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Abstract

Players who have a common interest are engaged in a game with in-
complete information. Before playing they get differential signals that
stochastically depend on the actual state of nature. These signal not
only provide the players with partial information about the state of
nature but also serve as a correlation means.

Different information structures induce different outcomes. An
information structure is better than another, with respect to a certain
solution concept, if the highest solution payoff it induces is at least
that induced by the latter structure. This paper fully characterizes
when one information structure is better than another with respect
to various solution concepts. The solution concepts we refer to differ
from each other in the scope of communication allowed between the
players. The characterizations are phrased in terms of maps that take
signals of one structure and (stochastically) translate them to signals
of another structure.
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1 Introduction

In Bayesian games the amount of information players obtain about the ac-
tual payoff matrix crucially affects the outcome. This paper investigates a
few aspects of how changes in information may influence the outcome of an
interaction.

It has been noticed that one or more players obtaining better information
about the state of nature (i.e., the actual game) does not necessarily mean
that their payoffs are improved. Hirshleifer (1971) provided the first example
that the production of private information, even if costless, can be socially
harmful. In the lemon market (see, Akerlof (1970)), providing the seller with
private information might render any trade impossible, and thereby reduce
social welfare. Neyman (1991) argued that the source of this phenomenon is
the fact that any improvement in the information some players obtain about
the state of nature generates a change in all other players’ knowledge: the
latter know that former knows more. Bassan et al. (2003) characterized those
games in which getting more information about the state of the world (i.e.,
about the entire hierarchy of beliefs) always improves all players’ payoffs.

The issue of whether or not information has a positive value is related to
a broader subject: the comparison between information structures based on
the outcomes they induce, not in a particular game, but rather in a large set
of interactions.

Blackwell (1953) was the first to compare information structures. He did
so in the context of one-player games, that is, in one-person decision prob-
lems. An information structure specifies the distribution over signals that
the players receive conditional on any particular state of nature. Blackwell
defined the notion of one information structure ‘being better’ than another:
an information structure is better than another if in any decision problem
the optimal value associated with the former structure is higher than the
optimal value associated with the latter.

Blackwell characterized the information structures that are better than
a given one as those that are more informative. An information structure
is said to be more informative than another if the signals provided by the
latter can be reproduced (by using some map, called garbling) from the
signals provided by the former. This result demonstrates that, in one-player
decision problems, information has a positive value: a single agent would
always prefer more information to less.
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Matters are more intricate in multi-player interactions.
- First, the signal each player obtains contains more than just information
about the state of nature. These signals may be correlated across players,
and may partially convey what other players know about the game being
played, and what they know about what others know about the actual game,
etc. A particular information structure affects the outcome of the game by
the direct information it provides about the state of nature, by information
it provides about other players’ information, and by correlations that might
exist between the players’ signals.
- Second, the outcome of a game also depends on the type of mediation the
players may resort to. Nash equilibrium, for instance, needs no mediation
device. On the other hand, all sorts of extensions of correlated equilibrium
(Aumann (1987), Forges (1993)) to Bayesian games do need some kind of
mediation. Each solution concept induces a different set of outcomes, and
in turn, results in a different criterion of comparison between information
structures.
- Third, for any concept there are, typically, multiple solutions, and compar-
ing between sets of outcomes can be done in more than one reasonable way.
- Finally, there is more than one way to extend the definition of “being more
informative than”. Each way depends on the extend to which the particular
garbling used changes one player’s information about other players’ informa-
tion.

In this paper we confine ourselves to games with common interests. There
are several reasons for dealing separately with games with common inter-
ests. First, games with common interests are closest in nature to one-player
decision problems, in the sense that players would like to behave as one
player if they could perfectly share their information and coordinate their ac-
tions. Second, the results concerning games with common interests pour light
on the connections between the existing non-cooperative solution concepts
and information structures that provide players with differential signaling in
Bayesian games. Finally, unlike the general case, in games with common
interests there is one outcome which is desired by all players. This outcome
can be identified with a common payoff, which can be regarded as the ‘value’
of the game1. Indeed, Blackwell’s comparison of information structures is
extended in a neat manner to games with common interests.

1Zero-sum games own a similar feature: there is a number, the value, that represents
the outcome of the game.
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We say that one information structure is better than another with respect
to (w.r.t.) Nash equilibrium if, in any game with identical payoffs, it ensures
a Nash equilibrium payoff which dominates any Nash equilibrium payoff of
the latter. It turns out that one structure is better than another, if it is
derived (a) by adding a public randomizing device; and (b) based on public
signal, the players individually garble the information of the latter. This
procedure produces a garbling, called coordinated. This result implies, in
particular, that under the more informative structure each player knows no
more than under the less informative structure about what the other player
knows. However, the converse is not true.

We extend this result to solution concepts different from Nash equilib-
rium. We refer to solution concepts that require some sort of communication
between the players, such as correlated equilibrium, agent-normal-form cor-
related equilibrium, Bayesian solution and communication equilibrium (see
Forges, 1993). These equilibrium concepts differ from one another in the
amount of players’ private information the communication means is allowed
to use2. We provide a complete characterization of information structures
that are better than a given one in games with common interest w.r.t. each of
these concepts. All the characterizations are stated in terms of maps, called
garblings, that enable the players to reconstruct the signals of the inferior
information structure from the signals of the superior one. The garblings al-
lowed vary across solution concepts. The restriction on these garblings reflect
the amounts of correlation and communication that each solution concept al-
lows between the players.

