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1. INTRODUCTION 

A great deal of attention has been paid recently to repeated games with 
bounded complexity. References [3, 5, 63 and others deal with repeated 
games played by automata. In this case the set of strategies is reduced to 
the set of those strategies that can be realized by automata. 

Here we address ourselves to repeated games played by players with 
bounded recall who do not know the stage in which they are currently 
playing. In other words, we restrict ourselves to stationary r-bounded recall 
(t-SBR) strategies, according to which at each stage when he decides about 
his action a player may rely only on the t previous signals he has received 
(see [l] and [2]). Moreover, his decision is not time dependent. 

First, we consider zero-sum games which are played sequentially 
infinitely many times, where player 1 uses t,-SBR strategies and player 2 
uses t,-SBR strategies. These games are of a finite type and they have a 
value, denoted by V,,, ,?. We investigate the asymptotic behavior of I’,,,,, 
when t, and t, grow to infinity. 

Assume, for example, that two players play a zero-sum game,where the 
actions set of player i, denoted by Zi, contains only two actions, i = 1, 2. 
Assume furthermore that this game is played repeatedly, and that player 2 
(the minimizer) is restricted to I-SBR strategies. Namely, player 2’s 
strategy is a function cp from JC1‘, x C2 to Z,. When player 2 chooses such a 
function cp, he has to play cp(a,, a2) if he has observed (a,, az) at the 
previous stage. 
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It is readily shown (see proof of Theorem 2) that if player 1 has lOO- 
bounded recall he can learn about the function cp that has been chosen by 
player 2 during the game. Consequently, at each stage player 1 can play his 
best response and thus ensure himself the minmax (with pure stragegies) 
payoff. Now assume that player 2 increases his ability to remember. The 
question is: How fast does player 1 have to increase his memory capacity in 
order to preserve his advantage? 

The first result is that if t, is a function oft,, say 1, =S(t,), if t, > tz, and 
if logf(t)/t tends to zero when t goes to infinity, then V,,.,, tends to the 
value of the one-shot game. This means that the “stronger” player has no 
advantage in the long run, if his memory capacity grows less than exponen- 
tially as a function of his opponent’s memory capacity. This result is similar 
to that of [3], which deals with finite automata. An immediate con- 
sequence of this result is that if a non-zero sum game is played by the 
above players, the set of Nash-equilibrium payoffs tends to the set of all the 
individually rational and feasible payoffs. This result is described formally 
in Theorem 4. 

The second and the third results are of the following form. If the 
“stronger” player (here the maximizer) increases his memory capacity 
exponentially as a function of the other player’s memory capacity, theri the 
value of the repeated game is the minmax (with pure strategies) of the one- 
shot game. This means that in the exponential growth case, the “stronger” 
player produces the maximum which he can expect from his advantage. 

2. DEFINITIONS AND NOTATION 

A two-player zero-sum game consists of two action sets Z‘, and C, and a 
payoff function h: C, x Z:, -+ ‘8. Denote this game by G(Z, , C,, h). 

Denote Z= Z, x C,. 

DEFINITION. Let ti be an integer. A pure stationary ti-bounded recall 
(ti-SBR) strategy of player i is a pair (e, cp), where 

(1) e is the initial memory, e E ,I”, and 

(2) cp is a function, cp: ,?I;” + Xi. 

By the following observation, notice that a ti-SBR strategy is in par- 
ticular a stragey in the repeated game, which is a sequence (cpl, cpZ, . ..) of 
functions, where cp, + , : C’ + Cj for each t = 0, 1, 2, . . . . Fix a ti-SBR strategy 
(x, cp), x = (X,) . ..) x,) E C”. For each 0 <t < ti- 1 and (J?~, . . . . y,)~ C’, 
define CP~+~(Y~, . . . . y,)= (P(x~+,, . . . . x,,,yl, . . . . y,) and for each rj< t and 
(?I lr...,~,)~Cr, define (P,+~(Y,,...,Y~)=(P(Y~-,,+ ,,...,. v,). 



