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Bounded Variation of { V.} and its Limit 1 
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Raymond and Beverly Sackler Faculty of Exact Sciences, School of Mathematics, Tel Aviv 
University, Tel Aviv 69978, Israel 

Abstract: This note studies relations between lim II. and the lower long-run average value C_V) 
in dynamic programming. It is shown that a certain bounded variation conditions of { V.} 
implies that lim V. =__V. 

1 Introduction 

This note deals with dynamic programming problems (DP). A decision maker ob- 
serves the state o f  nature, s, and chooses an action, say a. In turn, he gets the imme- 
diate reward, f (s ,  a), and the system switches to another state which depends sto- 
chastically on (s, a). Then, the decision maker observes the new prevailing state and 
chooses once again an action. He proceeds that way infinitely many times. A policy 
is a function from histories (which are finite strings of  pairs of  states and actions) to 
actions. Thus, any policy induces a probability distribution over infinite streams of  
rewards. Undiscounted DP and discounted or finite DP differ in the way infinite 
streams of  rewards are evaluated. The evaluation of  the stream is considered the 
payoff  of  the decision maker in the DP. 

Undiscounted DP evaluate a stream of  (expected) rewards by the limit of  the 
finite averages. Usually the standard limit does not exist and, therefore, one must 
use either the upper limit (limsup) or the lower limit (limint). The upper limit corre- 
sponds to the decision maker who considers primarily the highest averages he is 
about to experience, while the lower limit corresponds to one who cares most  about 
the lowest averages about to occur. In a finite DP, only the average of  a finite prefix 
of  the sequence o f  rewards matters and all the remaining payments (in the tail o f  the 
sequence) are ignored. 

A value of  a DP at a fixed state, s, is defined as the highest achievable payoff  in 
the respective DP,  starting at the initial state s. The undiscounted values (lower and 
upper), the discounted and the one corresponding to the finite DP are denoted by ._V, 
V,, Va (when the discount factor is 2) and V, (when the length of  the finite prefix 
considered is n), respectively. For general discussions about DP, the reader is refer- 
red to Blackwell (1962, 1965), and Blackwell, Freedman and Orkin (1974). 

We study here the relation between ._V and lim V,. A similar problem was a 
subject o f  several papers in various configurations. Flynn (1974) studied the optimal 
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policies (under different measurements of effectiveness) rather than the resulting 
payoffs. Lehrer and Monderer (1989) dealt with the relation between Vand limit of 
the discounted values. They proved that if the discounted value converges uniformly 
(on the state space), then this limit is equal to V. It is also shown there that it does 
not in general coincide with the lower undiscounted value, _V. Lehrer and Sorin 
(1992) proved that a uniform convergence of Vn is equivalent to a uniform conver- 
gence of the discounted values. Moreover, the limits coincide. 

The recent trend of papers is motivated by the seminal work of Mertens and 
Neyman (1981). They proved that a certain bounded variation (BV) condition on 
discounted values along admissible sequences of discount factors, 2~, implies that 
the lower value of the undiscounted zero-sum stochastic game is equal to lim V~. 
No similar result for a BV condition on Vn was given. 

Here we provide a BV condition on Vn which implies that the lower value in 
infinite DP is equal to lim Vn. We say that a sequence of integers {nk} is good if 
every element {nk} can be approximated by bounded summation of its ~ predeces- 
sors. We show that if ~,ll V , - V , k +  111 is finite for {nk}-good sequence then 
__V= lime Vn~. 

The result of Mertens and Neyman (1981) obviously implies that if { Vz,} satis- 
fies BV for an admissible sequence Vx~, then _V= lira V~k. Had we known to show 
that BV of V,~ on {nk}-good implies BV of V~ on admissible {Ak} we could have 
used both Mertens and Neyman (1981) and Lehrer and Sorin (1992) results to show 
our present result. The relations between BV of { V,},  and BV { V~}, however, is 
yet to be investigated. 

