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Abstract.
In this paper we attempt to introduce dynamics into the theory of

cooperative games. A solution of the game is reached through an allo-
cation process. At each stage of the allocation process of a cooperative
game a budget of fixed size is distributed among the players. In the first
part of this note we study a type of process that, at any stage, endows
the budget to a player whose contribution to the total welfare, according
to some measurements, is maximal. It is shown that the empirical dis-
tribution of the budget induced by each process of the family converges
to a least square value of the game, one such value being the Shapley
value. The two other allocation processes converge to the core or the
least core.

∗ I am grateful to the Associate Editor and to the two anonymous referees of International
Journal of Game Theory



1. Introduction

Existing cooperative game theory is static in nature. There are no temporal aspects

in the existing studies of solution concepts, power indices, coalition structures, etc. This

paper is a humble attempt to introduce dynamics into the field in general and to the study

of solution concepts in particular.

At any period in time a budget of fixed size is distributed among one or more players.

The decision as to which players are to receive which portion of the budget depends on

the historical allocation and is specified by a predetermined rule. The rule according to

which the budget is distributed induces the empirical distribution of the budget among

the players at any period. Whether this distribution converges, and if so to what limit,

depends on the specific rule applied. The study of some allocation rules is the central

theme of this paper.

Suppose that a research fund is to be allocated between individuals and institutions.

At each period, in order to determine the desirable allocation, the fund management

examines the needs of each individual and institution and compares it with what each of

them received in the past. An allocation rule takes into account both the needs and the

historical allocation when determining what portion of the fund each participant, individual

or institution, is entitled to receive.

Using the language of cooperative game theory, the situation is described as follows.

Let N be a set of players and v be the characteristic function. For every coalition S in N ,

the value v(S) is interpreted as the needs of S. A budget of fixed size B is to be distributed

among the players at any period t. Let xi
t be the portion that player i received at time t,

that is, the allocation at time t is xt = (xi
t)i. An allocation rule specifies how to allocate

B, taking into consideration all needs and past allocations. In other words, an allocation

rule determines the allocation at time T , xT , as a function of v and of all xt, t < T . The

sequence of allocations xt, t = 1, 2, ... is the allocation process induced by the allocation

rule.

The empirical distribution of the budget among the players is at any stage an allocation

of the budget. Thus, an allocation process generates a sequence of allocations. The main

theme of this paper is to present three types of allocation rules and processes. We prove
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that the processes we introduce generate converging sequences of allocations. Furthermore,

the limit allocations are well-known solution concepts.

The first type of process is implicitly based on the idea that giving the budget to a

player increases the total well-being of the entire group. The player whose marginal con-

tribution to this well-being is maximal will receive the budget. The well-being is measured

at any stage with respect to the needs of the coalitions on one hand, and the empirical

distribution of the budget, on the other.

It is shown that each of the processes of the first type generates allocations that

converge to some least square value (Ruiz, Valenciano and Zarzuelo 1995, 1998). A distin-

guished least square value is the Shapley value. In other words, we introduce an allocation

process that converges to the Shapley value.

The second type of process converges either to the core of the game when the core is

not empty or to the least core. Convergence in this context means that any accumulation

point of the empirical allocations is in the core (or in the least core). In other words, the

distance between the core and the empirical sequence of allocations shrinks to zero.

The proofs related to the first two types of allocation processes rely on a simple

geometric principle that lies behind Blackwell’s approachability (Blackwell (1956) and

Lehrer (1997)). Blackwell’s approachability theorem is not used here. A by-product of the

proofs is a new proof of the Shapley-Bondareva theorem (Bondareva (1963) and Shapley

(1967)) that does not resort to any duality argument.

The last type of allocation process is based on a well-known fictitious-play algorithm

(Robinson, 1951). The linear programming problem of finding a point in the least core

is translated to a zero-sum game. The fictitious-play algorithm is then applied to the

constructed zero-sum game. This algorithm induces an allocation process which has an

interesting interplay between coalitions and players. It also has the advantage of finding

the least core without knowing the precise inequalities that define it.

2. Allocation Rules and Allocation Processes

Let N be a finite set of players, where the number of players |N | is n. Consider a nor-

malized cooperative game v (i.e., v(N) = 1). Let Z = {(z1, ..., zn); zi ≥ v(i) for all i and
∑

i zi =
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v(N)}. Z is the set of allocations.

An allocation rule is a function that, at any time t, determines the allocation zt as a

function of past allocations. Formally,

Definition 1. An allocation rule R is a function R : ∪∞t=0Z
t → Z, where Zt is the

Cartesian product of Z with itself t times and Z0 is a singleton that represents the empty

history of allocations.

An allocation rule can be considered as a strategy of an allocator in a repeated coop-

erative game.

An allocation rule R induces a sequence z1, z2, ... of allocations as follows: z1 is the

first allocation which R attains on the set Z0, z2 = R(z1), z3 = R(z1, z2), etc. This

sequence is called the allocation sequence induced by R.

