) = e,-(k).

This concludes the proof of Proposition 4.2. =

Some notation from information theory must be introduced before pro-
ceeding to the proof. Let X be a finite random variable (f.r.v.) with range
{x|, ..., x,}. Define the entropy of X to be H(X) = —Z,p(x) log p(x),
where p(x;) = prob(X = x;}). If Y is another f.r.v. that ranged to {y,, ...,
Ymp> then H(X, Y) = =5, ;p(x;, ) log p(x;, y)), where p(x;, y;) = prob(X =
x;and Y = y).

Denote by | X| the number of atoms of X. H(X) is always less or equal
to log| X|.

DErFiNITION 4.4. A fr.v. Y is said to be e-independent of a f.r.v. X
(write Y 1L X)if

3;lprob(Y = y;| X = x) — prob(Y = y) | <e

for all i, except for a set of atoms the union of which has a measure less

than €.
Define

I(Y|X)=HX) + H(Y) - HX, ).

Theorem 4.6 of McEliece (1977) states that /(Y| X) = 0 with inequality if
and only if Y and X are independent.
I(Y|X) is interpreted as the information about Y that is contained in X.

PROPOSITION 4.5 (Smorodinsky, 1971). Given € > 0 there exists 8(g) >
0 s.t. for any forov. x and Y, I(Y|X) < & implies Y ix

The final statement we need is that if Z is Y-measurable, then I(Y|X) =
I(Z| X) (McEliece, 1977, p. 26).

Now divide N, the set of stages, into blocks of length s(k) each. Fix a
block B. Our objective is to compute the expected average payoff of player
i in B. Denote by Y the memory of the player with the longest memory
excluding i. Denote by Q, and X, the joint action of all players j # i and
of player i at stage ¢ of B, respectively. Without loss of generality all these
random variables are defined on the same sample space. We show that,
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with high probability, h; (Q,, X,) cannot be far below d; in a relatively
large set of stages.

Recall that in our model a player chooses at the beginning of the game
a pure bounded recall strategy. He is not allowed to randomize (relying
on his memory) at any stage. The subtle point is, therefore, to show that
the player with the largest memory can, only with a small probability,
unveil the pure strategy that was chosen by player i at the game’s begin-
ning. Player n can learn about player i's strategy only if, in his memory,
there is an /,(k)-cycle of length [ (k).

In what follows we show that all players j # i can only with a small
probability learn the identity of the particular pure strategy chosen by
player i. The argument is based on the fact that the random variables Z,,
by which ¢* was defined, are mutually independent.

Note that the independence of Z, does not imply that the variables X,
are independent. This is so because X, ... , X,_; and Oy, ..., O,
determine the distribution of X,. Fix the distribution of X,, say to g, and
consider only the event, say A, on which the distribution of X, is g.
Contrary to the lack of independence on the whole space, on 4, Q,, ...,
Q,_,and X, ..., X, , are independent of X, provided that no cycles exist.
The event A, just described, is a subset of the sample space which is the
range of all the random variables under discussion and is defined by Q,,
ey Qo and X, ..., X, If we fix not only the distribution of one X,
but the distribution of the all X,’s, we get that on a small event (defined
by one distribution per one stage) X, ..., X,_, are independent of X, for
every ¢, provided that there are no /;(k)-cycles. In other words, by fixing
the distribution of X, all its predecessors become almost independent of
1it.

Precisely, for any sequence of distributions g = {g,},cs C {p"(w)},eziv
define the event

A(g) = {at time r € B player i played according to the distribution g }
= {w|p"(u(0)) = q,},

where

u(w) = (X;- (@), Q@) - - (X, (@), @ (@) forallr € B}

Once again, given A(g), the distribution according to which player i is
playing at any stage is fixed. From now on the event A(g) is given for a
fixed g. We assume that prob(A(g)) > 0; namely, that the sequence g of
distributions is plausible. Since all Z, are independent one gets that on
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A(g), X,, ..., X,_, are independent of X,, provided that u(w) # u,(w) for
alls € Band s < ¢.

Now consider the following perturbation of X,. For every w € A(g), if
ufw) # uw) for all s € B, s < t; namely, there was no /(k)-cycle up to
time ¢, define X,(w) = X,(w). However, on the event where there were
I{k)-cycles up totime ¢ (i.e., there is s € Bx < ts.t. u(w) = uw)), define
X, to be an independent variable of X, ... , X,_, having the distribution
of X,. By so doing we defined a sequence (X,),¢p of independent variables
with the property that X, = X, on an event where the sequence (X,) has
no [(k)-cycles. This event has, by Proposition 4.2, a large probability
(within A(g)). _

We show that if player i could play according to X,, rather than according
to X,, he could ensure himself a close payoff to d;. Since X; is close to
X, this completes the proof.

