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Global  Games  a 

By I. Gi lboa and E. Lehrer 2 

Abstract: Global games are real-valued functions defined on partitions (rather than subsets) of 
the set of players. They capture "public good" aspects of cooperation, i.e., situations where the 
payoff is naturally defined for all players ("the globe") together, as is the case with issues of en- 
vironmental clean-up, medical research, and so forth. 

We analyze the more general concept of lattice functions and apply it to partition functions, 
set functions and the interrelation between the two. We then use this analysis to define and 
characterize the Sfiapley value and the core of global games. 

1 Introduction 

Traditional cooperative game theory  models a game by a set funct ion which is inter- 
preted as the payoffs that  a coali t ion may  guarantee itself. It is implicitly assumed 
that  payoffs are defined for each player separately and the main  question is what  
are the attainable payof f  profiles for various possible coalitions. In  a transferable 
utility game only one number  is at tached to each coalition, but  it is typically inter- 
preted as the m a x i m u m  total payof f  o f  a coalition, which is meaningful  if the players 
may redistribute the "uti l i t ies" among  themselves. 

However, in many  situations it seems more reasonable to say that  the game's  
p a y o f f -  or u t i l i t y -  is s imultaneously defined for all players. Consider, for instance, 
environmental  problems such as air and water pollution,  diminishing ozone layers, 
and other  catastrophes. Al though  undoubted ly  not  perfectly precise, it seems safe 
to argue that  the natural  model  for these problems is one in which the payoff  is defin- 
ed for allplayers together. (Or, if you will, that  the utilities o f  the players coincide.) 
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Questions of  art and historical treasures preservation, a cure for cancer and 
AIDS, indeed, the progress of science and art in general, and many other issues - 
though not unrelated to nations' political interests - seem to be "global", at least 
as a first approximation. 3 

This paper models such games and tries to cope with the question of their "solu- 
tion." Mathematically speaking, a global game is a real-valued partition function: 
for each partition, P, of  the players, i.e., for every profile of  cooperation, there is 
a value h(P) describing the utility of  all players ("the globe") should the structure 
of  cooperation follow P. 

It is this model of "games" for which we would like to propose solution con- 
cepts, that will be analogous to those applied to "ordinary" (transferable utility 
cooperative) games. Such concepts - as the Shapley value and the core - prescribe 
an allocation (or a set of  allocations) describing how the surplus of  cooperation is 
to be shared. The question which naturally arises at this point is: What is there to 
share? If  the utility is identical to all players anyway, how does one share it? 

The answer is that the global game does not describe the complete range of  
activities of the players. It is a "reduced form" model which captures a certain 
aspect of these activities - say, environmental clean-up or AIDS research - but does 
not deal with other aspects of  interaction, in which each players's utility is well 
defined. Thus, we interpret h (P)  as a transferable-utility (or "monetary")  value of 
P-cooperation, and the question is how to divide the surplus of full cooperation 
h ({N}) (where N is the set of  players). All nations will benefit from a joint effort 
to clean up the atmosphere, but they still have to decide how to share the (positive) 
cost which exists even when they do cooperate. All nations will be better off  once 
AIDS is cured, yet each of them also prefers to support the AIDS research to the 
minimal possible extent. 

In a way, then, a global game may be considered as capturing the "public good"  
aspect of  interaction, assuming there are no private goods (apart from the 
"monetary"  transfers). 4 

The study of  partition functions has shown some common features with that 
of set functions. Indeed, some of the results may be applied to a more general 
framework than both, namely, to real-valued functions on lattices. 

To facilitate the reader's orientation, we first provide in Section 2 a brief formal 
definition of "ordinary" and global games, emphasizing the lattice structure. In 
Section 3 we deal with lattice functions in general and prove some results, most of  
which are known for the case of set functions. We find lattice functions to be of  par- 
ticular importance to cooperative game theory as they appear in a variety of models: 

3 An additional example of "global" payoffs is the performance of a certain organization that 
depends on its internal structure but is not defined for separate coalitions. 

4 Our concept differs from the cooperative games in which a coalition's payoff depends on the 
partition to which it belongs (Thrall and Lucas (1963)) since we focus on the "public good" 
aspect, i.e., on pure externality, where the "power" of the coalition is a less obvious concept. 
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(1) ordinary games (on sets); 
(2) global games (on partitions); 
(3) k-stage games (on chains of  k sets) (see Beja-Gilboa) (1990)); 
(4) games defined on pairs (S, P )  where S is a set and P is a partition containing 

it (see Thrall and Lucas (1963)). 

In Section 4 we focus attention on partition functions again and study their rela- 
tion to set functions defined by them. In particular we focus on properties such as 
additivity, monotonicity, convexity, and total positivity (defined in Section 3); these 
properties also shed some light on convex ("ordinary")  games and study some pro- 
perties which are stronger than convexity. 