It turns out that one information structure is better than another w.r.t.
correlated and agent-normal-form correlated equilibria precisely when this is

2In a correlated equilibrium a mediator chooses a pair of strategies (of the Bayesian
game), one for each player, and tells each player his selected strategy.In an agent-normal-
form correlated equilibrium any player has many agents, one for each of his signals. A
mediator chooses randomly an action for each player’s agent and tells a player only the
action selected for the specific signal he received.A Bayesian solution is described in terms
of a larger state space than that containing the states of nature. In any state of the world
each player knows a set of states that contains the actual one. This knowledge represented
by a partition of the state space (in the spirit of Aumann ,1987), captures all he knows
about the world, including his own private signal and action. Subject to this knowledge,
each player plays his best response. In communication equilibrium players report to the
mediator about their signals and then the mediator chooses randomly a recommended
action for each player.
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true w.r.t. Nash equilibrium. The question of when one information struc-
ture is better than another w.r.t. to the Bayesian solution is answered by
means of a special kind of garbling, called non-communicating that translates
one information structure to another without providing the players more in-
formation about each others’ information or about the state of nature: a
structure in better than another w.r.t. the Bayesian solution if the former is
a garbled version of the latter using non-communicating garbling. A struc-
ture in better than another w.r.t. to communication equilibrium if the former
is a garbled version of the latter.

These results provide a complete link between the amount of communi-
cation involved in the various solution concepts and the kind of information
structures that improve upon a given structure in terms of the outcomes
induced.

The paper is organized as follows. The next section defines the model
of Bayesian games and information structures. Comparison of information
structure w.r.t. Nash equilibrium is provided in Section 3, where we intro-
duce the notion of ‘being better than’, and characterize when an information
structure is better than another w.r.t. Nash equilibrium. Section 4 is devoted
to the extensions of this result to other solution concepts. We review the var-
ious concepts and we characterize when an information structure is better
than another w.r.t. each one. The proofs are given in Section 5. Section 6
contains a few final comments.

2 Information structures and Games

Two players participate in a Bayesian game. A state of nature k is randomly
drawn from a set K according to a known distribution p. The players are
not directly informed of the realized state. Rather, each player receives a
stochastic signal that depends of k. The signals that the players receive are
typically correlated.

Formally, an information structure consists of two finite sets of signals,
S, T , and a function3 σ : K → ∆(S × T ) that assigns to every state of
nature a joint distribution over signals. When the realized state is k, player
1 obtains the signal s and player 2 obtains the signal t with probability
σ(k)[s, t], which we usually denote σ(s, t|k). Information structures will be
referred to as triples of the kind (S, T, σ) and will be denoted by I.

3∆(D) denotes the set of distributions over a set D.
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Upon receiving a signal, a player takes an action and receives a payoff
that depends on both players’ actions and on the state of nature. Formally,
let A be player 1’s set of actions and B be that of player 2. Note that these
sets are common to all states. If the state is k, player 1 plays a and player
2 plays b, then the payoff player i receives ri

k(a, b). A strategy x of player 1
assigns a mixed action to every signal in S . When player 1 plays according
to strategy x, the action a ∈ A is played with probability x(a|s) if he observes
the signal s. A strategy y of player 2 is defined in a similar manner.

The expected payoff of player i when the strategy profile (x, y) is played
is therefore,

ri(x, y) =
∑
k∈K

p(k)
∑

(s,t)∈S×T

σ(s, t|k)
∑

(a,b)∈A×B

x(a|s)y(b|t)ri
k(a, b).

We focus in this paper on the class of games with common interests.

Definition 2.1 The game is with common interests if for any k ∈ K, r1
k =

r2
k.

3 Comparison of information structures and

equilibria

3.1 Better information structures w.r.t. Nash equilib-
rium

This section is devoted to the comparison of information structures as far as
Nash equilibrium is concerned. The strategy profile (x, y) is a Nash equilib-
rium if no player has an incentive to deviate. That is, r1(x, y) ≥ r1(x′, y)
and r2(x, y) ≥ r2(x, y′) for all strategies x′ and y′.

In two player zero-sum games, there is a unique Nash equilibrium payoff,
the value. From the maximizer’s point of view, an information structure can
be said to be better than another in the class of zero-sum games if it induces
a higher value in any game in this class. However simple to describe, the
question of characterizing the information structures that are better than a
given one in the class of zero-sum games is still open.

It is well known that, in complete information games with common in-
terests, there is a Nash equilibrium that Pareto dominates all the entries
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of the payoff matrix. A Bayesian game can also be formulated as a com-
plete information normal form game. This means that in a Bayesian game
with common interests there is a Nash equilibrium payoff that dominates all
other feasible payoffs. Therefore, in games with common interests, although
there is typically more than one Nash equilibrium payoff, one is clearly more
appealing than the others.

Since the set of Nash equilibria, and the set of Nash equilibrium payoffs of
a game are not singletons, there are a priori various ways to extend the notion
of ‘being better than’. The existence of a Pareto dominating equilibrium
enables us to choose the following from among these possible notions.

Definition 3.1 An information structure I is better than I ′ w.r.t. Nash
equilibrium in common interest games, if for any common interest game ev-
ery Nash-equilibrium-payoff under I ′ is Pareto dominated by some Nash-
equilibrium-payoff under I.

An example of two such structures is provided in Example 3.7.

Our first result characterizes when one structure is better than another
w.r.t. Nash equilibrium in common-interest games. The characterization
hinges upon the notion of garbling, used first by Blackwell (1953).

