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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 21, No. 3, August 1996 
Pnrnted in U.S.A. 

COMPATIBLE MEASURES AND MERGING 

EHUD LEHRER AND RANN SMORODINSKY 

Two measures, At and Jt, are updated as more information arrives. If with /I-probability 1, 
the predictions of future events according to both measures become close, as time passes, we 
say that ft merges to iL. Blackwell and Dubins (1962) showed that if ,L is absolutely 
continuous with respect to ,i then A, merges to /,. Restricting the definition to prediction of 
near future events and to a full sequence of times yields the new notion of almost weak 
merging (AWM), presented here. We introduce a necessary and sufficient condition and 
show many cases with no absolute continuity that exhibit AWM. We show, for instance, that 
the fact that A is diffused around /u implies AWM. 

1. Introduction. Two probability measures, AL and , are defined on the same 
space. Iu and Ai can be thought of as the true measure and the prior held by an agent, 
respectively. With time an increasing sequence of information, selected according to 
/u, becomes available. At any time n an atom, say P,, of partition n,, which refines 

'n-1, is selected. The selection of Pn is done according to the measure liF(IP _i), 
where Pn_ E n-_. The prior distribution, A, is updated in light of the information 
received and, therefore, after time n the real updated measure is tx(-IP,) and the 
assessed one is A('lPn). 

In general, A/(.IP), the posterior distribution, fails to be close to the true one, 
,L('lPn). In order to get convergence, the belief and the true distribution must be 
compatible. Various types of compatibility imply different types of convergence. The 
strongest compatibility assumption is absolute continuity. Blackwell and Dubins 
(1962) showed that if ut is absolutely continuous with respect to A (i.e., for every 
event A, uL(A) > 0 implies u(A) > 0), them A merges to tL as more information 
arrives. That is, with pt probability 1 the measures ut(-Pn) and a('lPn) over the future 
become close as n tends to infinity. 

Recently, Kalai and Lehrer (1993) have used this result to show convergence to 
Nash equilibrium in repeated games. It turns out, however, that a weaker notion of 
merging is needed. In Blackwell and Dubins (1962), u(.1Pn) and ('lIPn) are close to 
each other on the full range of the whole o-field, including tail events. For most 
applications, however, closeness on near future events suffices. This motivated Kalai 
and Lehrer (1994) to introduce the notion of weak merging. We say that A weakly 
merges to ,u if F(AIPn) is close to AL(AIP)) whenever A is a short-run event, namely, 
A E _n-. Unfortunately, some natural examples fail to exhibit weak merging. 

We propose here a minor modification of the weak merging notion, and we provide 
a necessary and sufficient condition that accommodates many examples. In the new 
notion we still require closeness only on near future events but we require it only on a 
sequence of time periods with density 1. We say that Al almost weakly merges to Au if 
Al(AIPn) is close to tl(A\Pn), where A E,9-i on all time periods n except, perhaps, 
of n's in a sparse sequence. The idea is that an agent who observes an increasing 
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number of observations will be able, most of the time, to predict with high precision 
near future outcomes. Only on sparse set will he be surprised in the sense that the 
true distribution will not be close to the prediction. 

While merging of measures does not depend on the particular filtration (increasing 
information structure), weak merging and almost weak merging do depend on it. It 
may occur with one information structure and may not with another. Thus, all the 
results presented here are relative to one specific filtration. In some contexts dealing 
with one information structure is natural. In stochastic processes, for instance, the 
realization of the n first variables naturally provides the information available at time 
n. In repeated games the histories of length n are the only reasonable information 
sets that one may deal with. 

We present a weaker notion of compatibility than absolute continuity, and show 
that it implies almost weak merging. Specifically, our main theorem, Theorem 1, 
states that if with L/ probability 1 the lower limit of the sequence an= 
(L(P,)/,(P,P))1/n is at least 1, where Pn is the atom selected at time n, then , 
almost weakly merges to tx. Obviously, the main contribution of this paper is to the 
case where there is a lack of absolute continuity. In this case 4(Pn)/t(P ) will usually 
converge to 0 with probability 1. But if it converges to zero slow enough so that a, 
converges to 1, then there is almost weak merging. Notice that the condition of 
absolute continuity should be checked not only on events generated in finite times 
but also on those events generated by the whole filtration including tail events. In our 
case, to the contrast, it is enough to restrict attention only to events in n, 
n = 12,.... 