The following computation demonstrates the fact that, by memorizing
Y, player j (j # i) is capable of identifying only a small portion of the
X;s.

(1/)BDS el (Q,| X))
< (/|B)S,epl(Y, 0,1X)  (Q,is(Y,X,,...,X,_,) measurable)
< (/|B)Z,esl(Y. X,, ..., X,.1|X)  byadirect computation)
= (1/|B])3,esHX) + H(Y)/|B| - H(Y. X, ..., X p)/|B]
< (1/|B),esH(X) - HX,, . .., X,p)/|B| + H(Y)/|B|.

Since X, ..., ?l p are independent, the first two terms cancel each other
and the third is bounded by log|Y|/|B| < I,(k) log|2|/s(k), which goes to
zero as k goes to infinity. Thus, by Proposition 4.5, (1/[BD)X,c3h(0,, X))
tends to d; — n- W- |3, where W is the greatest payoff appearing in the
game.

Now, since X, differs from f, on an event with probability of at most
c;(k) (see Proposition 4.2), one obtains

(/\B))Z,ephiQ;, X)) = (1/|BDZ,ephd Qs ;?:) —c(k): WI:;’ d—n- W 2.

Recall that this computation is confined to one particular A(g). Since
it holds for every vector g and for every n > 0 we get lim inf(1/|B))Z,c
a'(c*) = d,, as desired. =
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5. THE Proor oF THEOREM 2

For the sake of simplicity we introduce the proof of Theorem 2; i.e.,
that F C lim inf, N, for a private case, n = 3 and I(k) = ki fori =1, 2,
3. The proof for the general case follows exactly the same outline.

Suppose that F* # (J. In order to show the desired result, it is sufficient
to prove that F* C lim inf N,. Let a € F* # . a is feasible, so a is a
convex combination of four payoffs: a« = %!_, y,A(x*), where y, = 0,
2y, = 1, and x“ € % for all u. The strategy of player i consists, as usual
in this area, of two plans. The first one is the master plan and the second
one is the punishment plan, which is played when a deviation is detected.
The strategy of player i, described below, is a function from () (some
sample space) to Si®): it is, obviously, equivalent to a mixed strategy in
A(S kY,

Denote e(k) = [(k - log k)"?]. We can find integers m(k), ..., m,(k) with
total sum e(k), s.t. |m, (k)/etk) — y,| < l/e(k) for all 1 = u < 4. Define

1 2 2 4 4

oo x X L xh XL x

= [ - —~ - N - N e’ |,
myt) k) mak)

So, z € 3¢, A word v is good if it is a concatenation of z to itself several
times: v =(z',z,...,2, 2", where z' isatailof zand 2" = (2}, ..., 2%
is a head of z. For such v define ¢¥(») = z{*! (recall z**' € ¥ and 2;*' €
%), where if s + 1 > e(k) it is identified with s + 1(mod e(k)). The initial

memory of player i is the element (2", z, ..., z) € 24, where z" is the
appropriate tail of z. This concludes the description of the master plan
(m.p.).

In cases where all the players play according to their m.p., at the first
m, stages x! is played by the players. Then x? is played for m, stages and
so on until x* is played m, times. Then x! is played again m, times and
SO on.

The punishment plan (p.p.) is executed when one of the players, say j,
did not play z;*! after the good word v terminates with z', ..., z*. In this
case player i (i # j) notices that player j deviated and he has to play
according to the (i, j)-p.p. (i punishes j).

We describe first the (1, j)-p.p. for j > 1. Let p; € A(Z,) be a mixed
strategy of player | by which he (with the other players #j) can ensure
that the payoff of player j does not exceed d; (in the one-shot game), i.e.,
d; = Min, Max, #(p;, q, r), where the minimum is taken over all g €
A(%), i # 1, j, and the maximum over all r € A(Z).

Let X4, ..., X4, j = 2, 3, be mutually independent random variables
(defined on the sample space 1), which assume values in 3,;. Furthermore,
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for all 1 = v =< k'%, X, are identically distributed as p;. Since log k'%e(k)
tends to zero, by Proposition 4.3, the event C/(k) = {X{, ..., X} has
e(k)-cycles} has a probability c/(k) which satisfies k!%c/(k) - 0.

There are a lot of 2e(k) — X, words that do not appear in U,.,{X}(w),
con s Xho(w) e € ONCY} and in z,z,z, (the corresponding word in 33¢%)
to zzz). For example, a lot of 2e(k) — 2, words contain e(k)-cycles. Take
two of them, denoted by y? and y} (3} for player j). Now, player 1 can
signal to himself: when he observes y} he knows that he is playing ac-
cording to the (1, j)-p.p. In a precise way, denote for all @ € O\C/(k) by
/(w) the word (X4 (w), ..., Xjn(w)) with yj inserted at the beginning and
between blocks of length [; — 2e(k):

Vj((!)) = (YJI,XJ;((U), e vXJ;I——ze(k)(w)7 yJ]7 e ,Xf,;_m(m)).