3.2 Garbling of information

Let I = (S, T, σ) be an information structure. Suppose that a joint signal
(s, t) in S×T is produced (i.e., is randomly selected according to σ). However,
instead of sending signals to the players, a pair of new signals, say (s′, t′),
is randomly selected from new sets of signals, say S ′ and T ′, according to a
distribution q(s, t). Players 1 and 2 are then informed of s′ and t′ respectively.
This procedure generates a new information structure, I ′ = (S ′, T ′, σ′), which
is said to be a garbled version of I. Formally,

Definition 3.2 Let I = (S, T, σ) and I ′ = (S ′, T ′, σ′) be two information
structures. I ′ is a garbled version of I if there is a map q from S × T
to ∆(S ′ × T ′) 4 such that the distribution induced by the composition q ◦ σ

4We still denote by q the linear extension of q to a function from ∆(S×T ) to ∆(S′×T ′).
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coincides with5 σ′.
The map q is called a garbling that transforms I to I ′.

In the one-player case, Blackwell (1953) defined I as being more infor-
mative than I ′ if there exists a garbling that transforms I into I ′. He then
proved that I is better than I ′ iff I is more informative than I ′.

Let us now move to two-player games. Imagine a fictitious agent who
knows the signals received by both players. Note that if I ′ is a garbled version
of I, then this agent would be better informed, in the sense of Blackwell,
getting the signal through I, than through I ′.

While in a one-player decision problem the signal may only convey some
information about the actual state, in games things are much more involved.
A signal contains not only information about k, but also about the other
player’s information about k, and about the other’s information about his
own information about k and so forth. Moreover, the signals the players
receive may be correlated, which may, in turn, enrich the set of possible out-
comes. This explains why only specific garblings will be used to characterize
the information structures that are better than a given one.

Definition 3.3 . (i) A garbling q is said to be independent if there are maps
q1 : S → ∆(S ′) and q2 : T → ∆(T ′) such that for every s, t, s′, t′,

q(s′, t′|s, t) = q1(s
′|s) · q2(t

′|t).

(ii) A garbling q is coordinated if it is in the convex hull of independent
garblings.

Note that independent garbling can be implemented without any medi-
ation or communication between the players (every player manipulates his
signal independently of the other) and a coordinated garbling can be imple-
mented by a public signaling which is independent of the players’ signals.

5That is, for every k and every (s′, t′) ∈ S′ × T ′, σ′(s′, t′|k) =∑
(s,t)∈S×T σ(s, t|k)q(s′t′|s, t), where q(s′, t′|s, t) is the probability that the output

signals will be s′, t′ given the input signals s, t.
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Example 3.4 Let S = T = S ′ = T ′ = {0, 1}. A garbling will be denoted as
a (S × T )× (S ′ × T ′) matrix. Let

q1 =


4/9 2/9 2/9 1/9
2/9 4/9 1/9 2/9
2/9 1/9 4/9 2/9
1/9 2/9 2/9 4/9

 q2 =


1/2 0 0 1/2
0 1/2 1/2 0
0 1/2 1/2 0
1/2 0 0 1/2

 .

The garbling q1 takes a joint signal in S × T and garbles it to a joint
signal in S ′ × T ′. For instance, the signal (0, 1) is garbled by q1 to (0, 0)
with probability 2/9, to (0, 1) with probability 4/9, to (1, 0) with probability
1/9, and to (1, 1) with probability 2/9. q1 is the product of two garblings

of player 1 and player 2, both are given by the matrix

(
2/3 1/3
1/3 2/3

)
. The

garbling q1 is, therefore, independent. On the other hand, q2 is coordinated
but not independent. It can be written as q2 = 1

2
q + 1

2
q′ where q and q′ are

the independent garblings given by

q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 q′ =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 .

3.3 A first characterization

Our first result characterizes when one information structure is better than
another w.r.t. Nash equilibrium in the class of games with common interests.

Theorem 3.5 Let I and I ′ be two information structures. I is Nash-better
than I ′ in the class of games with common interests if and only if there exists
a coordinated garbling that transforms I to I ′.

The proof of this theorem is postponed to Section 5.

The intuition of this result is as follows. If each player can (indepen-
dently) mimic I ′ by using the signal he got from I, then in any game with
common interests the players can ensure in I whatever they can in I ′. Fur-
thermore, in games with common interests, any correlation that does not
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depend on payoff-relevant information is worthless in the sense that it may
not increase the best Nash equilibrium payoff. Thus, even if the players use
a public coordination device (which is independent of their information) in
order to choose the particular way in which they independently garble their
signals, the highest equilibrium payoff does not increase. Therefore, if I ′ is
a coordinated garbling of I, then I is better than I ′.

Example 3.6 Here we provide two information structures I and I ′ such
that I ′ is a garbled version of I but with a garbling that is non-coordinated.
Furthermore, we exhibit a game in which there is a Nash equilibrium payoff
with I ′ that is strictly higher than any Nash equilibrium payoff with I.

Let K = {0, 1}2, S and T be equal to {0, 1} and let I be the information
structure in which player 1 knows the first coordinate of k and player 2 knows
the second coordinate. Formally, for each k = (s, t) ∈ {0, 1}2, σ(s, t|k) = 1.

Consider the game with common interests in which the action sets are
A = B = {0, 1} and payoff functions are given by rk(a, b) = (−1)a+b+st for
every k = (s, t) ∈ K. By examining all pairs of pure strategies in this game,
one can verify that the maximal payoff achievable in any such pair under I
is 1

2
.
Now consider the garbling,

q =


1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0


and denote by I ′ the garbled version of I with this garbling.

If the players are informed through I ′, and each player plays his signal,
then the payoff is (1, 1) (which is the maximal feasible payoff, and therefore
an equilibrium). Theorem 3.5 implies that the garbling q is not coordinated.
This means, in particular, that although I ′ is a garbled version of (S, T, σ),
(S, T, σ) is not better than I ′ w.r.t. Nash equilibrium.

The game in this example, called CHSH game6 in Cleve et al. (2004), is
well known in the quantum physics literature. It is related to the violation
of Bell’s inequality by measurements over a pair of particles at a maximally
entangled state. (See also Remark 4.6 below.)