The main interest for applications in game theory, decision science, and economics 
seems to lie in Corollary 1 and in Example 2. In many instances the true distribution, 
AL, is not provided in its entirety. What is available is only the stage-transition 
probabilities (e.g., the probability to choose an action after any given history). 
Therefore, one may expect that any connection between the assessed distribution, J, 
and the true one will be via the stage-transition probabilities. 

Similar to what was done in Kalai and Lehrer (1992), we define an e-perturbation 
of /u to be a distribution whose stage-transition probabilities are asymptotically close 
to those of ,I up to an E. Thus, . is diffused around /u if every e-perturbation of ,L is 
assigned a positive probability. In other words, the assessment regarding stage-transi- 
tion probabilities is partially dispersed around the true one. 

It is shown in Corollary 1 that when j is diffused around /x then j almost weakly 
merges to A,. 

For the convenience of the reader all definitions, main results, and examples are 
concentrated in ?2. The main proofs are given in ?3. Section 4 is devoted to a 
generalization of the main theorem which provides a necessary and sufficient condi- 
tion for almost weak merging. 

2. Definitions and main results. 
DEFINITION 1. A filtration on a measurable space (Qf, F) is a sequence of 

partitions {(9}=} of f satisfying: 
(i) Vn9t, c g and I,,+ refines n. 

(ii) The number of atoms in a, is finite or countable. 
(iii) Denoting Y the field generated by the atoms of 9n and - = V , the 

r-field generated by all the fields ,nn then g = . 
We emphasize the fact that all the assumptions and results apply to a specific 

filtration and may fail to hold for other ones. Let {(9n}n= be a fixed filtration 
throughout the paper. For any ow E f we denote by Pj(w) the atom of 9, contain- 
ing o. 
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For any two probability measures u/, , on f the notions of merging (Blackwell 
1957, Blackwell and Dubins 1962) and of weak merging (Kalai and Lehrer 1994) are 
defined. Following these definitions we define a weaker notion of merging. 

DEFINITION 2. Let N be the set of integers and let A c N. limsuplA| n 
{1,..., n}l/n is the upper density of A, denoted UD(A). We say that A is sparse if its 
upper density is zero. A is full if N \A is sparse. 

DEFINITION 3. The probability measure AF almost weakly merges (AWM) to ,u 
(denoted /u Aw> it) along the filtration {(9n}n=, if for any natural number 1, for all 
e > 0 and ,u-a.e., co e fl, there exists a full sequence of indices N(&t, e, 1) such that 

(1) I f(AlPn( t)) - I(AIPn( o)))I < e Vn E N( , , 1) and VA E +l. 

In case N(o, e, 1) is all N except for a finite number of integers we say that Ft 
weakly merges to ,u and when A is not restricted to inn+ but rather inequality (1) 
holds for every A e Y we say that it merges to iL. 

Notice that merging implies weak merging which implies almost weak merging. 
REMARK 1. Since Iu(AIC)It(CIB) = /I(AIB) whenever A c C c B, and since the 

intersection of a finite number of full sequences is also a full sequence, the previous 
definition can be rewritten with 1 = 1. 

Our main result is the following theorem which provides us with a sufficient 
condition for f to AWM to ,t on {on}: 

THEOREM 1. If for ,u-almost every co there is a full set N' s.t. 

IA(Pn(0))^ llnAWM 
lim inf > 1( then (p ) ) /n 
n EN' if(Pn( C)) then - 

The compatibility assumption of the theorem is that 

liminf( (Pn( )) )/ 
1 

on a full set tA-a.s. To show that, indeed, it is weaker than absolute continuity, 
observe that TL(Pn(c))/,Z(Pn(&o)) is a ,t-martingale which converges tc-a.s. to a 
positive number when tL << f. Therefore, its nth root converges to 1. Thus, when 
/t << A lim inf j(Pn( c))/Iz(Pn(co))1/"n 1. 

In case where ,t is not absolutely continuous w.r.t. f the likelihood ratio 
,l(Pn( c)))/,(Pn(c))) may go to zero with ,t-positive probability. Roughly speaking, the 
assumption of the theorem actually says that it converges to zero slowly enough to 
allow the nth root to be at least 1. The theorem refers to the limit inferior. A natural 
question is what happens to the limit superior. The following lemma tells about the 
limited superior. 