2 The Deterministic DP: Definit ions and Notations 

Let S be the set of states, and A be a set of actions. The reward function is 
f :  S x A ~ IR. We assume that f is bounded. Without loss of generality f is bounded 
between 0 and 1. Finally, the deterministic transition function, r, dictates the next 
prevailing state based on both: the current one and the action taken. Formally, the 
transition function, r, is a function from S xA to S. 

A deterministic dynamic programming problem (DDP) is defined by 
(S, So, A, f ,  r), where soeS is the initial state. A history of length t is an element in 
S x ( S x A ) t = H t .  Denote H =  U t=oHt. A policy, a,  is a function from H to A. a 
specifies what should the decision maker do at any time and after every history. 
Since the transition function is deterministic, any policy, a, induces a sequence of 
states So, sl, s2 . . . .  satisfying r(So, a(So))=sl, r(sl, g(so, sl, a(So))=s2, and so forth. 
In other words, st is the prevailing state at time t if the policy a is followed. We 
denote by st(a) the state st and by at(a) the action taken at time t. Thus, the imme- 
diate reward at time t is xt(g) =f(s,(a) ,  at(a)). Define, for every seS,  the following 
value of the DDP with the initial state s 

V.(s)= sup( l /n)  ~ Xt_l(g), 
~ t = l  
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where the supremum is taken over all the policies a.  Vn is the value of  the finite 
DDP.  

The lower long-run value of  the DDP with the initial state s is defined as: 

__V(s) = sup lim i n f ( 1 / T )  ~, xt_~ (a). 
a T t = l  

In the sequel Vn and __V will be referred to as real functions defined on the set of  
states, S. 

A play h = (ho, hi . . . .  ) at state So is a sequence of  pairs,  h; = (s;, a,-) ~ S • A ,  where 
s~+ 1 = r(s~, a;). Sometimes by denoting h~ we refer only to s~. We say that  s'follows s 
if  there is a play h at s, m and a s.t. hm = (s', a). 

Notice that  in the case where s'  follows s kVk(s')<_kVk(s)+m and therefore 

V~(s')-m-m-<_ kVe(s) for every integer k. It follows that  if  s '  follows s, then 
k 

lim supk Vn~ (S')<-lim supk sup Vnk (s) for every sequence {nk}. This is a key proper ty  
of  dynamic programming problems and plays a central role in the proofs  that  fol- 
low. 

Notation 1. Suppose that  h = (ho, hi, . . . )  is a play at s. 

a. f(h) denotes the sequence { f (h i ) } i~N.  
b. For  any a g, k~]N, where g<k denote Ae, e(f(h))=(f(he)+ . . .  +f (hk-O)/  

(k-O. For  g = 0  we omit  the g and denote it by Ak(f(h)). 
c. For  t~IR+,  the play h t denotes (hr, hr+1 . . . .  ), where r =  

Max {n<t  l n e N }  +1. 
d. Denote uk= I[ V. k -  V.k+ ~ I1 ~.  

3 The Finitely Truncated DDP Values and __V 

In this section a connection between the finitely t runcated DDP values and the lower 
long,run value is demonstrated.  Let {nk}k-----N. We say that  the DDP satisfies ~ 
{nx}k-BV if  

k 

Denote V= =l ime  Vnk- 

Proposition 1. l f  DDP satisfies {nk}-BV, then for every e > 0  there is M s.t. every 
M <_ m satisfies 

2 here and in the sequel N denotes the set of non-negative integers. 
3 BV for bounded variation. 
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Vm(S)<-- V=(s)+e f o r  every s. 

Proo f :  Otherwise there is a constant  c >  0, an increasing sequence me of integers and 
a sequence se of states s.t. 

v,,,(s3 > V~(s3+c .  

For  every g take a play he at se s.t. 

A,n~ ( f (he))  >_ Vm, (Se) - - c / Z  > V= (se) + e /2 .  

By a method described in the p roof  of  Proposi t ion  2 of  (Lehrer & Sorin, 1992) one 
can find an integer, say Je, s.t. 