132 EHUD LEHRER 

Denote the set of all t,-SBR strategies of player i by Sir. 
x is a word if XE Ck for some integer k. Let x and y be words, and xy 

will denote concatenation of x and y into one word. If x = (x,, . . . . ?ck) is a 
word and j< k - n + 1, then ,u(j,j + n - 1) will denote the subword 
fxj3 x~ + 1 3 ...) wxj + n ~ 1). 

Let z = (e, cp) and CT = (e’, $) be two pure strategies in Sl,l and in S;Z, 
respectively. r and CT determine a string of payoffs (a,(r, 0))~~ , , in the 
following way: 
Denote by z, the signal (q(e), $(e’)): 

U,(L 0) = Mz, 1. 

Denote by zZ the signal ((p(e(2, t,), zI) ll/(e(2, f2), zi)): 

G(T, a) = h(z,) 

and so on. 
Define now the payoff function H: S;l x SF -+ ‘%, as 

H(z, 0) = lip -$ $ a,(t, 0). 
r=l 

H is well defined because the sequence z,, z2, . . . is periodic. Namely, there 
are two integers k and d such that, for any integer j, z(k, k + d- 1) = 
z(k+jd, k+(j+l)d-1). 

Denote the zero-sum game G(S’,‘, ST, H) by Gt,.,: and its value by V,,,,2. 

3. DESCRIPTION OF THE GAME IN WORDS 

A zero-sum G(C,, Z;,, h) is played repeatedly many times. After every 
stage each player is informed about the actions of his opponent at that 
stage. In case a player has t-finite recall he remembers this last signal and 
he forgets the signals he got (t + 1) stages before (first in first out). A player 
can rely on his memory when he chooses his action at the next stage. A 
strategy is said to be stationary if its choice is independent of the stage of 
the game. At the first stage of the game a player adopts an initial memory, 
that is, e E (Z, x .X2)‘, on which he will rely during the first t stages. 

Assume now that player i had t;-bounded recall, i= 1,2. Let 
T = (e, cp) E Sy and c = (e’, $) E ST. At the first stage player 1 will play cp(e) 
and player 2 will play Il/(e’). At the first stage player 2 (the minimizer) has 
to pay a,(r, g) = h(cp(e), $(e’)) to player 1. After stage 1 the players remem- 
ber the signal Z, = (q(e), $(e’)) and forget the first item of their memory, 
i.e., player 1 forgets e, and player 2 forgets e;. Now, the memories of 
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player 1 and player 2 are (e(2, t,), zl) and (e’(2, tz), cl), respectively. The 
moves that will be made at the second stage are rp(e(2, t, ), z, ) for player 1 
and ll/(e’(2, tz), zl) for player 2. The signal is now z2= (q(e(2, t,), z,), 
ti(e’(2, f2) z,)) and th e payoff is a,(~, cr) = h(~~), and so on. The payoff of 
the repeated game is the Cesaro limit of a,, a2, . . . . 

A mixed strategy is defined, as usual, as a probability distribution over 
the set of pure strategies. If pi is a probability distribution over SF, i = 1, 2, 
then we define WP,, PA = J?&,,,~~, (H(z, a)), which is the expectation, with 
respect to the distribution induced by ( pl, pz), of H. 

The game G,,.,, is of a finite type (i.e., Sy and S;* are finite). Thus the 
existence of its value is ensured by the Minmax Theorem. 

Putting it precisely, there exists a number I’,,.,? such that 

V ,,.,? = Min Max Wpl, PA = Max Min Wp,, pd, 
P2 PI PI P? 

where the maximum is taken over all the probability distributions p, over 
Sl,‘, and the minimum is taken over all the probability distributions pz over 
$2. 

4. THE THEOREMS 

4.1. Let G = G(Z,, C,, h) be a zero-sum game. Denote by d(C;) the set 
of all the mixed strategies of player i, i = 1, 2. 

V = the value of G = Max Min h(a, b). 
flEd(.?J,) hEA 

W = Min Max h(a, 6). 
ha.Zj ueI, 

M = y;x h(a, b). 

THEOREM 1. Let f be a function, J N + N, such that lim,(logf(n)/n) = 
lim,(log n/f(n)) = 0, then lim, f’f,n,,,Z = V. 

