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SOME BOUNDS FOR THE BANZHAF INDEX AND 
OTHER SEMIVALUES* 

RON HOLZMAN,t EHUD LEHRERt and NATHAN LINIAL? 

The normalized Banzhaf index of a player in a monotone simple game (thought of as a 

voting model) is the probability for that player to swing the outcome of the vote. We bound 
the Euclidean norm of the vector of Banzhaf indices of simple games in terms of the number 

winning coalitions. The Banzhaf index is a semivalue, so we proceed to estimate norms of 

general semivalues. 

1. Introduction. The Banzhaf index of a player in a monotone simple game counts 
the number of coalitions that are losing but become winning when that player joins 
them. When normalized appropriately, it yields the probability /i' that player i swings 
the outcome in a voting model associated with the simple game v (for a detailed 
presentation, see Dubey and Shapley [DS], whose notation we follow). 

The vector /' = (/,') of Banzhaf indices of the game is related to some interesting 
properties of the game. For example, its 11 norm, II|'ll| = E/,' is not necessarily 1 and 
its value reflects the game's responsiveness to individuals' views. A good deal of 
attention has been paid to II/'II1 (see [H] and [DS]). For example it may be shown that 
among simple n-player games, II/'ll, takes its maximum for the majority game where it 
is about /2n/lr. 

Recently interest arose in computer science in finding methods for collective coin 
flipping by n processors which take part in a distributed randomized computation. It is 
the goal to generate coin flips which are as unbiased as possible despite possible 
malfunctioning of some of the participating processors. This problem turns out to be 
equivalent to the quest of simple games with small lo norm for /', II/'Il| = max Pi. 
Examples were given of games where exactly half of the coalitions win and II/3'II = 

O(log n/n) (see [BL] for more on this subject). 
The present article is concerned with the 12 norm 11f'l12 = vE(/ )2- In the study of 

spin glass models of neural networks [AGS] one is interested in the operator associat- 
ing with a vector m E Rn the vector 2-"x _, +ny ) x ? sgn(m ? x). It was conjectured 
that the range of this map is contained in the Euclidean n-dimensional unit ball. A. 
Neyman observed that this question is equivalent to asking whether II/9'[12 < 1 for 
weighted majority games. Our Corollary 1 shows that this is true for all simple games. 
Before we proceed to survey our results, let us remark that notions equivalent to the 
Banzhaf power index come up in a variety of other areas, such as threshold logic in 
circuit design [W] and extremal problems on hypergraphs (see [F]). 
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Our first result (Theorem 1) states that if a simple game has w winning coalitions 
and X = 2" - w losing ones, then E(/i)2 < 2 -"+min(w, X). In particular ll/'11,2 < 1 
for all simple games with equality holding only for dictatorial games (Corollary 1). 

The failure of the Banzhaf indices to add up to 1, which was mentioned above, is the 
main difference between this notion and the well known Shapley value. In fact, the 
operator corresponding to v the vector (J/), i = 1,..., n is a semivalue. It satisfies all 
of Shapley's axioms except efficiency. The class of all semivalues has been char- 
acterized in [DNW]. In ?3 we seek to extend our bound on the Banzhaf index to other 
semivalues. This involves a bound on the Euclidean norm of the gradient of a 
multilinear function defined on an n-dimensional cube evaluated along the main 
diagonal. We also obtain (Theorem 3) a lower bound on the 11 norm of the gradient (of 
a multilinear extension of a monotonic simple game), generalizing a similar bound 
given in [DS] for the Banzhaf case. Here the extreme elements (attaining the bound) 
are all unanimity rules. 

We think that the techniques employed in the proofs merit interest. The one used in 
?3 differs from the one used in ?2, and neither of them is quite straightforward. 

2. The Banzhaf index. A game (N, v) consists of a set of players, N = 

(1,2,..., n} and a function v: 2N - R satisfying v(0) = 0. A coalition is a subset of 
N. A game (N, u) is simple if the range of v is {0, 1} and v(N) = 1. The coalitions 
with v(S) = 1 are called winning, those with v(S)= 0 are called losing. A game is 
called monotone if S c T implies v(S) < v(T). Define 77i to be Es G 2NU(S u i) - (S). 
Equivalently, m/i = EsE2NEi(S)v(S), where ci(S) equals 1 if i E S and -1 otherwise. 

Let u be a monotone game. For a fixed i, there are 2"-1 pairs of the form 
(S, S u { i )) with i t S. Therefore, if one such pair is picked at random, the probabil- 
ity of a swing (i.e. v(S) + u(S { i ) = 1) is ji' = q7//2"-1. The /i' are the normalized 

Banzhaf indices. 
We recall now a few notions about simple games. A simple game v is a T-unanimity 

game if T is a nonempty coalition and v(S) = 1 iff S 3 T. v is dictatorial if it is an 
{ i-unanimity game for some i E N. The dual of a game v is the game v* defined by 
u*(S) = v(N) - u(N - S). Note that a dual of a simple game is a simple game. 