A ~, j~ + i ( f (he))  >- Vm~ (se) - 3 c /4  
c m e  

for every 0 < i _ - -  
4 

If  me is sufficiently large than - -  
4 

4. I f  we let s~ be the nk-th state in the play he we get, 

Vn,~ (s'e) >- A Je. s, + nk ( f (he))  >- V m  e (se)  - 3 C/4 ~ U~o (Sg) + C/4. 

Thus, 

C 

v= (s;)> V, As'e) - -~ >_ V= (s,). 

This is a contradict ion since s~ follows se. / /  

Let {nk} be an increasing sequence of  integers. Denote 
{nk-1 ,  n k - z  . . . . .  n k - e } .  Denote,  

D ~ e  = {Xl + xz + . . .  + Xr[Xi~Dk, e, r<_m}.  

D ~ e  consists of  summations of  at most  m numbers taken f rom 
{nk_l  . . . . .  n e - e } .  

Def in i t ion .  A sequence {nk} is (m, O-good if it is increasing and if" 

~. dist (ng, D ~ e ) / n k <  0o. 
k 

A sequence {nk} is good if it is (m, e)-good for some (m, e )eN 2. 

r m e  . 
is greater than nk that  satisfies II V~ - V~ II < c~ 

D k ,  e 

the set 

4 dist(a, A)=minb~A l a - b t  for every a e N  and A ~ N .  
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Examples. 

1. The sequence {ak}k, where a ~ N  is (a, 1)-good because Dk, l=  {a k-l} and 
ak~D~,l= {ak}. Thus, dist (a k, D~,I)= 0 for every k. 

2. The Fibonacci sequence (nk=nk- l+nk-2 )  is (2,2)-good because 
Dk,2 = {nk_l, nk-2} and nk=nk-i  +nk-z~D~,2 for every k__3. 

Remark 1. If  {nk} is (m, 0-good then lira sup nx/nk-1 is bounded by m. 

Theorem 1. Suppose that {nk} is a good. I f  a DDP satisfies {nk}-BV, then 

__V= lim - k , -  0o,. 
k 

Corollary 1. I f  a DDP satisfies {k}k-BV, then _V= lim~ Vk. 

Proof." If  DDP satisfies {mk}-BV and {nk} is a subseqnence of {mk}, then DDP 
also satisfies {nk}-BV. If, in addition, {nk} is good, then by Theorem 1 
__V=lim V,k= V~o. In our case every {nk}-good sequence is a subsequence of 

/ /  

Corollary 2. I ra  DDP satisfies {n#}-BV and {nk} is good, then lira Vn exists and it 
is equal to V_. 

Proof." Clearly __V< lira infn Vn. By Proposition 1 V= > lira supn V,. Since __V= V~ the 
proof is complete. / /  

4 A n  Out l ine  o f  the  P r o o f  o f  T h e o r e m  1 

Since the proof involves a construction which uses a lot of parameters, I will present 
a proof for a particular (2, 2)-good sequence: a Fibonacci sequence where 
ne+ 1 = nk + nk- 1. Using this particular sequence, the proof becomes more transpar- 
ent. For the general proof, one can use exactly the same ideas. The necessary mod- 
ification of the proof will be indicated at the end. 

The fact t h a t V <  V~ is obvious. Thus, it is enough to show that for every e > 0  
there is a play h at So which satisfies liminfAt(h)_> Foo(So)-e. The idea is to con- 
struct a play h inductively. At the k-th step of the inductive procedure, a finite se- 
quence of nk consecutive states will be added. The average of the rewards over these 
ne states is high enough. Moreover, any intermediate average (of less than nk re- 
wards), however low, cannot affect the total average by much, because of two rea- 
sons. First, the payoffs are bounded and, second, the ratio between nk and the num- 
bers of its predecessors (~.e<kne) is uniformly bounded. 
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The method of  finding at the k-th step the nk states is the following. Suppose 
that at the end of  the former step the state s was reached. We first take a play h (k) at 
s, which almost (up to 6k) realizes V,~+~(s). I.e., 

V~ ~ + ~ (s) - 6k-< A . . . .  ( f(h (k))). 