The (1, j)-p.p. is to play repeatedly according to v/(w) (ignoring other
player’s actions). Note that for all @ € QW(C? U C?), any /,-subword of
vY(w) is different from any /,-subword of v*(w) (because y? # y3).

We are coming to the (2, j)-p.p. for j # 2 (2 punishes j). The (2, 3)-p.p.
is similar to the (1, j)-p.p. described above: X3, ..., X}ware i.i.d. random
variables which have the same distribution as ¢* has, where ¢° is the
strategy of player 2, by which (with p* of player 1) player 3 is prevented
from getting more than d;. For all o, but of a set, say, D3, (X}w), ...,
X}n(w)) has no e(k)-cycles. Let y3 be chosen as y} and y} were chosen.
By y3 player 2 codifies (for his own use) that the (2, 3)-p.p. is played.

The (2, 1)-p.p. and the (3, 1)-p.p. are played jointly. This is the place
where differences in memories serve as a correlation device. In order to
bring player 1 down to d,, they have to correlate their strategies. Since
there are only three players there is no need for j (j > 1) to coordinate
the punishment of player 1 with players whose memory is shorter than
player 1's. In general, a punishment should be coordinated in the manner
described above. The new idea that should be introduced is the correlation
of the “*strong’’ players’ strategies.

Let g be a strategy in A(Z, X 2,) (as if players 2 and 3 were one player)
which satisfies Max ey, #i(p, g) = d,. Assume that g gives only m’
points in 3, X 3, a positive probability. Denote m = [log, m'] + 1. Let
Y, ..., Yy be iid. random variables that range to X, X X;, and
distribute as q. Denote by Y| and by Y7 the projection of ¥, to 2, and X,,
respectively. Since {log(k*/2m)/e(k)] — 0, the event D'(k) of those w for
which either (Y(w), ..., Yiau(w) or (Yiw), ..., Y, (w) have e(k)-
cycles has a probability 4'(k) which satisfies £*b'(k) — 0.

By elements in 27 player 2 can codify each of the m’ points in %, x
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2, that have a positive probability according to g. We say that the element
‘P(Y(w)) of 27 encodes Y, (w).

Let y} and ¥} be two 2e(k) — 3, words containing e(k)-cycles which are
different from y3 and from any 2e(k)-word in z,2,z,. The (2, 1)-p.p. has
two parts: the first, played immediately after player 1 deviates, starts with
¥} and the second starts with y}, At the first 2e(k) stages after the deviation,
player 2 plays ¥} (recall ¥y} € 23°®). Then he plays ¥(Y,(w)) at the next
m stages, then ¥(Y,(w)), ¥(Y;(w)), and so on for m(k*/2m) = k%2 stages.
The first part of the (2, 1)-p.p. terminates with y} (for 2e(k) stages).

The first part of the (2, 1)-p.p. informs player 3 how to play jointly with
player 2 in the future. The second part starts with yi, followed by Y (w),

s Yytm(w), and again by y!, and so on (ignoring all other players’
actlons) Note that y} does not appear in the memory of player 2, while
the player is playing according to the m.p., so once y) is observed as a
part of the memory, players 2 and 3 know that the punishment of player
1 should be started.

The (3, 2)-p.p. is described as follows. Let X, ..., X;n be i.i.d. random
variables with the same distribution as gq,, which satisfies d, =
Min, eas,) Max,ean, AAP1, P2, ). The event £7 = {Xl, U has an
e(k)- cycle} has a very small probability. Denote by 1, ¥}, 3 2e(k)
words (that do not appear in z;2;z,) with e(k) cycles. As in the (2, 3)- p p ,
2 is inserted between blocks of length of &2 in X,(w), ... , X{%w).

The (3, 1)-p.p. is described in a different way. After discovering a
deviation of player 1, player 3 plays ¥} at the first 2e(k) stages, then for
k2 stages is playing arbitrarily, and then plays y} (for 2e(k) more stages).
After y} he observes his memory and plays according to the m first actions
of player 2 appearing immediately after the deviation had occurred (using
W1, Then he observes the next m actions of player 2 and plays accord-
ingly, and so on for [k*/m] times. Then he plays again y}. From this
moment on he plays repeatedly in periods of length [kz/m] + 2e(k)

Denote the strategy described above by o%, and o* = (o, o4, %. In
what follows we omit & and keep in mind that strategies depend on 4.

ProOPOSITION 5.1. ||H(o) — (a, ay, a3)ll. — O, when k — .

Proof. We have to consider only the m.p. Thus,
”H(U) - (al » O,y a})“x = W/e(k)—A:) 0.

PROPOSITION 5.2. o is an equilibrium, for k sufficiently large.

