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Abstract:

Machina (2007) demonstrates an example where the Choquet utility max-
imization theory is inconsistent with a natural symmetry requirement.
The comment shows that this requirement is consistent with two models:
expected utility maximization w.r.t. the concave integral (Lehrer, 2005)
and utility maximization w.r.t. a partially-specified probability (Lehrer,
2007).
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1. The example

In a recent paper Machina (2007, Table 2, p. 11) introduced the following example.

An urn contains twenty balls of four different colors a,b,c, and d. Ten balls are either a

or b and the other ten are either c or d. A decision maker (DM) chooses an act, then a

ball is randomly drawn and a reward is given to DM according to the color of the ball

and the chosen act. The following table summarizes the rewards related to four acts.

We will later discuss two decision problems: f1 vs. f2 and f3 vs. f4.

a b c d

f1 0 200 100 100

f2 0 100 200 100

f3 100 200 100 0

f4 100 100 200 0

One can see that f4 is a mirror image of f1 and f3 is a mirror image of f2. Thus, if

DM strictly prefers f2 to f1 (i.e. f2 Â f1) we would expect that he should strictly prefers

f3 to f4 (i.e. f3 Â f4). This is inconsistent with Choquet expected utility maximization

(Schmeidler, 1989), as explained in Machina (2007). This explanation is replicated in

the next section.

The aim of this comment is to show that ‘f2 Â f1 and f3 Â f4’ is consistent with two

models. The first is that of expected utility maximization w.r.t the concave integral for

capacities (Lehrer, 2005). The second model is that of expected utility maximization

w.r.t partially-specified probabilities (Lehrer, 2007).

2. Why Choquet expected utility maximization does not work here?

Let Ω be a finite state space. A capacity (or a non-additive probability) is a function

v : Ω → [0, 1] such that v(∅) = 0, v(Ω) = 1 and is monotonic w.r.t. inclusion.

An act is a function defined over Ω and ranged to the set of rewards, say W . Suppose

that the preference order on W is represented by a (non-negative) utility function U .

We denote by 1lE the indicator of a subset E of Ω. Let f be an act and v be a

capacity. A decomposition of U ◦ f is a positive combination of indicators that equals

U ◦f . Formally, a decomposition of U ◦f is
∑k

i=1 αi1lEi
that is equal to U ◦f and αi ≥ 0,

i = 1, ..., k. The Choquet decomposition is the one that satisfies Ω = E1 ' E2 ' ... ' Ek.
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The capacity v and the utility function U induce an order over the set of acts as

follows. Suppose that e and g are acts, then

e ÂCho g if and only if
k∑

i=1

αiv(Ei) >
∑̀
i=1

βiv(Gi),

where
∑k

i=1 αi1lEi
and

∑`
i=1 βi1lGi

are the Choquet decompositions of U ◦ e and U ◦ g,

respectively.

Back to Machina’s example. The Choquet decomposition of U ◦ f1 is U(0)1lΩ +

U(100)1l{bcd} +
(
U(200) − U(100)

)
1l{b} and that of U ◦ f2 is U(0)1lΩ + U(100)1l{bcd} +(

U(200)− U(100)
)
1l{c}. Suppose that f2 ÂCho f1 as induced by some capacity v defined

over Ω = {a, b, c, d} and a utility function U defined over W = {0, 100, 200} (without

loss of generality U(0) = 0). It implies that U(100)v(bcd) +
(
U(200) − U(100)

)
v(b) <

U(100)v(bcd) +
(
U(200) − U(100)

)
v(c), which implies that v(b) < v(c). However, the

fact that v(b) < v(c) implies, by a similar calculation, that f4 ÂCho f3.

In short, f2 ÂCho f1 implies f4 ÂCho f3. In other words, f2 ÂCho f1 and f3 ÂCho f4

together, are inconsistent with Choquet utility maximization theory.

3. Explanation with the concave integral for capacities

Lehrer (2005) proposed and axiomatized a different integral for capacities than the

Choquet integral. This is the concave integral, which in turn induces another order over

acts.

As before, suppose that e and g are acts. Define an order Âcav as follows:

(1) e Âcav g if and only if max
k∑

i=1

αiv(Ei) > max
∑̀
j=1

βjv(Gj),

where the maxima are taken over all decompositions
∑k

i=1 αi1lEi
of e and

∑`
j=1 βj1lGj

of

g.