6After Clausner, Horne, Shimony and Holt (1969)
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Example 3.7 In this example we show a game with common interests and
two information structures I and I ′ such that I is better than I ′. Consider
K = S = T = S ′ = T ′ = {0, 1} with probability (1/2, 1/2) over K and the
following common interest game,(

1, 1 0, 0
0, 0 1, 1

)
k = 0

(
−1,−1 0, 0

0, 0 −1,−1

)
k = 1

.

Let I be the information structure described by the following signaling ma-
trices (

1/2 1/2
0 0

)
k = 0

(
0 0
1/2 1/2

)
k = 1.

For instance, if k = 0, then with probability 1/2 players 1 and 2 receive the
signal 0 and with probability 1/2 they receive, respectively, the signals 0 and
1; and if k = 1, with probability 1/2 players 1 and 2 receive, respectively,
the signals 1 and 0, and with probability 1/2 they receive the signal 1. Thus,
in I player 1 knows k and player 2 knows nothing. With this information
structure, if the states are equally probable, then the best equilibrium payoff
is 1/2.

Denote by I ′ the garbled version of I with the garbling q of the previous
example. The information structure I ′ is(

1/2 0
0 1/2

)
k = 0

(
1/4 1/4
1/4 1/4

)
k = 1

.

Although the garbling q is not coordinated (see Example 3.6), I ′ is a garbled
version of I with a coordinated garbling. Indeed, denote by δs0,s1;t the infor-
mation structure under which, with probability 1, player 1 gets the signal s0

if k = 0, the signal s1 if k = 1, and player 2 gets the signal t (independently of
k). Obviously, δs0,s1;t is a garbled version of I with an independent garbling.
Furthermore, I ′ = 1

4
δ0,0;0 + 1

4
δ0,1;0 + 1

4
δ1,1;1 + 1

4
δ1,0;1. Theorem 3.5 implies that

I is better than I ′ w.r.t. Nash equilibrium and therefore, the maximal Nash
equilibrium payoff under I ′ is not greater than 1/2.

This example demonstrates that I ′ may be a garbled version of I with
a coordinated garbling and at the same time a garbled version of I with a
non-coordinated garbling.

11



4 Comparison of information structures with

respect to other solution concepts

In this section we discuss various solution concepts that involve some com-
munication between the players before or after they receive the signals. The
following definition is analogous to Definition 3.1.

Definition 4.1 Let I ′ be two information structures. Fix an equilibrium
concept. I is better than I ′ w.r.t. this equilibrium concept in common inter-
est games if, at any common interest game, every equilibrium-payoff under
I ′ is Pareto dominated by an equilibrium-payoff under I.

We now introduce the solutions concepts we will use in the sequel. They
are extensions of the notion of correlated equilibrium. All notions are equiva-
lent to correlated equilibrium when restricted to complete information games.
They differ in the way correlation and/or communication between the play-
ers is allowed to depend on their information. The three first notions are
described through a mediator and the fourth one is a Bayesian model. The
equivalence between all approaches is proved for complete information games
in Aumann (1987).

In the description of the solution concepts we follow Forges (1993). The
reader is referred to her paper for formal definitions and the relation between
the various concepts. For each of these concepts we will prove analogous
result to Theorem 3.5.

4.1 Solution concepts that require a mediator

All the following equilibria are implemented by a mediator.

In a normal-form correlated equilibrium, first, the mediator randomly
selects a profile of strategies, (x, y). Second, he tells x to player 1 and y to
player 2. The strategies x and y are interpreted as recommendations made
by the mediator to the players. Third, each player chooses an action as a
function of his information and the recommendation sent by the mediator.
The incentive compatible condition is that no player has an incentive to
deviate from the recommended strategy. For instance, at equilibrium, when
player 1 has been told x, if his signal is s he plays the action a with probability
x(a|s).
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Note that here the mediator does not know the signals the players re-
ceived. In other words, the mediator provides the players with a correlation
that is independent of their signals.

In an agent-normal-form correlated equilibrium, the mediator is assumed
to know the signals received by the players. It then sends a recommendation,
one for each pair (player i, signal si), where a recommendation for the pair
(player i, signal si) is an action of player i who received signal si. Note that
after receiving signal si player i is not aware of the recommendation he would
have received upon getting signal s′i.

More precisely, the mediator then chooses its recommendation in two
steps: (i) before knowing the signals of the players it chooses a correlation
device, i.e. with probability λi it chooses to use the mechanism εi in step
two; (ii) then after being aware of the signals of the players, the mechanism
εi chooses independently a recommendation for player 1 with signal s and
a recommendation for player 2 with signal t. This solution concept can be
interpreted as a normal form correlated equilibrium in the game in which
each pair (player i, signal si) is considered a separate player.

A communication equilibrium is implemented by a mediator to which
each player sends his signal (but he can of course lie). Then as a function
of reported signals the mediator sends to each player a recommended ac-
tion. The equilibrium condition states that no player has an incentive to lie
nor to deviate from the recommended action. Note that a communication
equilibrium may involve a stronger dependence between the signals of both
players and the recommended actions than in the previous equilibrium no-
tions, because the mediator is allowed to use both signals in order to choose
the recommendations he makes.

4.2 The epistemic approach

The previous notions of equilibrium require a mediator. They differ in the
information the mediator has about the private signals of the players. In this
section we adopt a different approach introduced in Aumann (1987), used by
Forges (1993), and adopted by Bassan et al (2003). It can be viewed as a
general approach to express Bayesian rationality.