THEOREM 1. Let u be a simple game with n players, w winning coalitions and X losing 
coalitions (thus, w + X = 2"). Denote o' = c/2", A' = X/2". Then: 

(1) E (/3)2 < 2mino', X'}. 

Equality holds in (1) iffv is dictatorial or a T-unanimity game with ITI = 2 or the dual of 
the latter. 

PROOF. We consider V, the 2n-dimensional Euclidean space, with the standard 
scalar product (-,-) and norm 11 |l derived from it. We index the coordinates by 
coalitions (subsets of the set N of players), and write the elements of the space as 
functions from 2N into R. 

Given the game v, the vector of its Banzhaf indices P' equals 2-"'+Av, where A is 
an n by 2" matrix whose rows are the vectors Ei (i = 1,..., n) defined above. Let 
u E V be given by u(S) = u(N - S). Then it is easily verified that Au = -2"-1/3'. 
Therefore if f = u - u, then Af = 2"f' and so 

llt/'12 = 2-2"IlAf112 = 2-2"(f, ATAf) < 2-2"Allf1l2 
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where A is the largest eigenvalue of ATA. Now 

llfll2= E [(S) - v(N - S)]2 
SE2N 

= |(Sv(S) = 1, v(N - S) = 0) I +I(Slv(S) = 0, v(N - S) = 1} . 

Neither of the summands can exceed w or X, hence 

(3) lf 112 < 2 min( w, }. 

As for A, the rank of ATA cannot exceed n and Ec,..., E, are easily seen to be 
eigenvectors of this matrix with eigenvalue 2". Therefore all the other eigenvalues are 
zero and so A = 2". The conclusion (1) now follows. 

For equality to hold in (1), both (2) and (3) must be satisfied with equality. Let us 
assume that min( w, X = o. (If this is not the case, we may argue about the dual game 
v*.) Then equality in (3) means that for all S E 2N 

(4) (S) = 1 =v(N- S) =0. 

(2) holds with equality iff f belongs to the span of E1,..., n. But since the Ei are 
pairwise orthogonal and with the same norm 2"/2 that means that f = EI'=(f, Ei)E,/2". 
This means that for all S e 2N 

(5) u(S) - (N-S) = E - E . 

ies izs 

Let us use (5) for S = N. This implies that E/,P = 1. Now for every S c N 

(6)-IoI (6) ( s'3- L3) E {-1,0,1} 
i S ifS 

and it follows that all Pi/ > 0. Now use (6) for S = N \ (j } where /' > 0. Since we 
obtain either 0 or -1 it follows that /3' is either i or 1. There are only two possibilities 
for /3' up to change in coordinates: 

(i) /3' = (1,0,... , 0) which corresponds only to the dictatorial game, and 
(ii) /3' = (, ,0,...,) corresponding (by the following) only to the T= {1,2} 

unanimity game. 
By (5) if S D (1,2) then v(S) = 1 and if S n {1,2) = 0, then u(S)= 0. If 

S n {1,2} = {1}, then v(S) = v(N - S). But then (4) implies that v(S) = v(N - S) 
= 0 holds. This shows that the game is the {1,2)-unanimity game and completes the 
proof of our theorem. ? 

COROLLARY 1 (I. Ninomiya, see [W]). For every simple game E, (i') 2 < 1. This 
bound is attained iff the game is dictatorial. 

The proof of this result as presented in [W] is based on Bessel's inequality applied to 
V with the Ei as a basis. Their method does not seem to imply our Theorem 1. 

We do not know how good the bound given in (1) is. That is, given 0 < o' < 1, how 
large can E(/t')2 be? We have a piecewise linear upper bound, namely, 2 min(o', 1 - o'). 
We know that this bound is tight for co' = 0, 1/4, 1/2, 3/4 and 1. But the supremum 
of 118'112 over all simple games with a given o' is unknown for other values of o'. 

A related, more refined question is to find O(n, o), the maximum of Ej(/l,)2 over all 
n-player simple games with w winning coalitions. This question seems hard and we 
only have the following remarks to make about it, which we state without proof: 
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PROPOSITION 1. (i) For o < 2"-1, there holds e(n, w + 1) > O(n, o). 
(ii) If G is a simple n-player game with o < 2"n1 winning coalitions and with 

E(3') 2 = @(n, 6o), then G is a weighted majority game and the i,' may be taken to be the 
weights. ? 

3. Other semivalues. If g is the multilinear extention of a game (see [0]) a general 
semivalue is obtained by integrating its gradient along the main diagonal with respect 
to a certain probability measure (see [DNW]). In particular, the normalized Banzhaf 
index for simple games is obtained using Dirac measure at 2. This provides a 
generalization of the Banzhaf index to nonsimple games. 