Proof. We introduce the argument for player 1. Fix a pure strategy of
player 1, ,. If (o, o,, o) determines the same stream of actions as o,



PLAYERS WITH BOUNDED RECALL 403

namely, the stream determined by the m.p., then H,(c,, o;, 0;) = H (o).
However, if by playing &,, player 1 deviates at some stage (since &, is
pure, it happens with probability 1), then from that stage on the p.p.’s
are executed. Divide the set of stages that come after that stage into blocks
of length k*/m + 2e(k). Fix a certain block B, and let U, be the action of
player 1 at its rth stage (U, becomes a random variable). Denote by U,
the memory of player 1 before B starts. Let also X, be the joint action of
players 2 and 3. On the set Q\D', X, is identical with Y,_,,, for 2e(k) +
1 =t = 2e(k) + [k¥m] (recall that the first 2e(k) stages in B are devoted
to signaling). Since prob(D'(k))k — 0 and since (2e(k) + k*/m)/k — = we
can get, by using Proposition 4.5, that for at least k'3/m ¢'s U, 1t X,
where £(k) - 0. Hence the average payoff of player 1 in B is at most

2e(k)W W =
To + koim Tk T HOW 4,
(the first term is for the stages which are devoted to signaling by y} and
y}, the second term stands for those stages ¢ for which it is not true that
U, 140X the third term is for the £(k)-independence error, and the fourth
term is because all Y, are distributed as ). Since the first three terms tend
to zero, and o € F*, the expected payoff of player 1 in B is less than «;,
for k sufficiently large. The same computation holds for all the blocks,
and therefore H,(c;, o,, ;) < a, for k sufficiently large. It holds for every
pure strategy o, and thus for every mixed strategy.

Similar arguments hold for all other possibilities of deviations, and the
proof of Theorem 2 is finished. =

5. REMARKS

The punishment plans defined above are of the ‘‘trigger” type. We
could define it in such a way that the master plan will again be played
even though a deviation had occurred. Note first that by a deviation from
the master plan sustaining «, players n and n — | can gain by at most
W. Thus their punishment, in which the other players should not be
coordinated, can be of a fixed length. That is to say, the length of player
n's punishment phase should not increase with £. Hence, from a certain
k on, the punishment phase can be much shorter than /,(k). In that case,
all the players can count up to the length of the punishment phase and
return simultaneously to the master plan. The same argument holds for
player n — 1’s punishment.

Returning to the master plan by counting can be done only if the pun-
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ished player is n — 1 or n. In all other cases, punishing requires coordina-
tion. Namely, the punishment phase should be longer than the memory
of the punished player. However, in this case, player n or n — 1 can send
a message, encoded by a certain combination of actions—one for each
player. Observing these messages, other players know to return to the
master plan. Two points should be emphasized:

1. All the players should return to the master plan simultaneously.
Therefore, the message sent by players » and n — 1 should be of the same
length. Immediately after the messages have been sent, all the players
should play the master plan.

2. It may be that player j’s punishment is beneficial to player n, for
instance. This may give incentive to player n not to send the message and
to remain in the p.p. in order to construct a perfect equilibrium, we should
eliminate that incentive. For this reason we used two players, n — 1 and
n, to send a message. Observing at least one of these messages will lead
a player to return to the master plan. Thus, unilateral deviation of player
n — 1 or player n will not be beneficial to them.

We therefore obtain that all the results alluded to above hold for perfect
equilibrium as well.

APPENDIX
Let Byxy, ...\ xp, ¥y - 2 yp) = SILefi(d — x)'"%y5(1 — y)!™%, where the summation is
taken over all (g, ... , g,) € (0, 1)%.
LEMMA. Ifn=ux;,y,s 1 —nforallj then By(x;, ... x5 ¥, ... ¥) = B(m, ..., M)

Proof. (Applying the Induction Technique of Holzman et al. 1986). The lemma is proved
through induction on b. For b = 1, Bi(x;, y)) = x;y; + (1 — x )1 — y;). Since B, is linear
in x,

Bix,y)=Bm.y)  ifyy=4  and,similarly,  Bi(n,y) = Bi(n, ).
Moreover,
Bixt, )z Bl —my) iy =4
and similarly.
Bl —m,y) =Bl ~n. 1 -m).

A similar argument holds for x, and, therefore, the desired inequality for b = 1.
Now let b > 1:
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Boxys oo Xy ¥is oo X0 = XY B Xy Xpo s Yes e e s Yoy)
S VI 791 B V9 7: PN 6 TP AT CPRN 9 |

(by the induction hypothesis)

= x5 VBp- il ~ XX = YBy—i(ny .. W)

(by the first step of the induction)

=By, - B, Y = By B ) = By, ). @

A similar technique would work for any other multilinear function corresponding to
overlapping cycles.
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