THEOREM 2. There is a constant c, depending on G, such that V,,, = W, 
and player 1 can achieve it by adopting a pure strategy. 

THEOREM 3. Let d= IC, x Z2j and g: N + N, such that lim, g(n) = 00, 
then 

lim Vg(nJd”.n = W. 
n 
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4.2. Sketch of the Proof of Theorem 1. 

DEFINITION. Let x= (x,, . . . . xk) be a word. x has an n-cycle if there are 
two integers t<t’<k such that x(t, t+n-l)=x(t’, t’+n-1), wherej>k 
is identified with j (mod k). 

PROPOSITION 1. Let X,,X*,... be a sequence of identically distributed, 
mutually independent non-trivial Bernoulli random variables, and let f be as 
in Theorem 1. Define 

c,,(f) = prob{ There is an n-cycle in XI7 . . . . X~C,,}. 

Then, lim,f’(n) c,,(f) = 0. 

Prooj See the Appendix. 1 

For each n player 2 constructs an n-SBR strategy by the following way. 
He generates a finite sequence of i.i.d random variables (the length of which 
is a function of the recalls of both players) using his optimal strategy in the 
one-shot game. To each sequence with no cycle is associated a pure SBR 
strategy. Proposition 1 shows that this can be done with high probability. 
Proposition 3 is then used to prove that the recall of player 1 is too small 
to allow correlation with player 2’s moves, hence the result. 

In 133 player 2 generates n i.i.d. random variables with the same 
distribution as above, one for each state. To each sequence is associated an 
automaton with n states. 

5. PROOF OF THEOREM 1 

5.1. Some notations from Information Theory must be introduced 
before proceeding to the proof. Let X be a finite random variable (f.r.v) 
that ranged to (x,, . . . . x,}. Define the entropy of X to be 

H(X) = -1 PCxi) log Ptxi)v where p(x,) = prob(X= xi). 

If Y is another f.r.v. that ranged to {y,, . . . . y,}, then H(X, Y)= 
-&p(xi, y,) logp(xi, yj), where p(xi, yj) = prob(X= xi and Y=y,). 

Denote by 1x1 the number of atoms of X. H(X) is always less or equal to 
1% WI. 
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DEFINITION. A Er.v. Y is said to be s-independent of a f.r.v. X (write 
Y I’X) if 

1 Iprob( Y =y, 1 X= x,) - prob( Y =vi)l < E 

for all i except a set of atoms which union has a measure less than E. 
Define 

I( Y I X) = H(X) + H( Y) - H( x, Y). 

Theorem 4.6 of [4] states that I( Y I X) 3 0 with equality if and only if Y 
and X are independent. 

PROPOSITION 2 [7, p. 221. Given E > 0 there exists S(E) > 0 s.t. for any 
fr.v. X and Y, Z( Y I X) < 6 implies Y I” X. 

The final statement we need is that if Z is Y-measurable, then 
I( Y I XI > 0-Z I XI C4, p. 261. 

5.2. The strategy defined below is defined as if the information of player 
2 is trivial. Namely, that after each stage player 2 gets information only 
about his action and not about his opponent’s action. Such a strategy can 
be easily modified in order to get a strategy of standard information, 
without losing its “good” properties. 

In the case where player 2 has a pure optimal strategy in the one-shot 
game, then the result is obvious. 

Fix and n and let k =n3f(n). Now, let X,, X,, . . . . X, be a sequence of 
mutually independent identically distributed random variables, which are 
defined on the sample space Q and range to zz. Assume that 
prob(X, =s)=p,, for all SEAR, where p= (p,, . . ..p.)~d(C~) satisfies 
V= Max ycd,l,, h(q, p). We can assume that the optimal strategy is not 
pure so k . c,(k) -+ 0. 

Define the event 

A = (w E Q I (X,(w), . ..( X,(o)) has no n-cycles}. 