3. Processes that Converge to the Least Square Value

3.1 The Least Square Value.

Denote by L the set of all additive games p (i.e., that satisfy p(S) + p(T ) = p(S + T )

for any two disjoint coalitions S and T ) such that p(N) = 1 and p(i) ≥ 0 for every player

i.

Let α = {αS}S⊆N be a probability distribution over the set of coalitions. That is, αS

is the probability to choose the coalition S. Let Lα(v) be the game p in L that satisfies

p(N) = 1 and achieves the minimum of

∑

S⊂N

αS(p(S)− v(S))2.

So, the least square value, with respect to the probability distribution α, is the additive

game that best approximates (in the sense of the Euclidean distance) the game v. In the

language of linear algebra, the least square value is the projection (with respect to the

probability distribution α) of v to the subspace of the additive games. For an elaboration

on the subject, see Ruiz, Valenciano and Zarzuelo (1998).
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3.2 The Approachability Principle.

The process we are about to describe converges to Lα(v). The convergence is guar-

anteed due to the following simple geometric observation. Let C be a closed and convex

set in IRk and let P (x) denote the closest point in C to any point x in IRk. The set C

is called the target set. Suppose that a sequence of uniformly bounded vectors xt in IRk

satisfies the condition

(1) 〈xt − P (xt), xt+1 − P (xt)〉 ≤ 0 for all t,

where xt is the average of x1, ..., xt and 〈·, ·〉 is the inner product. Then, the distance

between xt and P (xt) converges to 0 as t goes to infinity. In other words, the average of

the sequence xt converges to the set C.

This is the geometric principle that lies behind Blackwell’s Approachability Theorem

(see Blackwell (1956) and Lehrer (1997)), not the Approachability Theorem itself. In this

context, the principle bears no strategic aspect. It is purely geometric. Later on we will

refer to it as the approachability principle.

Proposition 1. Let D be a bounded, closed and convex set in IRk. Suppose that a

sequence of points xt in D satisfies

〈xt, xt+1〉 ≤ 〈xt, w〉 for all w ∈ D and for all t.

Then, xt converges to argminw∈D〈w, w〉.

In words, if xt+1 is the lowest in D in the direction of the average xt for every t, then

xt converges to the point in D whose Euclidean norm is minimal.

Proof: Let by y = argminz∈D〈z, z〉. Thus, y is the closest point (according to the

Euclidean norm) in D to the origin. We will apply the approachability principle to the set

C = {y}. Note that for any point z in D, 〈y, y〉 ≤ 〈y, z〉. In particular, 〈y, xt+1−y〉 ≥ 0 for

every t. On the other hand, by the assumption, 〈xt, xt+1〉 ≤ 〈xt, y〉. Thus, 〈xt, xt+1−y〉 ≤
0. Subtracting the first inequality from the second, one obtains 〈xt − y, xt+1 − y〉 ≤ 0.

Since P (xt) = y for every t, the sequence xt satisfies inequality (1). Hence xt converges to

the point y.
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3.3 The Allocation Rule and the Allocation Process.

We now use Proposition 1 to describe a process that converges to the additive game

Lα(v). We start with the intuition.

For any time t denote by zt the historical distribution of the budget up to time t.

That is, zi
t is the frequency of the stages up to time t, where player i received the budget.

For any S ⊂ N , let zt(S) be
∑

i∈S zi
t. At time t, the figure zt(S)−v(S) measures the extra

benefit of the coalition S up to time t, beyond its needs (v(S)). This is the weight given to

coalition S. The smaller zt(S) is, the greater the weight assigned to S. A coalition whose

relative accumulation is big is assigned a negative weight, while a coalition whose relative

accumulation is small is assigned a positive weight.

When a player, say i, is chosen to receive the budget at time t + 1, the benefit to

coalition S is 1li∈S − v(S). That is, the benefit to S is 1 − v(S) if i is in S, and −v(S)

otherwise. The weighted extra benefit of coalition S is therefore (zt(S)−v(S))(1li∈S−v(S)).

Suppose that αS is the probability of choosing coalition S. The expected (with respect

to the probability distribution over all the coalitions) weighted extra benefit if i receives

the budget is therefore
∑

S αS(zt(S)−v(S))
(
1li∈S−v(S)

)
. In order to minimize this figure

a player related to the minimal weighted extra benefit is chosen at time t + 1 and is given

the entire budget. In other words, at time t + 1 a player who minimizes the expected

weighted extra benefit receives the budget. A formal description of this process follows.

For any i ∈ N let hi be a vector in IR2n−1 whose coordinate corresponding to the

coalition S is
√

αS

(
1li∈S − v(S)

)
. Define D to be the convex hull of {hi}i∈N . Note that

every point in D corresponds to a convex combination of the hi’s and therefore to a specific

allocation (recall, v(N) = 1). In particular, the closest point in D to the origin corresponds

to the allocation Lα(v).

Let ei be the ith vector of the standard basis of IRn.

Define the allocation rule R1 inductively as follows. The first allocation chosen by R1,

z1, is an arbitrary standard basis vector. That is, z1 = ei1 for some arbitrary i1. Suppose

that the allocations z1, z2, z3, ..., zt−1, all standard basis vectors, have been chosen. In

other words, for every r ≤ t there is a player ir such that zr = eir . Denote xr = hir

for every r ≤ t and xt the average of x1, ..., xt. Let hit+1 be an extreme point in D that
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minimizes 〈xt, ·〉 (if there is more than one extreme point in D that achieves the minimum,

one may choose either one).