LEMMA 1. For any two probability measures tu and ii, 

A(e n( Pn(a) ) 1/n 
lim sup AM(vPn )) 

< A-a.s. 

Lemma 1 states that the hypothesis of Theorem 1 is actually 

lim -(Pn())) i (Pn( c)))) 
on a full set ,u-a.s. 
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We say that the probability measure A is a grain of fi if I = aA + (1 - a)A', 
where 0 < a < 1 and A' is a probability measure. 

DEFINITION 4. ti is diffused around t,, if for every 8 > 0 there exists a probability 
measure A., satisfying 

(i) pt, is a grain of ft. 
(ii) For ,/-a.e. o there exists a time N = N(w, e) s.t. for n > N, 

Hee(Pn( )lPn-1(w)) - 1 < 

(P,( o)) I P,_ - (c )) 

The measure /, can be thought of as a perturbation of uL since the transition 

probabilities according to both, p/ and AL, are relatively close to each other. All the 
perturbations /u, are assigned positive probability according to fi and therefore we 
say that fl is diffused around /,. 

REMARK 2. If ,/ << f then f is diffused around /. This is so because 
f,(Pn( o))/p,(Pn(&c)) converges ,L-a.s. to a positive number and therefore (ii) of 
Definition 4 is satisfied with /u, = f for every e > 0. In other words, f is the 

e-perturbation of A for every e. 
AWM 

COROLLARY 1. If f is diffused around ,u, then i > A a. 

The following is an example of two measures which neither merge nor weakly 
merge but they almost weakly merge. 

EXAMPLE 1 (see also Kalai and Lehrer 1992). Let Qf be the space {0, 1}N, and let 
n be the partition induced by the first n coordinates. Define pA to be the Dirac 

measure on the point (1, 1,...). Define f as the measure (1/2)1l, + (1/2),p2 where 

z,I and p.2 are defined as follows. /j is the measure induced by a sequence 
Xj, X2,... of independent Bernoulli random variables, where prob(Xn = 1) is 1 if 
n + 22', and it is 1/2 if n = 22'. The measure p2 is the one induced by the following. 
Denote by vn the measure induced by i.i.d. sequence X1, X2,... of random variables, 
where prob(X1 = 1) = 1 - 1/n= 1 - prob(X1 = 0). Set ,2 = E(l(/2n)vn. In other 
words, with probability (1/2n) (n = 1, 2,...) it is defined by a repeated toss of a coin 

assigning probability 1 - 1/n to 1. 
One can show that after observing 22'- 1 times the outcome 1 the updated 

measure of ,f assigns a probability close to 1/2 to the event that the next outcome 
will be 1 while the updated measure of p. assigns the same event probability 1. Thus, 
,f does not weakly merge to pu, but f is diffused around pt and so by Corollary 1, f 
almost weakly merges to /L. 

EXAMPLE 2. Let 0 be a set of parameters. For every 0 E O, P.0 is a measure on 
f1. The e-neighborhood of 0 is defined as 

C( 0, 8) = {6' E 0: for a,u-almost every co E 1 there is N s.t. n > N implies 

I t.o(AlPn( w))/to(AIPn(w/)) - 11 < e for every A e ,n+}. 

In words, C(0, e) is the set of parameters O' s.t. the posteriors of ,. and of O,,, 
restricted to short-run events are close up to an 8. 

Let 7 be a o-field on 0 containing every C(Q, e). Suppose that il is the measure 
on fl induced by a distribution F on (0,7?) and by u.,. Namely, 

fi(A) = 
fo(A) dF(0) for every A e . 
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If F ascribes a positive probability to every e-neighborhood of 0 then /t is diffused 
AWM 

around /,0. By Corollary 1, ,f >M 0. The meaning of this example is that if l is 
diffused so as to assign the neighborhoods of 0 positive probability then ft almost 
weakly merges to ,9. 

An obvious special case of this example is a 0, 1 exchangeable process: 0 = [0, 1], F 
is a distribution on [0, 1] and for every 0 e 0, A, is the measure induced by a 
sequence of i.i.d. Bernoulli sequence with parameter 0. However, in this case, one 
may obtain a stronger result. 