Finally, Section 5 deals with solution concepts for global games. We define and 
characterize the (unique) Shapley value which, somewhat surprisingly, turns out to 
depend only on all-or-none partitions, i.e., partitions in which some subset of 
players fully cooperate, while the rest do not cooperate at all. We also define the core 
and show that convex global games have a nonempty core which includes the 
Shapley value. 

2 Games  and Global  Games  - Def in i t ions  

In this section we formally define (transferable-utility cooperative) games and 
global games, emphasizing their common structure, i.e., the fact that both are real- 
valued functions on some lattice. For completeness' sake, we provide the formal 
definition of  a lattice in Section 3; being standard and well-known, we do not find 
it merits repetition here. 

Let N be a finite nonempty set of players. A game is simply a set-function 
v : 2 N -- IR with v(o) = 0. 

Note that the power set of  N is a lattice, with set-inclusion as a partial order. 
Obviously, every two subsets have "max"  and "min"  elements, namely, their union 
and intersection, respectively. 

We now turn to define global games. A partition Pis  a set of  nonempty pairwise 
disjoint subsets (coalitions) of  N whose union is N. The set of all partitions is 
denoted ~ .  

The set of  partitions is partially ordered by the "coarser" than relation defined 
as follows: P is coarser than Q, denoted P _> Q, if for every A E Q there is B E 
P such that A c_ B. Note that ( ~,, _>) is a lattice where P v Q is the finest partition 
coarser than both (the meet) and P A Q is the coarsest partition finer than both (the 
join). Note that these notations are not entirely conventional. However, with the 
interpretation of  global games, it is more intuitive to define monotonicity with 
respect to the "coarser than"  relation, which means "more cooperation," whence 
the rest of the notations follow. 

We will also use the terms " P  is finer than Q", " P  _< Q," " P  is a refinement 
of  Q," and "Q is a coarsening of  P . "  
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We extend the definitions above (and below) to subsets of  N. Thus, if p A  is a 
partition of A,  p B  is a partition of B and A (3 B = 0, p A  U p B  is a well-defined 
partition of A U B. 

For a partition P (of a subset A) we denote by ~ ( P )  the algebra (of subsets 
of  A) generated by it. I f  P is a partition of A, and B E ~ ( P ) ,  p B  will denote the 
induced partition of  B. Let P ?  and P c  A denote the finest and coarsest partitions of  

A, respectively, i.e., Pf l  = {{illi E A}, Pc  A = {A]. 

A globalgame is simply a partition function h : ~@ --  IR. For simplicity we nor- 
malize all global games (by subtracting h ( P f ) )  and assume h ( P f )  = O. 

Thus, global games, like "ordinary"  ones, are real-valued lattice functions. We 
therefore devote the next section to lattice functions in general, and continue the 
more specific analysis in Section 4. 

3 Lattice Functions 

A poset (partially ordered set) is a pair (X, _>) where X i s  a set and _> is a binary 
relation on it satisfying: 

(i) reflexivity: x _> x for all X E X. 
(ii) anti-symmetry: x _> y and y >_ x implies x = y for all x , y  C X .  

(iii) transivity: x _> y a n d y  _> z implies x _> z for all x , y , z  >- X .  

In this paper we restrict our attention to the case of  a finite X. 
An element x E X i s  said to be a supremum (an infinum) of a set A _ X if the 

following hold: 

(i) x _ y ( x _ < y )  f o r a l l y  E A ;  
(ii) if z _> y (z _< y) f o r a l l y E A ,  then z -> x (z -< x). 

A supremum of  a set A is denoted by VA, and infimum by AA. If  a supremum 
(infimum) of  A belongs to A, it is called a maximum (minimum). In view of anti- 
symmetry, suprema and infima are unique. I f A  = { x, y } its supremum and infimum 
will be denoted by x v y and x A y, respectively. 

A poset (X, _>) is a lattice if for every x , y  E X there exist x v y and x A y. We 
will refer to A and V as binary operations. We will also use the notations 
X 1 V X 2 V ... V Xn, X 1 A X 2 A ... A Xn, V 1 <_i<_n Xi and A 1 <_i<_n x i  with their obvious 
meanings. 