The average of  the rtk+ 2 first rewards along the play h(k), A . . . .  ( f (h(k))) ,  can be 
written as a combination of  two averages. The first is the average of the first nk 
rewards and the second is the average of  the last nk+ 1 rewards. The goal of  the proof  
is two-fold: (i) To show that the first average is high enough. Therefore, the corre- 
sponding nk states will be annexed as a part of  the play h. (ii) To show that the 
second average is sufficiently high. The latter will ensure that at the (nk+ 1)-th state 
of  the play h (k), say, s', the value V~+ 1 is high enough and therefore (because of  the 
BV condition), V~+3(s') is also relatively high. This enables one to proceed with the 
next step of  the inductive process (with the state s' and Vnk+~). 

Notice that nk+Jnk<_2, and therefore the weight of  the second average is at 
least half the weight of  first one. The first average is not smaller than V,k+~(s)-e  
because, if the opposite happens, then the second average (and, therefore, V,k§ (s')) 
is at least V,,+~(s)+e/2.  This will lead to a contradiction by the following argu- 
ment. Suppose that V,~+~(s) was proved (as a part of  the inductive process) to be 
strictly greater than V=(so) -e /4 ,  where So is the initial state. Thus, V,,+,(s') is 
strictly greater than V~(so)+e/4.  Suppose, furthermore, that the series ~.~~ ue is 
smaller than e/4. Hence, V~.+~(s') is at most V=(s')+e/4.  Thus, V=(s')> V=(so), 
which is impossible since s' follows so. This argument proves 0). 

To establish (ii) notice that V,,.(s) is close to V~+~(s) (because of BV). Thus, 
the first average (A.~(f(h))  is not too high) and, therefore, the second average is not 
too low. 

An important point should be noticed here. When we pass f rom one step to 
another, we may lose height. (In the above notation V.k+:(s) may be smaller than 
V.~(s).) The loss may accumulate to more than e at the limit. The BV condition, 
however, rules out this possibility. 

5 Proof  of  Theorem 1 

Let e > 0 .  W.l.o.g. ,  ~ u k < a / 8 .  Take {6k}, a sequence of  positive numbers satis- 
fying ~.6k<e/8 .  We assume that F~(So)-e/2<_V,~(So) and that h(1)=  
(h0(1), h2(1), . . . ,  hi(l) . . . .  ) is a play at So which satisfies 

Voo (So) - e/2 - (~1 ~ Vn 3 (ho (1)) - 6, <_ A ~ ( f (h  (1))). (1) 

(Formally ho(l) is a pair: a state and an action. Here and in the sequel we ignore the 
second component and we refer only to the state.) A~3ff(h(1)) ) can be written as a 
combination of two averages with length of  nl and n:: 
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A .  3 ( f (h  (1))) = (nl/n3)An, ( f (h  (1))) + (n2/n3)Anl,,,3 ( f (h  (1))). (2) 

A.  I ( f (h  (1)))_< V.I (ho (1)) _ Vo~ (ho (1)) + ul + u2. (3) 

Thus, f rom (1)-(3) one obtains 

V.~ (ho (1)) - 01 -<- (nl/n3) (V.~ (ho (1)) + ul + u2) + (nz/n3)A.  1,.3 ( f (h  (1))). (4) 

Rearranging (4) we get 

Vn~ (ho (1)) - (n3/n2) 01 - (nl/n2) (u, + Uz)-<A . . . .  ~ (f(h (1)))_< Vn2 (hnl (1)). 

Therefore,  

V.~ (ho (1)) - 2 0 1  - (ul + u2 ) -  < Vnz(hn  1 (1)). (5) 

The Second Step o f  the Induction: Let h(2) be a play at h.~(1) (in particular, 
ho(2) = h.~ (1)) satisfying 

V..  (ho (2)) - 02 <-An. ( f (h  (2))). 