As for the example above, suppose that DM believes that at least one of the balls

must be b or c. The minimal estimation of the probability of the event {bc} is therefore
1
20

. Let v represent the minimal estimation of each event. It implies that v(a) = v(b) =

v(c) = v(d) = 0, v(bc) = 1
20

and v(ab) = v(cd) = 1
2
. The rest can be completed in a

monotonic manner.

The best decomposition (i.e. the one that maximizes the right-hand side of eq. (1))

of U ◦ f1 is the Choquet decomposition, U(0)1lΩ +U(100)1l{bcd}+
(
U(200)−U(100)

)
1l{b}.

2



However the best decomposition of U ◦ f2 is no long the Choquet one. The best decom-

position is U(100)1l{cd} +
(
U(200)− U(100)

)
1l{bc} +

(
2U(100)− U(200)

)
1l{b}.

It turns out that due to eq. (1), f2 Âcav f1. The reason is that U(0)v(Ω)+U(100)v(bcd)+(
U(200) − U(100)

)
v(b) = U(100)

2
< U(100)

2
+ U(200)−U(100)

20
= U(100)v(cd) +

(
U(200) −

U(100)
)
v(bc) +

(
2U(100)− U(200)

)
v(b).

For a similar calculation f3 Âcav f4.

4. Explanation with partially-specified probabilities

Here the model used is that of partially-specified probabilities (Lehrer, 2007). It is

known that1 IP(a, b) = IP(c, d) = 1
2
. Equivalently, there are two non-trivial random

variables with known expectation: X1 = [1, 1, 0, 0] whose expectation is 1
2
, and X2 =

[0, 0, 1, 1] whose expectation is 1
2
.

It will be shown that ‘f2 preferred to f1’ is supported by the belief that IP(b, c) is

positive, which implies that IP(b, c) ≥ 1
20

. Indeed, suppose that the expectation of the

random variable [0(a), 1(b), 1(c), 0(d)] (i.e the random variable that takes the value 0 on

a, 1 on b, 1 on c, 0 on d) is at least 1
20

. Denote this random variable by X3 = [0, 1, 1, 0].

So, IE(X3) ≥ 1
20

. In order to simplify the explanation assume that expectation of X3 is

known to be precisely 1
20

.

The probability IP is only partially known. For instance, the probability IP(a) is

unknown. However, the expectation of some, but not all, random variables is known.

Here, the expectation of any linear combination of X1, X2 and X3 is known. Denote by

Y the set of random variables whose expectation is known. In other words, DM knows

IE(X) for every X ∈ Y . The pair (IP,Y) is a partially-specified probability, which induces

an order over acts.2

Suppose that e and g are acts. Define an order ÂPSP as follows:

(2) e ÂPSP g if and only if max
k∑

i=1

αiIE(Xi) > max
∑̀
j=1

βjIE(X ′
j),

1IP denotes the probability function and IE stands for expectation w.r.t IP.
2Lehrer (2007) provides an axiomatization and introduces the corresponding solution concepts for

strategic models (Nash-like and correlated-like).
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where the left-hand side maximum is taken over all linear combinations
∑k

i=1 αiXi that

are less than or equal to e with Xi ∈ Y , and the right-hand side maximum is taken over

all linear combinations
∑`

j=1 βjX
′
j that are less than or equal to g with X ′

i ∈ Y .

Note that U ◦ f1 corresponds to the random variable Y = [0, U(200), U(100), U(100)]

and U ◦ f2 corresponds to the random variable Z = [0, U(100), U(200), U(100)]. Denote,

m = min
(
U(100), U(200) − U(100)

)
. Since, Z ≥ mX3 + [0, 0, U(100), U(100)], IE(Z) ≥

mIE(X3) + U(100)IE
(
X2

)
= m

20
+ U(100)

2
.

The best approximation from below (in the sense of eq. (2)) to Y with linear combi-

nations of X1, X2 and X3 is U(100)X2, whose expectation is U(100)
2

. Thus, according to

eq. (2)), f2 is preferred to f1 (because m
20

+ U(100)
2

> U(100)
2

).

From similar arguments, f3 is preferred to f4 (in this calculation X1 and X3 are used).

Thus, f2 ÂPSP f1 and at the same time f3 ÂPSP f4.
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