Obviously a lattice has a (unique) maximum and minimum, denoted by x* and 
x , ,  respectively. A lattice funct ion is a real-valued function on X. It is O-normalized 
if f ( x , )  -- O. The linear space of lattice functions on X will be identified with 

IR I x I ,  but also denoted by F ( X )  when this notation will be more suggestive. The 
subspace of  O-normalized lattice functions will be denoted by F o ( X ) .  
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A lattice func t ion f  E F ( X )  is monotone i f x  _> y i m p l i e s f ( x )  >_ f ( y ) .  A func- 
tion f E F ( X )  is convex if 

f ( x  V y)  + f ( x  A y)  >_ f ( x )  + f ( y )  

for all x , y  E X. It is additive if equality holds for all x , y  E X.  
A lattice function f is totally positive if for every x 1, x2 .... x n E X 

f ( x  1 V x 2 v ... v Xn) >_ Z[iio:~i~{ 1 ..... n}} (-1) II] +lf (AiEIXi )  

(This definition coincides with the Dempster-Shafer definition of  belief functions 
for the lattice of  subsets of  a given set. See Dempster (1967), Shafer (1976).) 

We note without proof  that every totally positive function is convex, though the 
converse is false. 

For x , y  E X w e  write x > y if x _> y and x :~ y. We also use an additional binary 
relation, denoted >*, and defined by x >* y if x > y but for no z E X x > z > 
y. (Put differently, >* is the minimal relation whose transitive closure is > .) 

F o r x  E X w e d e f i n e g  x E F ( X ) b y g x ( y  ) = 1 i f y  _ x a n d g x ( y  ) = 0 other- 
wise. 

Proposition 3.1: {gx}xE x is a linear basis for F ( X ) ,  as is [gx}xEX, x~x ,  for F o ( X  ). 

Proof" First we show that [gx}xEX are linearly independent. Assume 

Ex~xO~x g x = O. 

Considering x , ,  we obtain E x E X  ax gx(X,) = ~ = 0. Next consider y such 

that y >* x , .  Obviously, ay = 0 follows, and the proof  continues by induction. 

Since there are IX] functions in{gx]xEX, they have to constitute a basis of  
F ( X ) .  Similarly, {gx}x~:x, c_ F o ( X  ) are independent and of the appropriate 
dimension to be a basis for F o ( X  ). [] 

Given f E F ( X )  let {C~x(f)}xEX be the unique set of  coefficients such that 

f = ~x ~ 

Note that ( f  - f ( x , ) g x , )  E F o ( X  ). Hence for x ~ x , ,  C~x(f - f ( x , ) g x ,  ) = 
~.x(f). 

Theorem 3.2." L e t f  E F ( X )  be given. T h e n f i s  totally positive and monotone iff for 
all x ,~ x , ,  C~x(f) >_ O. 

Proof" Since f is totally positive and monotone iff ( f - f ( x , ) g x , )  is, we assume 
w.l.o.g. (without loss of  generality) that f E F 0 (X).  
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First consider the " i f "  part .  Since the monoton ic i ty  of  gx is trivial, it suffices 
to show tha t  gx is total ly positive for every x E X, and the conclusion will follow 
as the set o f  totally positive and m o n o t o n e  funct ions is a cone. 

Let x E X a n d x  1 ..... x n E X b e  given. We wish to show that  

gx(Vi<n x i )  >- ]Sonic_{1 ..... n} ( - D  Ill +l g x ( A i E i x i ) -  

Let J = { 1 < j < n [ x < xj }. I f  J = o the right side vanishes and  the inequali ty 
holds. Otherwise,  the inequali ty may  be reduced to 

1 >_ ~or  +1 

However, 

1 + ~ o . i c _ j ( - 1 ) l I I  = ~ i c_ j ( - 1 ) l I I  = ( 1 -  1 ) l J I  = 0 

Hence,  gx is total ly positive for  all x, and the " i f "  par t  is proved. 
For the "only  i f"  par t  we first prove the following. 

Claim: L e t f  E F o ( X )  and x E X. Assume tha t  {x 1 ..... x n} = {y E X l x  >* y}. 
Then  

f ( x )  - ]~o:#ic_{1 ..... n} (-1)l zl +1 f ( A i E i X i  ) = O~x(f)" 

Proof." The case x = x ,  is trivial. Assume,  then, that  x > x ,  and n >_ 1. Recall that  
for all y E X. 

f ( Y )  = E z E X  ~ = ~z<_y Cgz(f)" 

Hence,  we have to show tha t  

~ z < x  c~z(f) - ~ o : # I ~ { 1  ..... n] (-1)111 +1 ~z<_AiElXi  C~z(f) = O~x(f) 

o r  

~ z < x  ~  - ~ I ~ { 1  ..... n} ( -1 ) l l I  +1 ]~z<Ai@ix  i o~z(f) = 0 

The  expression on the left side equals 

Ez<x ~ - ~ :#Ig{ 1 ..... n} ;z<_AiEix i (-1) 1 II +1 ] 
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It is sufficient (and necessary) to show that the expression in brackets vanishes 
for all z < x. However, this is proven almost identically to the " i f "  part of  the 
theorem. We therefore consider the claim proved. [] 