By a similar derivation to the above (see (5)), one gets 

V..  (ho (2)) - 2 02 - (u2 + u3) <_ V.3 (h.2 (2)). (6) 

The k-th step o f  the Induction: At this step we take a play h(k)  at h.k_ 1 ( k - 1 )  sa- 
tisfying 

Vnic + 2 (ho ( k ) )  - O R ~ A "k + 2 ( f ( h  (k))) (7) 

using the fact that II V. k -  V.k+ 2 I I -< ux + uk+ 1, one gets (compare with (6)) 

V.~(ho(k)) - 2 0 e -  2 (ux + uk+ 1) 

<- V.~ + ~ (ho (k)) - 2 Ok - (uk + ux + 1) < V. .  +1 (hn~ (k)). (8) 

no(.~ ? 
Fig. 1 
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Our goal is to prove that the lower limit of  the finite averages of  the sequen- 
ce b ~e (f(ho (1)), f ( h l  (1)) . . . . .  f (hn ,  - -  1 (1), f(ho(2)), f (hx  (2)) . . . . .  f(hn2-1 (2)), f(ho (3)), 
f(hl(3))  . . . .  ) is at least V ~ ( s o ) - 4 e .  

The proof  is carried out through six lemmas. 

L e m m a  1. For  every k 

k Ic 

V.~(So)-2 ~, Oe-2  Z (ue+ue+l)<-V.~+~(h~(k))  �9 
e = l  g = l  

Proof :  By induction, using (8). / /  

L e m m a  2. V~(so)-e<_ Vnk+,(hnk(k)) f o r  all k. 

Proof." By Lemma 1 and the choice of  parameters. / /  

L e m m a  3. Vnk+2(ho(k)) -e<_A~k( f (h(k)) ) .  

Proof." Suppose that the lemma does not hold. In this case, 

A n~ + 2 (f(h (k))) = (nk + 1/nk + 2)A nk. n k + z (f(h (k))) + ( n J n e  + 2 ) A ~  ( f (h  (k))) 

< (nk + 1/ng + 2)A,k. . . . .  ( f ( h  (k))) + ( n J n k  + 2) (Vn~ + ~ (ho (k)) - e). 

Therefore (by (7)), 

(nk + z /nk  + 1) [Vnk+~(ho(k ) ) - f i x -  ( n J n k  + z)(Vn~+~(ho(k)) - e ) ]  

<_ An., n k +  2 (f(h (k))) ~fA.  

Hence, 

V,~ + ~ (ho (k)) [nk + 2/nk + i - n J n k  + t] - 2 Ok + e ( n J n ~  + 1) <--- A .  

Thus, 

V ~  + ~ (ho (k)) - 2 fik + e (nk/nk + 1) -- A < II, k +, (hn~ (k)) 

<_ V~+~(h~ V~(h.~(k))+ ~ u~. 
k < g  

We conclude that 

V,~ + ~ (ho (k)) - 2 &k + e ( n J n k  + 1) - e /8  <_ V= ( h ~  (k)). 

Since V=(ho(k) ) -e /8<_V,~§ and since w.l.o.g, n J n k + ~ > � 8 9  we obtain 
V=(ho(k))< V=(hnk(k)). This is impossible because h,,~(k) follows ho(k). / /  

Before we proceed to the next lemma, recall that b is the sequence of  payoffs 
along the infinite play path we have previously constructed. 
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L e m m a  4. Denote tk = n, + n2 + . . .  + nk. The f ini te  averages o f  length tk o f  the se- 
quence b are at least Voo(So)-3a. 

Proof" By the previous lemma, the tk-period averages are at least 
infk { V,k+2(ho(k))-e }. However, for all k, 

V.k+2(h0(k))-~-> V=(ho(k))-~- Z ue>- V~(h.k(k)) 
e~k+2 

- e - - e ~ 8  >>- V~.+, (h~k ( k ) ) - e - e / 8  - e / 8  

= V.k+~(h.k(k))-(1.Z5)e (by Lemma 2) 

>- Vo~(So)-3e. / /  

For the next lemma recall the definition of  h (k) in (7). 

L e m m a  5. For every 1 / 2 > 0 ' > 0 > 0 ,  i f  onk+z<g<(1-o ' )nx+2 ,  then 
Ae ( f (h ( k ) ) )>  V.~+2(ho(k))-(~k, where ak ~O as k ~  oo. 