The epistemic approach is based on a probability space (Ω, P), where Ω
is rich enough to reflect the state of nature, the signals and the actions of
players.
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The epistemic model is described by a probability space, (Ω, P), two par-
titions A1, A2 of Ω and a few random variables over Ω: (i) κ takes values
in K (i.e., κ is the state of nature), (ii) ς and τ take values in S and T ,
resp. (i.e., ς and τ are the signals); and (iii) α and β take values in A and
B, resp. (i.e., α and β are the actions). The partitions A1, A2 represent the
information available to player 1 and player 2, respectively.

A Bayesian solution7 under the information structure I = (S, T, σ) is an
epistemic model that satisfies the following conditions:

1. The distribution of κ over K is p and for every k ∈ K, the joint
distribution of ς, τ given that κ = k is σ(k). I.e., the joint distribution
induced of κ, ς and τ coincides with the distribution that p and σ
induce on K × S × T .

2. ς, α (resp. τ, β) are A1-measurable (resp. A2-measurable). I.e., each
player knows his signal and action.

3. For every k, a, the signal τ of player 2 completely summarizes his in-
formation on player 1’s signal.

P(ς = s|A2) = P(ς = s|τ).

I.e., the information embedded in A2 does not give player 2 more knowl-
edge about s than his signal t.

Similar condition holds for player 1.

4. For every k, the joint signals of the players completely summarize their
joint information on the state of the world:

P(κ = k|A1, A2) = P(κ = k|ς, τ).

5. Incentive compatibility conditions: any deviation of player 1 (resp. 2)
from playing α (resp. β) is not profitable. (For a formal expression of
this condition (5) the reader is referred to Forges (1993).)

We say that a distribution π over K×A×B can be achieved by a Bayesian
solution if π is the joint distribution of κ, α, β in some Bayesian solution.

The following example illustrates the idea behind the epistemic approach
and the Bayesian solution.

7We use this terminology that has been coined by Forges (1993).
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Example 4.2 Consider the game with common interests and the informa-
tion structure I presented in Example 3.6. Recall that under I, the maximal
payoff achievable in any pair of pure strategies is 1

2
, which is therefore also

the maximal agent-normal-form correlated equilibrium payoff.
Consider now the probability space Ω = S×T×S ′×T ′ with the following

distribution P(s, t, s′, t′) = 1
4
· q(s′, t′|s, t), where q is as in Example 3.7. The

knowledge of players and the interrelation between the players’ knowledge is
captured by this space.

For ω = (s, t, s′, t′) ∈ Ω let κ(ω) = (s, t), σ(ω) = s, τ(ω) = t, α(ω) =
s′, β(ω) = t′. The variable κ represents the state. Finally, ς is equal to
s and τ is equal to t. Suppose that player 1 knows s and s′ (this defines
A1) and player 2 knows t and t′ (this defines A2). In other words, at the
point ω = (s, t, s′, t′) the state is (s, t), player 1’s signal is s and he plays s′

and player 2’s signal is t and he plays t′. In particular, player 1 knows one
component, s, of the state and player 2 knows the other component, t. One
can verify that all the conditions in the definition of a Bayesian solution are
satisfied by these items.

Suppose, for instance, that the point realized is ω = (0, 1, 1, 1). Then, the
state is κ(ω) = 01; player 1 knows s = 0 and his action, s′ = 1; and player 2
know t = 1 and his action, t′ = 1. From player 1’s point of view, given that
s = 0 and s′ = 1, the probability of t′ = 1 is 1, and moreover, the states 00
and 01 are equally likely. Thus, the action 1 is player 1’s best response. On
the other hand, given player 2’s information, with probability 1

2
the state is

01 and player 1 plays 1 and with probability 1
2

the state is 11 and player 1
plays 0. To this belief player 2’s best response is indeed t′ = 1. The payoff
induced by this Bayesian solution is (1, 1).

Forges (1993) claims that the set of agent-normal-form correlated equilib-
rium distributions coincides with the set of distributions induced by Bayesian
solutions. This example shows that this claim is erroneous: the maximal
agent-normal-form correlated equilibrium payoff is 1

2
, while with a Bayesian

solution the players can get the payoff 1.

4.3 Comparison of information structures

Theorem 3.5 extends to all solution concepts with variants related to the
different amount of correlation involved in each.
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Theorem 4.3 The information structure I is better than I ′ w.r.t. correlated
equilibrium, or w.r.t. agent-normal-form correlated equilibrium in games with
common interests if and only if there exists a coordinated garbling that trans-
forms I to I ′.

The proof of this theorem relies on the fact that the Pareto dominant
correlated equilibrium payoff (or agent normal form correlated equilibrium
payoff) is in fact a Nash equilibrium payoff. This reflects the fact that in a
common interest game the players can directly coordinate on the best pure
Nash equilibrium without needing an external correlation device.

Before stating the results concerning the epistemic approach, we need
the following definition. We say that a garbling is non-communicating if no
information has passed between the players through the garbling. This means
that the garbled signal, s′ of player 1, does not give him more information
about the original signal t of player 2 than he had knowing s.

Definition 4.4 A garbling q is non-communicating if whenever q transforms
I = (S, T, σ) to I ′ = (S ′, T ′, σ′), for every s ∈ S, s′ ∈ S ′ and t ∈ T ,

(i)
∑

t′ q(s
′, t′|s, t) does not depend on t (i.e., for every π ∈ ∆(S × T ),

P(s′|s, t) = P(s′|s), where P is the probability induced by π, σ and q); and
(ii) For every t ∈ T , t′ ∈ T ′ and s′ ∈ S ′,

∑
s′ q(s

′, t′|s, t) does not depend
on s.

Let (s, t) be a pair of random signals generated according to some distribution
π ∈ ∆(S × T ) and let (s′, t′) be the random garbling according to q. If q is
non-communicating, then the posterior distribution of t given s, s′ equals the
posterior distribution over t given s. Indeed,

P(t|s, s′) =
P(s, s′, t)P(s, t)

P(s, t)P(s′|s)P(s)
=

P(s′|s, t)P(s, t)

P(s′|s)P(s)
=

P(s′|s)P(s, t)

P(s′|s)P(s)
=

P(s, t)

P(s)
= P(t|s).