For every o E A define e(w) = (X,- ,,+ i(w), . . . . X,(w)). cp(a,)(X,(w)), . . . . 
x t+n- I(w))= (X,+1(~), -**7 Xi+,Jo)), i= 1, . . . . k, where t > k is identified 
with t (mod k). On all the remaining tuples of J?j, q(w) is defined 
arbitrarily. Denote this mixed strategy by 6. 

5.3. Let Sz’ be the sample space A, with the probability prob’( .) defined 
by 

prob’( D) = prob( D I A ) 

Define Xi = X, on A. 

for every D z A. 
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PROPOSITION 3. Let X , , . . . . Xk and f ( -) be as previously defined, and let 
de N. Then, for every Jr.v. Y, defined on Q’, with 1 YI 6 dfcn) we have 

I( Y, x, ) . . . . Xi-, 1 Xi) d l/n 

for at least (1 - l/n) k is, providing that n is big enough. 

ProoJ See the Appendix. 1 

5.4. Assume ’ that the payoff function h is non-negative, and let 
r = (e’, II/) be a pure strategy of player 1. 

H(z, o)=B(limh!, ai) 

= lip f ,g E(ai) 
1=1 

= lim f .i E(a, 1 A) prob(A) + E(a, 1 A”) prob(A’)] 
,=l 

G1imf.i E(a,j A)+c,.M. (6) 
r=l 

To evaluate the first term let us consider CjL+,:‘,“, E(a, 1 A) for some t. 
Assume from now on that A is given. Denote by Yj the f.r.v. which is 
defined to be the action of player 1 at stage tk + i, and denote by Y the 
signal of player 1 after stage tk. Recall that the action of player 2 at stage 
tk+iisK,. Always IYl<df’“‘, whered=IC,xC,I. 

By Proposition 3, Z( Y, x,, . . . . w,+ i I R,) < l/n for at least (1 - l/n)k i’s in 
the block (tk + 1, . . . . (t + 1 )k). Y, is ( Y, x, , . . . . xi- ,)-measurable, thus 
Z( Yi 1 Ti) d I( Y, x, ( . ..) xi_, I xi). By Proposition 2 we get Yi IC(l’n) xi, 
where <(l/n) + 0 whenever n -+ co. 

Hence, 

~E(j~~~,aiIA)~~(k.~)M+2~(~)M+V. (7) 

Inequalities (6) and (7) lead to the conclusion that 

H(r, a) < M( l/n + 25( l/n) + c,) + V. 

The first term tends to zero as n + cc. In order to conclude the proof of 
Theorem 1 we can use the previous procedure, exchanging the roles of the 
players. 

’ Obviously there is no loss of generality in this assumption, and it is taken for the sake of 
simplicity. 
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5.5 Remark. Actually, the proof proves more than desired. It is not 
assumed that the strategy of player 1 is stationary ( Yi is defined to be the 
action of player 1 at stage tk + i). Thus, by using t, player 2 can ensure v 
(at the limit), even that his opponent does not use SBR strategies, but 
rather BR strategies, which can be time dependent. 

In the non-zero-sum case, the two players can agree to act on any 
cooperative action. Since V,Cnj,n -+ V, each player has a threat to his 
opponent, by which he forces the opponent not to deviate from the 
cooperative action. Thus, if (C,, C,, h,, h2) is a non-zero-sum game and 
NfC,,,, is the set of Nash-equilibrium payoffs when players 1 and 2 use 
n-SBR andf(n)-SBR strategies, respectively, then N,-(,),, tends to the set of 
all the individually rational and feasible payoffs. In order to demonstrate it 
precisely we need the following notations. 

Notations. (i) Let iE { 1,2). 

(ii) (x,, x2) E !R2 is individually rational if X, > d, and x2 k d,. 

(iii) h = (h,, h2). 

(iv) XE 5R2 is feasible if x~conv h(Z), i.e., x is contained in the 
convex hull of all the payoffs. 

(v) FIR= {.xE%~ ( x is feasible and individually rational}. 

Let {A,} be a sequence of subsets of !R2. We denote by lim A, the set 
{x ( there is a sequence x, E A, such that lim x, = x}. 

THEOREM 4. Let f be a function as in Theorem 1. Then 
lim, NfC,,., = FIR. 