To complete the proof  of the theorem, l e t f  E F 0 (X) be totally positive and let 
x >  x . . L e t { x  1 ..... x n} = {y E X i x > * y } . I f n  = 1, then 

a x ( f )  = f ( x )  - f ( X l )  

and nonnegativity follows from monotonicity o f f  Otherwise, i.e., n > 1, we have, 
since x >* x i for all i _< n, 

Vl<i<_nXi = x 

and nonnegativity follows from the claim and the fact t h a t f  is totally positive. [] 

Remark 3.3." Proposition 3.1 is well-known for the case of subsets (of a given set) 
ordered by inclusion. For this case a version of Theorem 3.2 was also proved by 
Dempster (1967), Shafer (1976). In their theorem, nonnegativity of  f E F o ( X )  
replaces monotonicity. Obviously, monotonicity is a stronger requirement in 
general, the two coincide for totally positive functions on subset-lattices, but they 
do not coincide in general. In fact, nonnegativity and total positivity do not suffice 
for nonnegativity of all coefficients, as is shown in the following example: 

X =  { x , y , z ] , x > y > z  
f ( z )  = O , f ( y )  = 2 , f ( x )  = 1. 

This example seems somewhat anomalous since the lattice involved is rather 
"thin." To formalize this notion, define, for x E X, the level o f x  > x .  to be e(x) 
= [{zl ..... zk}] s u c h t h a t x  >*Zl >*z2 >* .-. >*z/c = x .  ande (x . )  = 0. Further 

define the degree of x to be d ( x )  = I{Yl x >* ~v][. 
Note that d ( x . )  = 0 and that d(x )  = 1 for every x E X with e(x) = 1. If, 

however, for every x E Xwi th  e(x) > 1 we have d ( x )  > 1, the lattice is called rich. 

Observation 3.4: Assume Xis  a rich lattice. T h e n f  E F o ( X )  is totally positive and 
nonnegative iff for every x ~: x .  a x ( f )  >- O. 

Proof." In view of the proof  of Theorem 3.3, it suffices to note that if f is totally 
positive and nonnegative, O~x(f) >_~ 0 follows from total positivity for x with e(x) 
> 1, and for x with e(x) = 1, 

~ x ( f )  = f ( x )  - f ( x , )  = f ( x )  ~ O. [] 
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It is immediate that for every set N the lattice of partitions ~.@ is rich. Hence, 
for global games, as for ordinary ones, nonnegativity of  totally positive games suf- 
fices for the nonnegativity of all corresponding coefficients. 

Remark 3.5: It is also important to note that our theorem also applies to non- 
distributive lattices. (A lattice is distributive if 

xA  (y VZ) = ( x A y )  V (x A Z), V x , y , z  E X 

or, equivalently, 

x v  (y Az) = ( x v y ) / x  (x v z), V x , y , z  E X ;  

see, e.g., Graetzer (1971).) 
Indeed, while subset-lattices (with inclusion) are distributive, partition-lattices 

(with "coarser than"  relation) are not. Consider the following example: 

N = { 1,2,3,4} 

P : {{1,2},{3,4}}, Q = {{1,3},{2},{4}}, R = {{2,4},{1},{3}} 

in which 

( P V  Q) A ( P V R )  = {N] 4: P = P V  ( Q A  R). 

4 On Global and Ordinary Games 

In this section we focus again on global games and study their relationship to 
ordinary ones. 

For a global game h E F0(~@ ) define the associated game v h E F0(2N ) by 

v h ( A )  = h(P A U p ; e )  f o r A  :~ o 

(and Vh(O) = 0). 
That is, the payoff to a coalition A is the global payoff if all members of A 

cooperate, but all the other players do not. 
On the other hand, given v E F0(2N) define the associated global game 

h v @ F O ( ~  ) by 

hv(P  ) = EA@ P v (A) .  
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Obviously, for every game v there are global games h such that v = v h. 
However, not every global game h is the associated global for some v. I f  there is a 
game v such that h = h v, h will be called partially additive. Denote by PA the 
subspace of partially additive global games. See the Appendix for a characterization 
of PA. 

We now turn to study some relations between properties of  global games and 
their associated (ordinary) games and vice versa. Beginning with properties of  h in- 
herited by v h we have: 

Proposition 4.k I f  h E F 0 ( ~ )  is monotone and convex, so is v h E F0(2N). 