In other words, if a non-communicating garbling is performed by a mediator,
although this mediator is allowed to use the information of the players, he is
not allowed to give a player more information than he had before about the
signal of the other player.
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Example 4.5 Let S = T = S ′ = T ′ = {0, 1}. Consider the garbling q
of Example 3.6. This garbling is not a coordinated garbling but it is non-
communicating.

Remark 4.6 In a recent paper Barret et al. (2005) elaborate on non-
communicating garblings, which they call non-local correlations. It is a
remarkable discovery of quantum theory that some (but not all) non-
communicating garblings can be physically implemented by instantaneous
physical operations at distant locations. This does not contradict Einstein’s
dictate that information cannot travel faster than light because in non-
communicating garblings no information is passed between the players.

Using game theoretical terminology, we can say that Examples 3.6 and
4.2 show the possibility of improving the outcome of a game with common
interests by coordination without communication (that is, without any in-
formation exchange between the players).

The following theorems provide a complete characterization of the order
‘being better’ w.r.t. all remaining solution concepts in games with common
interests. They establish a strong relation between the various types of gar-
blings and the amount of communication allowed in each concept.

Theorem 4.7 Let I and I ′ be two information structures. I is better than
I ′ w.r.t. Bayesian solution in common interest games if and only if there
exists a non-communicating garbling that transforms I to I ′.

Theorem 4.8 The information structure I is better than I ′ w.r.t. com-
munication equilibrium in games with common interests if and only if there
exists a garbling that transforms I to I ′.

The intuition underlying Theorem 4.8 is that in games with common
interests players have an incentive to share their information. Therefore,
they have an incentive to correctly report their signals to the mediator. In
addition, the latter is then able to perform any garbling.

5 Proofs

Before proving the announced results we need some notations for strategies
and payoffs.
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5.1 Strategies

Let S and T be the signals sets of players 1 and 2, respectively. A global
strategy is a function from S × T to ∆(A × B). That is, a global strategy
attaches a distribution over A×B to every pair of signals (s, t).

If x is a strategy of player 1 and y is a strategy of player 2, then x⊗ y :
S × T → ∆(A × B) denotes the global strategy played if the players play
independently of each other. Formally, x⊗ y(a, b|s, t) = x(a|s)y(b|t). Such a
strategy is called independent global strategy.

Let ε be a global strategy of the form ε =
∑

i∈I λ(i)εi with I being a
finite set, λ ∈ ∆(I) and εi = xi ⊗ yi is an independent global strategy, for
any i ∈ I. The global strategy ε is obtained by the players observing first
a public signal i, which is randomly selected according to the probability
distribution λ, and then independently playing xi and yi. Such a strategy is
called coordinated. Note that the set of coordinated strategies is a convex set
whose extreme points are the independent global strategies.

A global strategy ε such that
∑

a ε(a, b|s, t) is independent of s (i.e.,∑
a ε(a, b|s, t) = P(b|t)) and

∑
b ε(a, b|s, t) is independent of t, it is called

non-communicating.

5.2 Nash, correlated and agent-normal-form-correlated
equilibria

Here we prove theorems 3.5 and 4.3. We need the following lemma first.

Lemma 5.1 In a game with common interests, the maximal possible payoff
achievable with global coordinated strategies is a Nash equilibrium payoff. It is
also a normal-form correlated equilibrium payoff and an agent-normal-form
correlated equilibrium payoff.

Proof: Since the set of global coordinated strategies is compact, the max-
imum payoff (which is a linear function) is achieved on this set. Since the
set of coordinated strategies is convex, the maximum is achieved at an ex-
treme point, which is an independent strategy, say ε∗ = x∗ ⊗ y∗. Since
(x∗, y∗) achieves the maximal payoff possible, no player has a profitable devi-
ation, and is therefore a Nash equilibrium. Since any Nash equilibrium is in
particular a normal-form correlated equilibrium and an agent-normal-form
correlated equilibrium, the proof is complete.
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We now turn to prove the result.

Proof of Theorem 3.5: Assume that I = (S, T, σ) is better than I ′ =
(S ′, T ′, σ′). We prove that I ′ is a garbled version of I with a coordinated
garbling. Let G be the set of maps σ′′ from K to ∆(S ′ × T ′) such that
(S ′, T ′, σ′′) is a garbled version of I with a coordinated garbling. The set G
is closed and convex in RK×S′×T ′

.
Suppose that σ′ does not belong to G. By the separation theorem G can

be separated from G by a hyperplane: r ∈ RK×S′×T ′
(r can be thought of

also as |K| functions, rk : S ′ × T ′ → R, k ∈ K). The separation by r means
that for any coordinated garbling q,

∑
k∈K

∑
s′∈S′
t′∈T ′

∑
s∈S
t∈T

rk(s
′, t′)σ(s, t|k)p(k)q(s′, t′|s, t) <

∑
k∈K

∑
s′∈S′
t′∈T ′

rk(s
′, t′)σ′(s′, t′|k)p(k). (1)

Consider the game with the action sets A = S ′ and B = T ′ and the
payoff function r. The left-hand side of (1) is the payoff associated with the
coordinated strategy q when the information structure is I. The right-hand
side is the payoff associated with the independent strategy according to which
which every player plays his signal when the information structure is I ′.

Lemma 5.1 implies that I is not better than I ′ w.r.t. Nash, normal-form
correlated and agent-normal-form equilibria.