Proof: It is clear that x E lim NJ,,,,, is feasible. 
By Theorem 1 it is ensured that any x E lim N,(,,,,, is individually 

rational. Thus lim NJ+,,,, c FIR. 
In order to prove the inverse inclusion we will describe two strategies, 

one for each player, consisting of two plans: the master plan and the 
punishment plan. The punishment plan will be executed in a case where a 
deviation had occurred. However, we have to take care that the histories 
used in the master plan (in order to achieve a cooperative payoff) do not 
interfere with the one that could appear in the punishment plan. 

Assume first that int FIR # 0. We will use as punishing strategies the 
same kind of strategies as described in the previous proof and assume that 
they have n/2 or f(n)/2 memory and induce histories with no 
iMin{n, f(n)} cycles. Denote u(n) = [Min{n, f(n)}/6]. By using histories 
with u(n)-cycles we will achieve (at the limit) any cooperative payoff in 
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int FIR. Let x E int FIR. x = C, E z cr,h(a), where a,>0 and Ca,= 1. Since 
u(n)-tn+cc co, for each E >O there are integers n and j,, ~EC, so that 
cj, = u(n) and /Ix - xUez (j,/u(n)) h(a)ll~ <E. It means that we can get x 
as a limit of rational combinations of the payoffs. 

Denote C = (u’ , . . . . alzl } and for each 1 <k< JCJ, uk = (at, u’;) . The 
master plan for player i is defined as follows. Play u,’ for j,, times, then play 
of for j,, times and so on till a, IzI Then again play uf for j,~ times and so . 
on. It is obvious that this strategy can be implemented by 6u(n)-SBR 
strategy. 

We will describe the punishment plan of player 2. A similar description 
holds for player 1. The punishment plan uses n/2-SBR. Denote by 
CJ = (x, cp) the strategy of player 2 that was described in the previous proof, 
for n/2-bounded recall (not n-bounded recall). Immediately after observing 
a deviation, player 2 plays according to the initial memory of CJ. That is, he 
plays x, then .x2 and so on for n/2 stages (X = (x,, . . . . x,,~)). Notice that 
after these n/2 stages the memory of player 2 still contains a u(n)-cycle and 
also the deviation. From the moment in which the terminal n/Zword that 
appears in player 2’s memory coincides with a possible n/2-history of the 
punishment strategy rr, player 2 continues playing according to (T. By this 
description it is ensured that from the 42 + 1st stage after the deviation on, 
player 2 plays according to cr. 

Since x E int FIR, and by Theorem 1, the pair of strategies described 
above is a Nash equilibrium. We have got that int FIR E lim NfC,,,., and 
since lim Nf(,,,, is a closed set we have FIR z lim N,(,,.,). 

The case where int FIR = @ is much more simpler, and we leave it to the 
reader. 1 

6. THE PROOF OF THEOREM 2 

The main idea of the proof is the following. After each n-word that 
already appears in his memory player 1 knows the next move of player 2, 
and thus he can play a one-shot game best reply. Since player l’s recall is 
much bigger than that of his opponent’s he can learn more and more about 
player 2’s moves, and thus ensure himself at least W for longer and longer 
sequences of stages. It is proved that from a certain stage there is an n-cycle 
in which player 1 knows all player 2’s moves. 

Let c = ICI2 + 1, and let b = cn. The pure strategy t = (e, cp) will be 
described as follows. e is an arbitrary tuple of Cb. For any ZEE’ denote 
r(z) = z(b - n + 1, b), i.e., t(z) is the last n-subword of z. Now define q(z) 
arbitrarily if t(z) appears only once in z. And define q(z) to be the best 
response of player 1 against zg, where z(k -n, k - 1) is the antecedent 
appearance of t(z) to z(b - n + 1, b), and zk = (zk, z:). 