COROLLARY 2. Let ,, ,c, ft be three probability measures satisfying: 
(i) f weakly merges to ,L. 

(ii) t is a grain of ft. 
AWM Then ft > I. 

EXAMPLE 3. If f is an exchangeable process, as defined in Example 2, and if 
F([a, b]) > 0 for every interval [a, b] containing 0, then fL weakly merges to ,/-. 

AWM 
Suppose that ft is a grain of i, then by Corollary 2, v > 0. 

3. Proofs. We begin this section with a well-known lemma (see Smorodinsky 
1971, for example). 

LEMMA 2. Let a, bi, i = 1,2,... be nonnegativenumberssuch that 1 = ia > Eibi. 
Then 

(i) Eiai log(bi/ai) < O. 
(ii) Given e > 0 38 = 8(e) > 0 such that Eilai - bil > e * Eiai log(bi/ai) < -8. 

LEMMA 3. Let ai, bi, i = 1, 2,... be nonnegative numbers. Eai = 1. 
(i) Given r7 > 0 30 = 4b(1) > 0 s.t. if Eibi < 1 + 4 then Lai log(bi/ai) < rq. 
(ii) Given e > 0 3 = 4(e) > 0 and 36(e) = > 0 such that Eibi < 1 + 4 and 

Elai - bil > e both imply Eai log(bi/ai) < - 5. 

PROOF. Take ci = bi/( + 0), so Ec, < 1. By Lemma 2: 

0 > Ea ilog = E ai log i/( 
+ 

0) = Eai(log +log((+ )) a2 Eailog a+llogog 
ai ai aai 

The first part of Lemma 3 is achieved by taking ( sufficiently small such that 

-log l+ <r'. -1 ( 1 ) + 

For the second part take 4 such that 

bi 
E + -ai > /2. 

By the second part of Lemma 2, 35 such that 

-285 > Eailog ai/ Eai(log +log( 1 )) 
ai 

So: 

bE i og -2-l E ai log - < -28 - log1 + . 

If necessary, decrease 4 so that log(l/(1 + p)) > -8 and the result is obtained. 
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PROOF OF THEOREM 1. The hypothesis of the theorem implies that for every e < 1 
the set of those n's satisfying 

A F(Pn(0)j)) l n e 
\A(Pn( ))e/ 

is a full set ,u-a.s. Suppose to the contrary that i does not AWM to ,f, i.e., there exist 
d > 0 and B c fl such that /x(B) > 0 and VCo E B 3N(o)) c NI with upper density 
d(co) greater than d, satisfying that Vn E ( N(o) 3An(c) E ;n such that 

I A(An( )lIPn-_l()) 
- 

fi(A(co)lPPn_l( ()) > c(co) > 0. 

Without loss of generality we may assume that e(o) > ? > 0 V?w E B. So, Vn E N( o), 

I |(PnlPn-_l( )) - l(PnlPn_l())I > ?. 
Pn E E 

We write n(GC) - A ((Pn(O)IPn_1(c)) and gn(co) - -(Pn( C)ljPn_1()). 
Define the following random variables: 

(2) Xn( o)= log n(c ) and Y(c) = log A ( n = 1,2,..., 
/4Wn(O) E/L,)( ) ) 

where Ao?(o) = max{ Ln((), Eo0 An(@)}) We are interested in Xn but since its second 
moment may fail to exist we modify it to obtain Yn 

Note that 
(i) Xn( c) < Yn(o) Vn, Vo. 

(ii) Vn EAn?O(W) < E j,n(() + Eo0 C,n(O) < 1 + ?%. 
The summations are over all atoms of 0n. Formally, in a given atom of _n-1 we 

take a representative o from each atom of ,n. The summation is over all these 
representatives. Taking co E B and n E N[(c): 

EAno?(c)) - /,n( )) I > E I An( )-) - Ln( L(O)) - El An?(c) - ,n( C) 1 2 - o. 

So taking e0 < ?/2 yields 

(3) E|Anlo() - l,n( o)l 2 /2. 

By the second part of Lemma 3 and (3) we may take E0 small enough such that for 
some positive 8 = 5(^/2), 

(4) E(Yn(c)lPn-( )) = n() 1ogf , ) < -l5 Vn E. (). 