Denote C" = [0,1]" and its set of vertices by V". For 0 < t < 1 we denote the 
vector (t,..., t) by t. By slightly modifying the proof of Theorem 1 we get: 

THEOREM 1'. For every multilinear function g: C" -- [0,1] 

|lvg(1/2)2 < 2min{g(1/2),1 - g(1/2)}. o 

COROLLARY 2. For every multilinear function g: C" -, [0,1] and every 0 < t < 1 

(7) 11g) 112 min{g(t), 1 - g(}t) (7) IVg)l' 2[min{t,l - t}12 

The proof follows by applying Theorem 1' to f(xl,..., xn) = g(2txl,..., 2tx,) for 
t < ?, and by using this result for h(x1,..., x,) = g(1 - x, ... ,1 - xn). 

The bound in (7) deteriorates as t approaches 0 or 1. We establish now another 
bound that does not suffer from this shortcoming. 

THEOREM 2. For every multilinear function g: C" -- [0,1] and every 0 < t < 1 

2 g(t)(1 - g(t)) (8) Ilv() 112 <gg) () )2 t(1 - t) 

Equality holds in (8) iff g is of one of the following forms: (i) g(x, ..., x,) = x,, (ii) 
g(x,..., x,,) = 1 - xi, (iii) g = 0 or (iv) g = 1. 

PROOF. We fix t throughout the proof, and proceed by induction on n. For n = 1, 
g'(t) = (g(t) - g(O))/t = (g(1) - g(t))/(1 - t), hence 

g,(t)]2 [g(t) - g()] [g(1) - g(t)] g(t)(i - g(t)) 
[g{tn)2 ~t(1 -t) t(1 -t) 

Suppose now that g: C"+ -O [0, 1] and (8) is true in the n-dimensional case. We define 
two multilinear functions gO and gl from C" into [0,1] by: 

gi(xl,..., xn) = g(xi, ..., x, i), i = 0,1, 

and get the following (we suppress t from our formulae; it will be understood that all 
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functions are evaluated at that point with the appropriate dimension): 

g = (1 - t) g + tg1 

Ox, 9x, dx, 

^,+l 

1 o 
ax+ =g - g. 

Using these relations, the convexity of II * 12 and the induction hypothesis for gO and 
gl, we have: 

Ilvg2(=- 11(1 - t)vg0 + tVg'll2 + (g' - go)2 

< (1 - t)jlvgOll2 + tllJgllI2 + (g' - go)2 

< (1 - t) gO(l1 ) ( -g(l ) + (gl g)o)2 =g(t)(l -g(t)) 
t(i t) tr(l - t) t(i - t) 

This establishes (8) in the (n + 1)-dimensional case. The proof of the statement about 
equality is by following the inductive process and is left to the reader. ? 

COROLLARY 3. For every multilinear function g: C" -n [0,1] and every 0 < t < 1 

(9) 2gt)1< ~(9) j~v~g(t9) 112 < 4t(1 -t) 

Equality holds in (9) iff t = ? and g is of the form g(x,..., x) = xi or g = 

(X1,..., x,) = 1 - xi. 

Note that neither of the bounds (7) and (8) dominates the other. It would be 

interesting if one could provide a nice bound that combines the advantages of the two. 
We turn to a lower bound on the 11 norm of the gradient. This result, which is 

another byproduct of the inductive technique, requires monotonicity. Its proof is along 
the lines of the proof for Theorem 2 and is omitted. 

THEOREM 3. Let g be a multilinear function on C" satisfying: (i) g(V") c {0, 1}, and 

(ii) x < y -- g(x) < g(y), Vx, y E V". Then for every 0 < t < 1 

g(t)ln g(t) 
(10) llvg(t) II tIn t 

(If g(t) = 0 we use the convention 0 n O = 0.) Equality holds in (10) iff there exists a 

nonempty T c N such that g(x ... x) = i, or g = 0 or g = 1. 

If we consider (10) for t = , we may substitute w' = w/2" for g(1/2) and 

P' = 7,/2n-1 for (dg/dxi)(1), thus obtaining E=l7qi > (n - log2w). (We may also 
state this inequality with X, instead of o.) By applying (10) to the dual function g* (of 
the dual game) one can get also 

llvg(t) 1i > (I 
- 
g(t))ln(1 - g(t)) 

This is a lower bound on the total number of swings in a simple game with n players 
and w winning coalitions. A similar result was obtained by Dubey and Shapley [DS, p. 
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108], based on the results of Hart [H]. Our elementary proof thus answers negatively 
their question whether use of [H] was necessary. 
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research by conjecturing Corollary 1 and challenging us to prove it. We are also 
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