In any string z of length b there is at least one n-subword, which appears 
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t = ICI” times. Denote one of these n-subwords by u(z). Let ~7 = (e’, I/I) be a 
pure strategy of player 2. Denote by z the memory of player 1 at stage 6, 
when player 1 plays t and player 2 plays (r, and denote (ur , . . . . II,) = 
r = U(Z). After the first appearance of u player 1 knows $(u). Denote by 
B($(o)) the best response of player 1 agains $(u), and by or the pair 
(B($(u)), $(r)). After the second appearance of o player 2 knows 
Ic/(u,, . . . . u,, ol). Let B(ll/(u,, . . . . u,, wr)) be the best response of player 1 
against it, and so on. After the IZI”-th appearance of v the memory of 
player 1 will contain the word z’ = (vr, . . . . v,, CO,, . . . . CO!), which satisfies the 
following. For every (n + 1 )-subword of z’, I’= (?I,, . . . . y,, .vn + I), we have 
? n+, = (B($(.Y,, ...? J,)), Kv,, ..‘> Y,)). 2’ is of length t + n, so it has an 
n-cycle. 

We have proved that there is an n-cycle in the memory of player 1 at 
stage b + t. At each stage of this cycle player 1 ensures himself at least W, 
thus he can ensure W as a payoff of the repeated game. 

Player 2 can easily ensure himself W, so the proof is complete. 

7. PROOF OF THEOREM 3 

Let T be the strategy of player 1 described in the previous section, and let 
cr be any pure strategy of player 2. We shall show that the number of 
n-words that do not appear at least two times in a long sequence is small, 
and hence their relative weight for the payoff is negligible when n is suf- 
ficiently large. 

Divide the set of stages into blocks B, = (1, . . . . g(n) d”}, 
B, = (g(n) d” + 1, . . . . 2g(n) d”), and so on. Fix an integer t. We shall 
evaluate C;, B, ui(r, a). Denote by -7, the pair of actions played at stage i, 
Z’E B,, and by z the g(n) d”-word (z,(,,,~, z,~(,+,~+ 1, . . . . z(,+,,~.,+,~-~). Let, 
for each integer j, k, be the number of n-words appearing j times in the 
word -?. We have 

f jk.,=g(n)d”-n+ 1 and xkj<d”. 
/=I 

Now, if for in B, the n-subword of z, which terminates at zi- 1, has 
already appeared in 2, then player 1 gets at least W at the stage i. There are 
C (j - 1) kj such stages. So, 

& ,C at(s, g)>Ex (j-l)k,-MCkj 
f rtB, I 

W 
>- 

g(nW” 
(g(n)d”-n)-2Md” 

zz W-M n-2 
g(n)d” g(n) > 

+W, 
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where M is the largest absolute value of the payoffs in the game. Hence, 

lim inf Vg,njdn,n > W. 

Since player 2 can always ensure himself W, the theorem follows, 

APPENDIX 

Proof of Proposition 1. We can assume that Xi takes only two values 
with positive probability, 0 and 1, where prob(X, = 0) =p and 
prob(X, = l)=q (p+q= 1). Let m>n, then 

prob{(X,,...,X,)=(X,,...,X,+.-,)} 

(pkq” -y = ( p2 + 42)“. (1) 

The event C = {There is an n-cycle in A’,, . . . . Xrc,,> is included in the 
union of Ai, where 

Define 

Thereisj#iandj+n-l${i,...,i+n-1)suchthat 

(xiv xi+ 1, ...9 Xi+n--l)=(Xj,Xj+l,...,Xj+n--l) 

Thereisjs.t.j,j+n- l$ {i, . . . . i+n- l} such that 

(Xi,Xi+l,...,Xi+n~l)=(X~,Xj+l,...,Xj+n--) 

and 

Thereisje{i+l,..., i+n-l}suchthat 

txi, ...> Xi+n-l)=(Xjr ...9 xj+,pl) ’ 

Thus, A,=A;uA(‘. By (1) 

prob(Ai) <f(n) . (p2 + q2)” 

Note that prob(d ;) = prob(d;‘). Denote by B, the event 

iv ,,...,X,)=(X,,...,X,+,-,)}. 
A; c U;:: B,, and thus prob(d;) < C;:i prob(B,). 