Proof" To see that v h is monotone let A c_ B be given. Then v h ( A ) = h ( PA c U P ;  c) 

<_ h ( pB U pBC ) = Vh ( B ) follows from monotonicity of  h w.r.t. (with respect to) 

coarsening. 
Next consider convexity. For arbitrary A, B c_ N we have to show that 

Vh(A U B) + Vh(A n B) > Vh(A) + Vh(B). 

First assume that A n B r o. Then 

(Pf u d ~) ~ (P~ u Pf~)= ( d ~  u p?~ 

and 

(P~ ~ d c) v (P~ ~ pfc)= ( ~  ~,(?~)~) 

I f  A n B = o, however, we obtain 

A c pBC) = (pA  U p f  ) A (PB c U Pf 

and 

-< (Pc AUB U p)AUB)r 

whence the desired inequality follows in both cases from the monotonicity and con- 
vexity of  h. [] 

Similarly, one obtains the following result (the proof  of  which is omitted). 
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Proposition 4.2." I f  h E F 0 ( ~ )  is mono tone  and totally positive, so is v h . 
We now turn to study properties o f  a game v which may or may not  be inherited 

by h v : 

Remark  4.3: I f  a game v is m o n o t o n e  and convex, the global game h v has to be 
m o n o t o n e  but need not  be convex. 

Proof" Convexity o f  v implies its super-additivity, that  is, that  

v ( A  U B)  >_ v ( A )  + v ( B )  

for all A,  B c_ N w i t h  A f / B  = ~, which implies monotonic i ty  o f  h v . To show that  
h v need not  be convex, let N = { 1,2,3,4}, define 

v(A)  = IoAI - 1  A = ~ ~ 

Thus, v is mono tone  and convex. However, for P = {{ 1,2},{3,4]} and Q = 
{ {1 ,3] , {2 ,4} }wege t  h v ( P )  + h v ( Q )  > h v ( P  A Q)  + h v ( P V  Q). [] 

Proposition 4.4." I f  a game v is m o n o t o n e  and totally positive, so is the global game 

h v �9 

Proof" Let v E F 0 (2 N) be given. For A _ N let u A denote the unanimity  game on 
A (gA in Section 3's notat ion).  Let c~A(v) be the unique coefficients such that  

V = Eej:#ACNOtA(V)U A 

Claim: 

h v = S.,o~AC_NOtA(v)g 
(Pc  c ) 

P r o o f  o f  Claim." Given P E 3 ,  

h v ( P )  = ~ B E P  v ( B )  = ~B@P ~Ac_B C~A(V) 

= ~2{AIp>(pAup]C)} O~A(V) 

= ~{AIo_-gAC_N } ~ ( P )  (P UP  c) 



Global Games 139 

Hence, the (unique) coefficients {Cep(hv)}pE ~ such that h v = 2pE  ~ 
C~p(hv)g P are given by 

O~p(hv) = IoA(V) 
i f P  = (pA U P Ac) 

otherwise [] 

Theorem 3.2 may be now invoked twice - once for the subset lattice to deduce 
C~A(V) >1 0 for all A c N, A :~ o, and then for the partition lattice to deduce that 
h v is totally positive and monotone. [] 

We summarize these results as follows: 

{v I h v is totally positive and monotone} = 
{v[ v is totally positive and monotone} C 
{vlh v is convex and monotone} c 
{v I v is convex and monotone}, 

where the inclusions are strict. (An example showing the second inclusion was given 
in Remark 4.3 above; as for the first inclusion, let N = {1,2,3} and v = u{1,2 } + 

u [2,2} + u{ 1,3} - (1/2)u{ 1,2,3}, (where u A is the unaminity game on A) for which h v 
is convex and monotone).  

It is not too surprising that additivity of  h E F 0 ( ~ )  will not always be in- 
herited by v h. Indeed, the inequality 

Vh(A U B) + Vh(A O B) <_ Vh(A ) + Vh(B ) 

has to hold whenever A n B :g o, but may be violated otherwise. More specifically: 

Remark 4.5: h E F 0 ( d ~ )  may be monotone and additve without v h being additive. 

Proof" Let N = { 1,2,3}, and define 

v(A) = I I o A [ - 1  i f A  : ~ o  
otherwise 

Define h = h v (so that v = v h also holds). It is easily verified that h is additive. 
However, 

v({1,2,3}) > v({1,2}) + v({3}) 

so that v is not. [] 
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However, for a large enough set o f  players, additivity o f  h is inherited by Vh: 

Proposition 4.6: Let I N  t _> 4 and assume that  h E F O ( ~ )  is additive. Then  h -= 
0, and v h = O. 

Proof" Let h be given and let v h be its associated game. We first prove that  Vh(A ) 
= Vh(B ) whenever ]A[ = ]B t. The p roof  is by induct ion on k = ]A] - IBI. For 
k = 1 there is nothing to prove as Vh({i}) = 0 for all i E N. We therefore assume 
the claim for k and prove for (k  + 1). 