For this 8 take a, l > 0 small enough such that 

d+ (l- d) < . - 
5-+ 1 - ? a<-3<0. 
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By the first part of Lemma 3 take e0 such that 

(5) E(Yn( &o)Pn_( w)) = ( ) log () < a for all n N. 

The second moment of Y,(co) given P-_,(oo) is bounded: 

E(Yn2( o)P,_-(w)) 

= 
E..())log2?( = ( () log'2 0/ '(w) 

//c #'n( +) g E ),(gO) 8log2+ () 

+ ?E 'l'n( W) log2 n( + ( log 

Xn(t O) 1< 1ii? ,< 1 

+ E /n( )) -' () < log2 e0 + log2 0g + 1. 
,/ / "(t) J 

So the strong law of large numbers may be applied to the uncorrelated random 
variables Yn( ) - E(Yn( w)Pn_- ( )). 

For /-a.e. w e f there exists n(wo) such that for every n > n(o), 

~(6) 1 1 (\ + n3 n 
(6) n E Y( ) < -E E(Yj( )lePj-_(o)) + . 

j=1 j=l 

Take w e B and an infinite sequence N(wo) c N(o) such that n e Nj(w) implies 
n > n(to) and (#{k: k < n and k E N(wo)})/n > d/2. So by (4), (5) and (6) for 
n e N((w), 

E Yn(( ) < n[ - 
) n + n (- t) + + - 

tj=1 

1 n b (w ) n" i 
n 

=- Elogi() <= n Y j( nt) < - 
2 n - n - 2' 

J= /-=l j= l j=l 

which implies 

p J(Pn( 
o)) ) < e-/2 < 1 for all n e Ni( o). 

In order to show contradiction to the hypothesis of the theorem it remains to show 
that the upper density of Nl1(w) is positive. When we delete from N(o) all the 
numbers in Ni(o) we remain with a set of numbers whose upper density is at most 
d/2. Since the upper density (UD) is subadditive, we obtain d < UD(N(o))) < 
UD(N(j() \ N(wo)) + UD(Njl(o)). Thus, d < d/2 + UD(Nl(w)). Therefore, 
UD(Ni(o)) > 0 and the proof is complete. a 
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Recall that Ao?(w) = max{/ n(o), eo ,((t)}. On this basis, we define for every 
0 > 0, 

n 

(7) 4&0(Pn( C)) = H 
Ako( ). 

k=1 

For co = 0, bn0 coincides with ji. Thus, /,0 is a modification of ,i in those periods 
where j(PnIPn-1) is small compared to the ,L counterpart. 

REMARK 3. A careful reading of the proof shows that we have actually shown 
more than required. Notice that Yn, defined in (3), depends on e0. We have actually 
shown also that if for every e0 > 0, lim inf(4o(Pn(to))/tL(Pn(io)))'l/ > 1 xu-a.s. 
(which is a slightly weaker assumption than the one used-with the lim inf over a full 

_ AWM 
set), then AWM> /. 

PROOF OF LEMMA 1. Take Y,( c), Xn(co) as in the Proof of Theorem 1. By 
Equation (5) of the proof and using the strong law of large numbers for Yn(w), the 

following is obtained: 

1 1 

iEXj((c) < EY:(Oc ) 
J=1 / =1 

j=1 

for arbitrarily small a, y. Thus, limsup(l/n)E =Xi(Go) < 0, implying 

lim i sup (P n( )) i 
< 1 o 

PROOF OF COROLLARY 1. 

!(Pn( cv)) - a,e,(Pn(wc)) + (1 - CaE)(Pn( )) 

t ( Pn ( o) ) 1 e ( PL ( t ) l_)) 

4P( (C)() =H 4P( )IPj 1( cv)) 

N(, ,() (Pi (JI(pi)JI,n )) n ( Pj ( C)|Pj,_) (o)) 
- 1 (Pj( co) 4j: c)) j=N(e, o)+1 P- ( Cl))jl( c)) 

N(e, w) ((P )P )) P =N(e, o ) 

> aen (P )1 ()) (1 -)-N(e ) 

So, 

m inf (( )) 2) 1n 
lim inf 

AM(pn(o)) I 
1 - 

for arbitrary small e which, by Theorem 1, completes the proof. C 
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PROOF OF COROLLARY 2. Fix e0 > 0 and recall the notation kn?o(Pn(tw)) above. 
We similarly define 4>?(Pn( o)) corresponding to f. It is clear that since j, merges to 
,u for L-a.s. w and Ve > 0 3N s.t. Vn > N, 