Proof" Otherwise, for infinitely many k's  and g's (onk+z < g < (1 -o ' )nk+z)  the oppo- 
site inequality holds for a fixed e > 0. Namely, 

Ae (f(h (k))) < V.k ~ ~ (ho (k)) - e (9) 

for infinitely many k's.  Therefore, 

V.~ + ~ (ho (k)) - Ok <- A . . . .  ( f (h  (k))) ~ (1 - 0)A + 0 ( V.~ + ~ (h0 (k)) - c), 

where A =A~..~+~ ( f (h  (k))). 
Thus, 

V, ~ + ~ (ho (k)) - Ok~(1 - 0) + 0 el(1 - 0) <- A .  

As 5k-~O, V,~+~(ho(k))+ Oc<_A for k large enough. Since n#+2 ~ ~ ,  by Proposition 
l, there is k s.t. whenever m>_o"nk+2 the following holds: V , , -  V= <11c/2. There- 
fore, 

V~ (ho (k)) + 0 c/2 < A <<_ V,~+ ~- e (he (k)) < V~ (he (k)) + 0 c/2. 

(The last inequality holds because n~ + 2 - e > 0' nk + 2.) Hence, V= (ho (k)) < V= (he (k)), 
which is a contradiction since the state h~ (k) follows the state ho (k). / /  

L e m m a  6. lira inftAt(b) -> V~(so) - 4 e .  

Proof" By Lemma 4, the t~-partial averages are greater than V~(so) -3e .  For 
t k ~ t ~ t k + l  

At  (b) = ( t J t )  A t .  (b) + ( ( t -  tk) / t )A t/c, t (b) 
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>- ( t JO (V=(so) - 3 a) + ( ( t -  tk)/t)At, . ,(b).  

Three Cases. 

First: (t--tk)/nk+l <a. Thus, ( t - tk) / t<_e and tJt>_ 1 - a .  Hence, 

A t ( b ) _  ( 1 - e ) ( V ~ ( s o ) - 3 a ) > _  V~(so) -4e .  

Second: e(nk+O<t--tk<_(1--e)nk+i.  Thus (nk+l I ene+3<_t--tk<(1--e)nk+l___ 
\ r / k + 3 /  

F/k+ 1 
(1- -e)ne+s .  By using Lemma 5 with r / '= e and q = - - e  one obtains 

nk+3 

A ,~,t (b) = A t -  t~ ( f (h  (k + 1))) _> V,**__~ (ho (k + 1)) - c~ +1. 

Therefore 

A,  (b) >_ (t J t) (V~ (So) - 3 e) + ( ( t -  te)/t) (V,~ .3 (ho (k + 1)) - ~e + 1). (10) 

Now, by the p roof  of  Lemma 4, 

V.~§ ~ (ho(k + 1))_> V~o(So)- 2e. 

Hence, by (10), we derive 

At(b) >- ( t J  t) ( V=(so) - 3 e) + ( ( t -  te)/ t) ( V=(so) - 2e - o~k + 3 >- V=(So) - 3 e, 

when o~k+l is small enough. 

Third: t-te>_(1 -e )ne+l .  Now we divide A,(b)  into two part ial  averages (from 0 to 
& +  [ ( 1 - e ) n e + l ]  and from te+ [ ( 1 - e ) n e + d  + 1 to t. The first average which has a 
weight of  at least 1 - e  is, by the former argument,  at least V~(so)-3  e. Therefore,  
At(b)>_(1 - a ) (Vo~-3e )_>  V = - 4 e .  / /  

In the remainder of  this section we indicate the modif icat ions needed to prove 
the general case. In case {ne} is (m, 0 - g o o d  then any ne can be approximated  by a 
summation r e=  ~,7'2a r~, where rne<_rn and r ~  {ne-~ . . . . .  nk- t}  for any i. Denote 
de= Ine - re l / nk .  By assumption Z d e <  oo. We may assume that  Edk is as small as 
needed. We start the inductive process f rom time K>_m that  will be determined 
later. Suppose that  state s is reached at t ime k -  1. At  t ime k a play h (k) at s is found 
so that  