I f  ( k  + 1) = INI there is noth ing  to prove. Hence, assume (k  + 1) < IN] and 
let C be a subset o f  cardinality k + 2. Consider any A,  B _ C with A :~ B and I A ] 
= ]B I = k + 1. U s i n g a d d i t i v i t y o f h f o r P =  ( P c  A U P f t C ) a n d Q =  (PB c U P Bc) 
we obtain 

vh(C) + vh(A n B) = vh(A) + vh(B) 

Note that  ]A n B] = k _> 1. Furthermore,  ]C ] = k + 2 > 2. Hence, we can 
c h o o s e a s e t D c  C w i t h D : ~ A , D : ~ B a n d  I D] = k + 1. Then 

Vh(C ) + Vh(A n D) = Vh(A ) + Vh(D ) 

also holds. However, Vh(A n B) = Vh(A n D) as IA n D I = k = IA n B[, so 
we obtain vh(B) = Vh(D). Similarly, we get Vh(A ) = Vh(B ) = Vh(D ). Since this 
holds for subsets (of size k + 1) o f  any set C (of  size k + 2), it also holds for any 
A , B  with fA[ = IBI = k + 1. 

(Note that  so far we have not  used the fact IN[ > 4.) 

Hence, there exists a funct ion d: IN --  IR such that  Vh(A) = d ( l A  I) (which im- 
plies d(1) = 0). Denote  c~ = d(2). Assume w.l.o.g. N = {1,2,3,4} U M ( w i t h  M n 
{1,2,3,4} = ~). 

As in the first par t  o f  the p roof  o f  Proposi t ion  4.1 above, we know that  whenever 
A f3 B :~ o, the following holds 

Vh(A U B) + Vh(A n B) = Vh(A ) + Vh(B ) 

For A = { 1,2} and B = {2,3] we obtain Vh({ 1,2,3}) = d(3) = 20~. 
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Next consider P1 = {{1,2}, {3,4}} U {{i}}iE M and Q1 = {{1,2,3},{4}} U 
{ { i] ]iEM" The equality 

h(P1A Q1) + h(P1 v Q1) = h(P1) + h(Q1) 

implies 

d(4) + d(2) = 2d(2) + d(3) 

o r  

d(4) = d(3) + d(2) = 3c~. 

However, for Q2 = {{1,4},{2,3]} U {{i}}iEMthe equality 

h(P 1 A 02)  + h(P1 v Q2) = h(P1) + h(O2) 

yields 

d(4) = 2d(2) + 2d(2) = 4~. 

Together we obtain ~ = 0, whence it follows by induction that h = 0, and 
V h = 0 .  [] 

5 Solution Concepts 

A solution concept for a global game - as for any game - should "solve" it, i.e., 
prescribe a certain possible outcome of  it. In the context of  global games, however, 
it is not entirely clear what do "outcome"  or "solut ion" mean. More precisely, one 
has to decide whether global games should b e "  solved" directly, or should they first 
be reduced to "ordinary"  games? The indirect strategy would rely on the assump- 
tion that we know how to solve games (whatever "solve" may mean), and the only 
problem with global games is that we do not know the "value" of  each coalition. 
Hence, all we need to ask of  a solution concept for global games is to translate the 
global game to an ordinary one, to which standard solution concepts may be 
applied. 

In this paper  we follow the direct solution strategy. It seems to us that this 
strategy eliminates arbitrary choices which will be required (using the indirect 
strategy) to specify an ordinary game (or set of  such) for a global one. 

We confine ourselves to the Shapley value and the core. A subsection is devoted 
to each. 
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5.1 The Shapley Value 

We first introduce the following definitions. For h E F 0 ( ~ )  and i E N, i is a dum- 
my-player in h if for all P E 

h(P)  = h ( P  A ({{i}] U Pc N\[ i})) .  

Two players i ,j  E N are interchangeable in h if for all P E ~@ 

h ( P A  ([{i}} U p N \ { i } ) )  = h ( P A  ({{jl} U PcN\{i])) 
C 

An operator r : F 0 ( ~ )  -- IR N is a Shapley-value (for global games) if it 
satisfies the following axioms. 

1. Linearity; 
2. Dummy: for all h E F 0 ( ~ )  and i E N, if i dummy in h, then (r = O. 
3. Interchangeable players: for all h E F 0 ( ~ )  and i ,j  E N, if i a n d j  are inter- 

changeable in h, then (r = (r 
4. Efficiency: 

ZiCN(~h)( i )  = h ( [N] ) .  