4n (Pn( t)) > (1 ) ?(Pn -l()) 

e-(Pn( t)))) 

So 

n ( Pn ( W )) > - )-N ((PN ()) 

(Pn( v))(PN 

Since i is a grain of j, ji/A > a > O. Therefore, 

n?(Pn(o)) _ (P(o)) ?(Pn(<w)) > ( - )n-N (PN(o)) 

M(Pn( o)) n (Pn( )) -Pn ( P ()) )) 

It follows that 

liminf ( n )) 1-. 
L(Pn(w)) 

1 - . 

As this is true for arbitrarily small s, in view of Remark 3 the proof is complete. o 

4. A characterization of AWM. The converse of Theorem 1 does not hold. Here 
is a counterexample. 

EXAMPLE 4. We define ,i on the interval [0, 1] by defining it on a filtration. The 
measure /L is the Lebesgue measure. We first define the filtration. We divide the 
diadic intervals one at a time. Let 9 [ = ([0, 1), [2, 1]}. For getting 92 we cut [0, 2) 
into two: ~2 = {[0, ),[1 2, ) [2 1]}. In 9i3[ 1] is divided into two: 3 = 

{[O, ?), [, ), [, ), [, 1]}, and so forth. Thus, {a9n} generates the Borel cr-algebra. 
Now we replicate each one of the partitions dn 2n-1 times. We get the sequence 
1,92 , 2 , ;9, 9 ., 9 ;, , .. and we call it {-9n}. Thus, whatever , is, 
iL(Pn(o)lP_n-(1o )) = 1 on a full sequence of times. The same applies to I,. Therefore, 

AWM 
jL AWM> /,t. In order to define ,i we have to define it only in those stages n where one 
atom is being divided into two. Fix such n and define ji of the left part, say, A, to be 
so small compared to its Lebesgue measure that (jt(A)/,L(A))1/2n < 3/4. Thus, for 
all time periods m between n and 2n we obtain (i(A)/,I(A))l/m < 3/4. Moreover, 
A is an atom of all the partitions between 9n and '2n. Therefore, for A-almost all w 
(because almost every co appears infinitely many times in the left part of the divided 
atom) there exists a sequence of positive (at least 1/2) upper density s.t. 
(A(PmI( to))/(Pm(t )))1/m < 3/4. This refutes the hypothesis of Theorem 1. 

We use 4noo (see (7)) in order to establish a necessary and sufficient condition for 
AWM. 

AWM 
PROPOSITION 1. Suppose that j -o > tA. Then for every so > 0, 

lim f p)n (Pn()) 1 1 t-a.s. 
la,( Pn ( o)) 

- 
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PROOF. Fix e0 > 0. Using the random variables Yn defined with A,0?(w) in (2), one 
may get, similar to (6), that 

1 1 
(8) E E(Yj;()Pj-1(o)) 

< E Yj(() + 6 
j=1 j=l 

,t-a.s. whenever n > n(w, 8). The assumption of the proposition implies that the left 
side of (8) converges to 0 and therefore 0 < lim inf(l/n)E=L Yj( ). Thus, 

1 < lim inf (Pn ( W( )) 3 
AM( P ()) 

We summarize Remark 3 and Proposition 1 in the following characterization of 
AWM. 

THEOREM 2. A M > IL if and only if for every eo > 0, 

liminf E (P( P( W) ) ) 1 L-a.s. 
A4PW( &v)) 

With additional assumptions one can obtain a result that resembles the converse of 
Theorem 1: 

AWM 
COROLLARY 3. Suppose that A > ,L and in addition assume that there is a 

random variable c > 0 s.t. liminf At(Pn(w)lPn-_l( o))/a(Pn(wo)lPn-_l(t)) > c Ij-a.s., 
then 

i k(Pn(w ? r^L()) -* 1 l,-a.s. 

PROOF. The additional assumption assures that for ,t-a.e. to there is e0 > 0 s.t. 
for every n, r(Pn(to)) -= S?(Pn( )). The proof is complete by Theorem 2 and 
Lemma 1. o 
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