A,~ ( f (h  (k))) >_ V~ (s) --,~k. 
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nk-e nk-e  . 
By Remark  1 there is 0 < c  s.t. > c. Since d k ~ 0  we may assume that  - -  is 

nk rk 
also greater than c. The average An~( f (h (k ) ) )  is divided into the part ia l  averages 
corresponding to r~ ( i=  1 . . . . .  ink). By a similar argument to the one in (2), (3), (4) 
one may deduce that  each one of  these averages, in part icular,  the second one (of 
length r~) is at least A , ~ ( f ( h ( k ) ) ) - d k - C ( d k + u k _ l + . . .  +uk-e )  with some con- 
stant C. This means that  

Vr~ (hr~ (k)) > V,~ (ho (k)) - Oh - C'  (dk + Uk- 1 - t-  . . .  ~ -  U k __ ~), 

with some constant C ' .  But the left side is at most  V, ,~+l (h4(k ) )+uk+ . . .  +uk -e .  
Therefore we get (compare with (8)) 

V,~ +1 (h4  (k)) >_ 1I, ~ (ho (k)) - 6k - C"  (dk + uk + . . .  + Uk- e) V k >- k,  (11) 

where C" is a constant .  Now the inductive process proceeds with the state hr,(k)  

(this is the state reached at t ime k): a play h ( k +  1) at h 4 ( k  ) is found and so forth.  
Lemma 2 holds because the induction employed in the proof  of  Lemma 1 can 

be applied for (11), and because the series ~ > _ l C 6 k + C " ( d k + u k + . . .  +Uk-e) con- 
verges (so w.l .o.g,  it can be assumed to be as close as needed to 0). The p roof  of  

nk 
Lemma 3 relies on the fact that  - -  is uniformly bounded from below. The same 

nk+ 1 

nk-e  . 
argument  can be proved here since - -  as uni formly bounded from below. Lem- 

nk 

mas 4 and 5 hold without any change. Finally Lemma 6 relies once again on the 

boundedness of  nk+ ~ and it holds here as well. 
nk 

Conjecture.  If  a DDP satisfies {nk}-BV and sup (nk+ 1/nk)< ~ ,  then _V= limk V,~. 

6 The Stochastic DP 

The former results can be generalized to stochastic DP in the following manner.  
Consider a countable-Borel  model  in which S is countable state space, A is a Borel 
set of  actions and q is a t ransi t ion probabi l i ty  f rom S •  to S. Finally, f i s  a meas- 
urable bounded payof f  function defined on S •  

Every Markov  strategy a = (al ,  a2 . . . .  ) (Blackwell, 1965) induces a sequence, 
{w,}, of  probabi l i ty  distr ibution over S as follows. Wo is the Dirac measure on 
Soao Wn + 1 (S') = Is q(S '  I s, a ,  (s)) w ,  (dr) for every Borel set S' c_ S. The corresponding 
payof f  sequence, {x.(a)} is defined as 

x ,  (a) = i f ( s ,  a ,  (s)) Wn (dt). 
s 
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Define now V M, the lower long-run average value as info E [ ( l / T )  ~.f=l xn (a)], 
where the inf imum is taken over all Markov  strategy. The finite values, /In, are de- 
fined in the usual way. Moreover,  the function V~, defined on S, can be extended to 
all the probabi l i ty  distr ibution over S. 

It can be easily verified that  if  (BV) holds for { V~} when defined on S, then 
(BV) holds also when { Vn} are extended to the larger domain of  probabi l i ty  distri- 
butions over S. The Theorem and the p roof  method given above work for counta- 
ble-Borel model  with the sole change that  __V M replaces __V. 

For  non-countable state spaces, either an assumption of  the existence of  an 
e-optimal strategy for every n-truncated problem (Lehrer and Monderer ,  1990) or a 
measurable selection theorem are needed. In the second case the set-up of  (Black- 
well, Freedman and Orkin,  1974) can be used. 
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