Let us comment briefly on the interpretation of these axioms. Linearity has its 
usual meaning: suppose that the players in the global game h (say, environmental 
clean-up) are also involved in a different global game g (e.g., art treasures preserva- 
tion). It is desirable that one will be able to solve each game separately and obtain 
the same outcome that would result from considering the two global issues together 
(h + g). Similarly, homogeneity (that is, r = o~(~bh)) simply means scale in- 
variance. 

Next consider the dummy axiom. A player i is a "dummy" in a global game h 
if the payoff is independent of  i 's cooperative behavior. As formulated, we only re- 
quire that for every partition P, h (P) will equal the payoff of the partition obtained 
from P by player i 's desertion. Obviously, this also means that player i may decide 
to join another set in P but will still not affect the payoff. It seems reasonable that 
such a player will have no share in the surplus of cooperation h({N]) .  

As for Axiom 3, two players i and j  are "interchangeable" if for every partition 
P the desertion of i from his/her current coalition to form a separate coalition { i} 
has the same impact on h (P)  as j  would have. (Notice that in the formulation given 
above the term h (P) was cancelled on both sides of the equality.) The requirement 
that i a n d j  will get the same payoff according to Ch has a flavor of "symmetry"  
or "fairness" (though, as we shall see later, it is stronger than the traditional mean- 
ing of  "symmetry") .  

Finally, the efficiency axiom simply requires that the overall surplus of  coopera- 
tion, h ({N}), will be shared among the players. 
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We recall that the counterparts of these axioms for the context of ordinary 
games characterize the Shapley value for set functions (introduced in Shapley 
(1953)). Let it be denoted by ~. 

Theorem 5.1.1." There is a unique Shapley value ~ for the space of global games and 
it equals the Shapley value of the induced (ordinary) game, i.e., 

~h = cb(v h) for all h E F0(~,~). 

Proof" First we show that q~ (v h) is a Shapley value. Linearity and efficiency are im- 
mediate. It is also easily verified that if i is dummy in h (i,j are interchangeable in 
h), then i is also dummy in v h (i,j  are interchangeable in v h ) in the usual sense. I.e., 
Vh(S ) = Vh(S \ [i]),  V S c_ N(Vh(S \ {i]) = Vh(S\  [j}), V S c N, i,j E S), which 
implies that ~(vh)(i ) = 0 (q~(vh)(i) = O(vh)(j). ) Hence, O(vh) is a Shapley value. 

Next we show uniqueness. Let ~ be a Shapley value on F 0 (~@). It suffices to 
show that ~ is uniquely determined on {gP}PC J ,  PePf since this set is a basis for 

F 0 ( ~  ). Consider, then, gp for some P 4= / ~ .  Assume P = {A1,A 2 ..... A k] U 

Pf A~+a where ]Ae] > 1 for 1 _< f _< k. (That is, A 1 ..... A k are the non-singleton 
cbalitions in P.) Obviously, i E Ak+ 1 is a dummy player in gp. Similarly, every i,j 
E U ~_ 1 Ae are interchangeable since for every Q E J 

gp (QA ([[i]]  U pN\{i}))  = gp(Q A ([[j}] U pcN\{J})) = O. 

Hence, ~b has to satisfy 

(~gp)( i )= I10/~k=l [Ael  otherwisef~ U~= 1 _-4t? 

Thus a Shapley value, if such exists, is unique and the formulae above may be 
used to compute it via the coefficients {e~p(h)]p. Since existence was established 
earlier, ~h = (~(vf) is proved. (Notice thatn this equality is also simple to verify 

directly: for gp with P = [A 1 ..... A k] U p~k+l as above, 

Vgp = UU~=lAr 

where u S is the unanimity game on S.) 
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Remark 5.1.2: It may seem surprising that the Shapley value oh f does not depend 
on all of  the numbers {h(P)}pE ~ .  As a matter of fact, the (small) subset 

A c {h(P  A U P~ )}AC_N 

i.e., the value of f on "all-or-none" partitions alone determines ffh, while the value 
of  h on partitions which are not of this form is immaterial. 

An attempt to understand this phenomenon may be the following: the axiom 
which should be held responsible for it is the interchangeability axiom (3): it focuses 
on the damage that a player may cause by deserting his/her coalition, and should 
two such players have the same " threat"  power, they are given the same payoff. In 
a way, this axiom simply distinguishes between those players who do cooperate in 
some way (i.e., in some nontrivial coalition) and those who do not (singletons). The 
former have a viable threat, the latter do not. The precise way in which the 
"cooperative" players cooperate - i.e., via which coalition - does not matter; it only 
matters that they do. Hence, the payoff depends only on the best that the 
"cooperative" players may obtain - h(pA  c U p /C)  _ where A is the set of 
"cooperative" ones. 