As for the converse, assume that I ′ is a garbled version of I with a
coordinated garbling q. We prove that I is better than I ′ w.r.t. all three
solution concepts.

Let ε be a global strategy in some game with common interests with
information structure I ′ and action sets A and B. Assume that the payoff
function is (rk)k∈K , and that ε is a Nash equilibrium. As a Nash equilibrium,
ε is an independent strategy x⊗ y. The payoff associated with ε is

∑
k∈K

∑
s′∈S′
t′∈T ′

∑
a∈A
b∈B

p(k)σ′(s′, t′|k)x(a|s′)y(b|t′)rk(a, b). (2)

The garbling q is coordinated and therefore in the convex hull of the
independent garblings. Thus, there is a finite set J and a probability µ on
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J , such that q(s′, t′|s, t) =
∑

j∈J µjq
1
j (s

′|s)q2
j (t

′|t) for every (s, t) ∈ S×T and
(s′, t′) ∈ S ′ × T ′. Using this garbling the payoff in (2) can be rewritten as

∑
k∈K

∑
s∈S
t∈T

∑
a∈A
b∈B

∑
j∈J

p(k)σ(s, t|k)µj

(∑
s′∈S′

q1
j (s

′|s)x(a|s′)

)(∑
t′∈T ′

q2
j (t

′|t)y(b|t′)

)
rk(a, b). (3)

This is the payoff associated with a certain coordinated strategy in the
game with information structure I. By Lemma 5.1, the maximal equilibrium
payoff in the game with information structure I is greater than or equal to
that in (3). Therefore, I is better than I ′ w.r.t. Nash equilibrium.

Lemma 5.1 ensures that I is also better than I ′ w.r.t. normal-form
correlated and agent-normal-form equilibria.

5.3 A Bayesian solution and communication equilibria

We first prove an analog of Lemma 5.1.

Lemma 5.2 In a game with common interests,
(i) The maximal payoff achievable with a non-communicating strategy is a
Bayesian solution payoff. Moreover, every Bayesian solution payoff is achiev-
able by a non-communicating strategy.
(ii) The maximal payoff achievable with a global strategy is a communication
equilibrium payoff.

Proof: Let A and B be the action sets and I be an information structure.
Fix a payoff function rk and let ε be a non-communicating global strategy
that achieves the maximal payoff. We prove that ε is a Bayesian solution.

Define, Ω = K×S×T ×A×B, and the probability P by P(k, s, t, a, b) =
p(k)σ(s, t|k)ε(a, b|s, t). Let κ, ς, τ , α, β be the projections from Ω to K,
S, T , A, B respectively. Then, the joint distribution of (κ, ς, τ, α, β) is P.
Let A1 and A2 be the partitions generated, respectively, by (ς, α) and (τ, β).
Conditions 1,2,4 of the definition of Bayesian solution in Section 4.2 are
obviously satisfied. As for 3, we have

P(κ = k, ς = s|A2) = P(κ = k, ς = s|τ, β)

but we would like to have

P(κ = k, ς = s|A2) = P(κ = k, ς = s|τ).
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However,

P(β = b|κ = k, ς = s, τ = t) =
∑
a∈A

P(β = b, α = a|κ = k, ς = s, τ = t)

=
∑
a∈A

P(β = b, α = a|ς = s, τ = t) =
∑
a∈A

ε(a, b|s, t).

By the definition of a non-communicating strategy,
∑

a∈A ε(a, b|s, t) = P(β =
b|τ = t) and therefore,

P(β = b|κ = k, ς = s, τ = t) = P(β = b|τ = t).

Hence,

P(κ = k, ς = s|τ = t, β = b) = P(κ=k,ς=s,τ=t)P(β=b|κ=k,ς=s,τ=t)
P(β=b|τ=t)P(τ=t)

= P(κ = k, ς = s|τ = t),

which is condition 3. As in Lemma 5.1, the equilibrium condition follows
from the fact the payoff is maximum.

As for the converse, for a Bayesian solution defined over the space (Ω, P),
consider the garbling q given by q(a, b|s, t) = P(α = a, β = b|ς = s, τ = t).
We claim first that q is non-communicating. Indeed, for every s, a,

∑
b

q(a, b|s, t) = P(α = a|ς = s, τ = t) =
P(α = a, ς = s, τ = t)

P(ς = s, τ = t)
=

P(α = a, ς = s) · P(τ = t|α = a, ς = s)

P(ς = s) · P(τ = t|ς = s)
=

P(α = a, ς = s)

P(ς = s)
,

independently of t. For the last equality note that by condition 3 of Bayesian
solution,

P(τ = t|α = a, ς = s) = P(τ = t|ς = s).
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Next, we show that the joint distribution of (κ, α, β) is indeed distribution
that is induced by applying q over σ. For every k, a, b,

P(κ = k, α = a, β = b) = P(κ = k) · P(α = a, β = b|κ = k) =

P(κ = k)
∑
s,t

P(ς = s, τ = t|κ = k) · P(α = a, β = b|κ = k, ς = s, τ = t) =

P(κ = k)
∑
s,t

P(ς = s, τ = t|κ = k)
P(α = a, β = b| ς=s

τ=t
)P(κ = k|α=a

β=b
, ς=s

τ=t
)

P(κ = k|ς = s, τ = t)

= P(κ = k)
∑
s,t

P(ς = s, τ = t|κ = k) · P(α = a, β = b|ς = s, τ = t) =

p(k)
∑
s,t

σ(s, t|k)q(a, b|s, t).

Note that in the third equality we used Bayes’ Theorem and in the fourth
we used the fact that by condition 4 of Bayesian solution

P(κ = k|α = a, β = b, ς = s, τ = t) = P(κ = k|ς = s, τ = t).