Let t > [n/2], and apply (1) to t-cycles in order to get 

prob(B,) d n(p2 + q*)l< n(p* + q2)‘@. (3) 

(2) 
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Since 

prob{W,, . . . . x,J= (X,, . . . . Xr+,,-,)) 

= (p/r + qH/‘)‘, 

we have prob(B,) < (p”” + q@)‘. 
Thus, 

Cd2 1 Cd2 3 
1 prob(B,) < c (pnlr + qnic)’ 
I=1 1=I 

=p” gl+(yy 

Without loss of generality p > q, so q/p d 1. Since the function (1 + a”-‘)-’ 
is increasing whenever 0 < a < 1, we get 

CGI 
c prob(B,)<p’t( 1 +(x)“l’“-“)“l 

1= I 

= 5 (p2 + q2)n/*. (4) 

Combine (3) and (4) in order to get 

.n(p2+q2)““+5(p2+qZ)i2. (5) 

Since (p’+ q2) < 1, by (2) and (5) we get 

prob(di) d (p2 + q2)n’2 (f(n)+(:+ l)n+t). 

Moreover, 

c,(f) = prob(C) <<f(n) . (p2 + q2Y12 (fW+(i+++f) 

G (p2 + q’)““f(n)(f(n) + n3)- 

logf(n)/n tends to zero when n goes to infinity and thus c,(f) .f(n) also 
tends to zero. 1 
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Proof of Proposition 3. By direct computation, 

(since (I,, . . . . Xk) is ( Y, X, , . . . . xk)-measurable, and H(Fk) 2 0) 

<H(Y)+H(X,)+ ... +zf(&)-H(R, ,...) Xk,. 

We will show that Cp=, H(Xi) - H(%, , . . . . 1,) < c, for some constant C, 
which is independent of k. Define 

F= {(i,, . . . . ik) E C: 1 There is no n-cycle in (iI, . . . . i,)). 

Recall c, = c,(k) = prob(L?\A). Denote prob(X, = i) =pi. 

z&r,) . ..) xk)= c - 
(il....,ik)tF 

(A fi PG) 1% (&lfIl PG) 
“,=I 

=~~(nPl,)los(np,)-~~(nPi)log~ 

=~~(~P,)log(nPb)+~log(l-c.)~(nP,), 

x 1, . . . . X, are independent, so 

H(X, + ... +H(X,)-H(X,, . ..) Zk, 

= -(i,,,,~)~i(~p,)log(np~)+~~(n,,)log(n,,) 
-&b3(l-crn rIP, 

( > 

~&~-~(IIp~)I.‘(IIp$)]-f(“piJlog(IIpJ 

< &k.fW,)--c,C 
” 

F (~)lo+-IPi)+&log$-q 
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(by Jensen inequality) 
1 1 

6 &kW(X,)+cnlog$+ -log n n l-c, ( - 1 1 -c, 

1 
d &(c,-kH(X,)+log - 

( 1) ” 1 
+c .log!z 

n . - c, c,, 

This sum tends to zero because k c, +k 0, l/( 1 - c,) log( 1/( 1 - c,)) ‘k 0, 
and because 

IF”1 
c,,log~~c,logJ~‘;I-c,iogc,=c;klog(C,(-c,logc,,_;O. 

n 

Second, denote prob’( X, = i) = p ;. 

k(H(‘,)-H(X]))=k -Cpilogpi+pilogpi 
( , 

(again by Jensen equality) 

<klog(l + IC,I c,)+kc,Clogpj+O. 

We have got that H(X,)+ ... +H(xk)-H(X1, . . . . xk)+,O. Hence for n 
big enough we have 

I( y 1 x,) + I( Y, x] ) z2) + . . . + I( Y, l!?, , . . . . xk _, I gk) < H(Y) + 1 

dlogd”“‘+1=f(n)logd+1. 

If, contrary to the proposition, at least [k/n] i’s satisfy 
Z( Y, x, ) . . . . xi-r I z;) > l/n, then we would get that l/n .k/n = 
n3f(n)/n2 = nf(n) is less thanf(n) log d + 1 for infinitely many n’s. However 
nf(n)/(f(n) log d + 1) + co, and thus the proof is complete. 1 
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