Whether this property is desirable or not is debatable. We believe that in some 
situations it will be quite intuitive and will capture the essence of the cooperative 
global game, while in others it may well be inappropriate. Since axiom (3) seems in- 
nocent, yet guarantees uniqueness, we chose it to define "the Shapley value." 
However, one may certainly wish to consider other solution concepts, as suggested 
below. 

Remark 5.1.3: One obvious alternative to the interchangeability axiom is the good 
old-fashioned symmetry: for a permutation 7r: N -- N and h E F0(~@) define 
a-h E F 0 ( ~ )  by (a-h)({A 1 ..... Ak} ) = h({TrA 1 ..... ~rAk}), and for x E IRNdefine 

~rx E IRNby ~rx(i) = x(~ri). Then we may define 

3'. Symmetry: for every permutation 7r: N -  N, ~b(Trh) = 7r(~h). 

It is easy to check that, in the presence of (1), (2) and (4), this axiom is strictly 
weaker than (3). More specifically, when defining ~ep' one is restricted to assign 

(~gp)(i) = (~gp)(j)  if I P(i) I = I P U )  I (where P ( i )  is the member of P contain- 

ing i) but players in coalitions of  different sizes may get different payoffs. 
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5.2 The Core 

For ordinary games, the core is a set of  allocations x E IR N no coalition may 
(unilaterally) improve upon. For global games, however, it is not entirely clear what 
is meant  by "improve upon",  since a coalition cannot act alone. 

However, suppose that  in a global environment clean-up game a certain set of  
countries is assigned a share in the total cost which exceeds what it would cost this 
set to perform the clean-up on its own. That  is, suppose that 

A c EiE A x ( i )  < h(pA c U Pj ). 

In such a case it would make sense for the coalition A to undertake the whole project 
by itself, and the allocation x is not "stable." 

Next, suppose that two disjoint coalitions may get more if they operate alone, 
while the others do not cooperate. I.e., 

EiEA X(i ) + EiEBX(i ) < h(P A U pB U P)AUB)C), for A N B = o. 

And a similar argument excludes such an allocation x.  Thus we are led to the follow- 
ing definition: x E IR Nis in the core of  h E F 0 (~@) iff for every P = { A 1 ..... A k ] U 

p ? k + l  E ~ with IAe[ > 1, e = 1 ..... k, the following condition holds: 

~iC Uk=lAiX(i) >- h(P) 

with equality for P = {N}. 

Observation 5.2.1: I f  h E F 0 ( ~ )  is monotone, then 

core (h) = core (v h) 

Proof: The inclusion core (h) c_ core ( v h ) is immediate, while the converse inclusion 
is trivial (in the presence of  monotonici ty of  h). [] 

Thus, the Shapley-Bondareva conditions for non-emptiness of  the core of  or- 
dinary games (Bondareva (1963), Shapley (1967)), also characterize non-emptiness 
of  the core of  global games. Moreover, a convex global game has a nonempty core 
which includes its Shapley value (see Shapley (1971)). 
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Appendix 

In Gilboa-Lehrer (1989) we introduced the following reflexive and symmetric binary 
relation on partitions: P, Q E ~ are non-intersecting if for every A E P either (i) 
there is B E Q such that A c_C_ B, or (ii) there are {Bi]n=l c_ Q such that A = 
un_ 1 B i. 

Observation A . k  For P, Q E ~@ the following are equivalent: 

(i) P and Q are non-intersecting; 
(ii) there existsA E ~ ( P )  (7 2 ( Q ) s u c h  that P A < QA and p A  c >_ QAC; 

(iii) P u Q = ( P  A Q) u ( P  v Q). 

We quote the following from Gilboa-Lehrer (1989): 

Fact A.2: A global game h is partially additive iff 

h ( P )  + h ( Q )  = h ( P  A Q)  + h ( P  v Q)  

for every non-intersecting partitions P and Q. 
Finally, note that if h is partially additive, the condition h = h v does not define 

v uniquely. Indeed, h v = h w iff (v - w) is an additive game with (v  - w ) ( N )  = O. 
(Recall that by the definition in Section 3, a game is additive iff 

v ( A )  + v ( B )  = v ( A  U B )  + v ( A  A B )  

for every A , B  c_ N,  which is equivalent to 

v ( A )  + v ( B )  = v ( A  U B )  

whenever A M B = o). 
In particular, given a partially additive h E F 0 ( ~ ) ,  there is a unique game v 

such that h = h v and v ({ i}) = 0 for all i E N. It is easily verifiable that this v coin- 
cides with v h . Hence, h is partially additive iff h = (h)vh. 

On the other hand, every game v with v({i}) = 0 for all i E N satisfies 
v = ( V ) h .  
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