Consider now ε a global strategy in a game with action sets A, B and
information structure I, that achieves the maximal payoff. We prove that ε
is a communication equilibrium. This global strategy is clearly feasible in the
game in which the players are asked to report their signals to a mediator. The
mediator chooses a couple (a, b) with probability ε(a, b|s, t) and recommends
player 1 to play a and player 2 to play b. The fact the payoff is maximal
implies the equilibrium condition. Indeed, any wrong reports of the players
(for instance player 1 reporting s̄ when his true signal is s) also induce a
payoff that is compatible with some global strategy and therefore smaller
than the payoff associated to ε.

Proof of Theorems 4.7 and 4.8: The proofs follow closely that in the
previous section. We therefore provide only a sketch of it. The details are
omitted.

First let us assume that I is better than I ′ for Bayesian (resp. commu-
nication ) equilibrium. Let G ′ (resp. G ′′) denote the set of functions σ′′ from
K to ∆(S ′ × T ′) such that (S ′, T ′, σ′′) is a garbled version of I with a non-
communicating garbling (resp. a general garbling). Assume by contradiction
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that σ′ is not in G ′ (resp. G ′′), then there is a separating hyperplane, and as
in the previous section this hyperplane defines a game. By Lemma 5.2, this
game contradicts the fact that I is better than I ′.

Assume now that I ′ is a garbled version of I with a non-communicating
garbling (resp. any garbling). As in the previous section, simple compu-
tation shows that any Bayesian equilibrium payoff (resp. communicating
equilibrium payoff) in any game with information structure I ′ is a feasible
payoff in the same game with information structure I. This follows from
Lemma 5.2 and the fact that composition of non-communicating garblings is
a non-communicating garbling.

6 Final comments

6.1 More than two players

For the sake of simplicity we stated the model and the results in the case of
two players. All the results readily extend to more-than-two-player games
with common interests.

6.2 Information structures and the hierarchy of beliefs

When one information structure is better than another and vice versa, we say
that they are equivalent. A natural question arises is whether two equivalent
structures w.r.t. Nash equilibrium in games with common interests induce
the same hierarchy of beliefs? Ely and Peski (2005) and Dekel, Fudenberg
and Morris (2005) give an example that answers this question in the negative.
They showed two information structures that induce the same distribution
over players’ hierarchies of beliefs, and nevertheless, have different sets of
Nash equilibria.

In the class of zero-sum games two equivalent structures induce the same
value in any zero-sum game. Gossner and Mertens (2001) state that two
information structures are equivalent in the class of zero-sum games if and
only if they induce the same distribution over players’ hierarchies of beliefs.

In a companion paper (Lehrer et al. (2006)) we show in particular that
one direction of the question posed above is true. That is, if two information
structures are equivalent in games with common interests, then they induce
the same distribution over players’ hierarchies of beliefs.
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6.3 Games with a common objective

Bassan et al. (2003) dealt with a setting similar to that discussed in Section
6.2. An information structure under which player i is endowed with Si is said
to be more informative than an information structure under which player i is
endowed with S ′

i, if Si refines S ′
i for every i. They characterized the games in

which a more informative information structure in this sense entails a higher
Nash equilibrium payoff for all players.

A game with information structure I has a common objective, if there is
a unique Pareto optimal feasible payoff in the induced normal form game.
Bassan et al. (2003) prove that the games for which more informative in-
formation structures entails a higher Nash equilibrium payoffs for all players
are the games that have a common objective.

For given payoff functions, whether or not the Bayesian game has a com-
mon objective depends on the information structure. The result of Bassan et
al. (2003) implies that I is better than I ′ w.r.t. Nash equilibrium in the class
of games that have a common objective with both information structures, I
and I ′, if and only if I ′ is a garbled version of I with a coordinated garbling.

Our results extend to all solution concepts in the class of games that have
a common objective with both information structures I and I ′. However, it
is not clear how to characterize these games.

6.4 The results cannot be extended to general games
– an example

The following example is adapted from Forges (1993).

Example 6.1 Let the state space consist of two states: K = {1, 2}. In
the first structure, player 1 knows k and player 2 knows nothing. In the
second structure, player 1 knows k and receives in addition the signal s and
player 2 receives the signal t, both are independent of k. The signals s and
t have the following joint distribution: If k = 1 then s, t are identical and
randomly chosen from 1, 2, ..., n. If k = 2 then s, t are independent and are
chosen randomly according to the uniform distribution from 1, 2, ...n. The
two structures are equivalent in the class of games with common interests.
That is, they induce the same Pareto dominant equilibrium payoff. This
means that each is a garbled version of the other with a coordinated garbling.

24



We now provide an example of a game without common interests where these
two structures do not induce the same Nash equilibrium payoffs.

Consider the Bayesian game in which A = {1, 2, ..., n}, B = {b1, b2}, and
the two states are equally likely. Suppose that the payoffs are determined
only by the state and player 2’s action as follows:

b1 b2

(1, 2 0, 0)

k = 1

b1 b2

(1, 0 0, 4)

k = 2

With the first structure the only Nash and strategic normal form correlated
equilibrium payoff is (0, 2). However, in the second structure there is a Nash
equilibrium payoff close to (1/2, 3). Such a payoff is obtained by player 1
sending s to player 2, and player 2 playing b1 if s = t and b2, otherwise. Thus,
although each structure is a garbled version of the other with a coordinated
garbling, they induce different Pareto efficient Nash equilibrium payoffs and
strategic normal form correlated equilibrium payoffs.

Note, however, that the sets of agent-normal-form correlated equilibria
under both structures coincide. In a companion paper (Lehrer et al. (2006))
we show that if I and I ′ are two information structures such that each is a
garbled version of the other with a coordinated garbling, then they induce
the same set of agent-normal-form correlated equilibria.
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