Note that xt(S) =
√

αS

(
zt(S)−v(S)

)
. Therefore, 〈xt, hi〉 =

∑
S αS(zt(S)−v(S))

(
1li∈S−

v(S)
)
. Thus, the extreme point of D, hi, that minimizes the inner product on the left side

of this equation indeed corresponds to the player that minimizes the expected extra benefit

(i.e., the sum on the right side), meaning that the allocation rule R1 bears the intuition

provided earlier.

Define R1(z1, z2, z3, ..., zt−1) = eit
for every t.

Theorem 1. Let z1, z2, ... be the allocation process induced by R1. Then, zt converges

to the least square value of the game that corresponds to the weights αS , S ⊆ N .

Proof: Denote xt = hit for every period t. Since D is the convex hull of the hi’s, hit+1 =

argminw∈D〈xt, w〉. R1 is so defined as to obtain 〈xt, xt+1〉 ≤ 〈xt, w〉 for all w ∈ D and

for all t. Therefore, the sequence xt satisfies the condition of Proposition 1. This ensures

that the sequence of averages xt converges to argminw∈D〈w, w〉. Hence, zt converges to

Lα(v).

A dual interpretation of this process is the following. A coalition is chosen randomly

according to the distribution (αS)S . At time t + 1 the coalition S is assigned a weight

proportional to the excess corresponding to the allocation zt, zt(S) − v(S). At any time

a player whose contribution to the expected weighted welfare of society
∑

S αS(zt(S) −
v(S))

(
1li∈S − v(S)

)
is maximal, is chosen. It is the expected welfare due to the random

selection of coalitions (the αS component) and it is the weighted one due to the weights,

zt(S)− v(S) that appear in this expression. This player receives the entire budget and is

denoted player it+1.

3.4 The Process that Converges to the Shapley Value.

Keane (1969) proved that if coalition S is chosen with probability αS = c (|S|−1)!(|N |−|S|−1)!
(|N |−2)! ,

where c, the normalization factor, is equal to 1
n−1 (

∑(|N |−1
j=1

(|N |
j(|N |−j) ), then Lα(v) is the

Shapley value. Understanding the logic behind these probabilities, which is the purpose

of this subsection, may enhance the intuition behind the allocation process that converges

to the Shapley value.
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In determining, at any specific period, which player is entitled to get the entire budget,

it is enough to compare only pairs of players. When players, say i and j, are compared

with each other, only coalitions that contain one and not the other matter. The reason is

that as far as coalition S is concerned, when a player receives the budget, all players of S

benefit equally. Thus, i and j benefit equally whether both i and j are in S, or not. In

other words, only coalitions that contain only one of i and j make a difference.

Let S be a coalition that contains either i or j (but not both). Subtracting i, j from

this coalition, one obtains a coalition of size |S|−1 in N \{i, j}. Thus, selecting a coalition

of size s that contains, say i and not j, is equivalent to choosing a coalition of size s − 1

from the set N \ {i, j}.
The αS ’s are determined by the following procedure according to which coalitions

from N −{i, j} are selected. An order of the players in N −{i, j} is randomly chosen and

then a cutoff point of the order is randomly selected. Both selections (of the order and of

the cutoff point) are taken according to the uniform distribution. Thus, coalitions of the

same size have the same probability. Furthermore, the total probability of all coalitions of

a certain size is constant across sizes. Therefore, the probability of selecting a coalition of

size |S| − 1 from the set N − {i, j} is αS = c (|S|−1)!(|N |−|S|−1)!
(|N |−2)! .

4. Processes that Converge to the Core and to the Least Core

4.1 The Process that Converges to the Core.

The process described here also utilizes the approachability principle. Let the target

set C be the non-negative orthant of IRk. When applied to C, the approachability principle

obtains the following form. If a sequence of uniformly bounded vectors xt, t = 1, 2... in

IRk satisfies the condition1

〈min(xt, 0), xt+1〉 ≤ 0 for all t,

then min(xt, 0) converges to 0.

Let S1, ..., Sk, where k = 2n − 1, be the list of all non-empty coalitions. Denote by yi

the vector in IRk whose `th coordinate is 1li∈S`
− v(S`).

1 For two vectors x, y ∈ IRn, min(x, y) denotes the coordinate-wise minimum of the two.
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Definition 2. We say that v is balanced if for every k-dimensional vector, α = (α`)k
`=1,

with α` being a non-negative number for every `, there is a player i such that 〈α, yi〉 ≥ 0.

The Shapley-Bondareva theorem (Bondareva (1963) and Shapley (1967)) states that

the core of the cooperative game v is non-empty if and only if v is balanced.

We assume that v is balanced and construct a process the generates at least one point

in the core. The argument involves the approachability principle alone. No separation

theorem is needed. In other words, what follows establishes a proof of the non-trivial part

of the Shapley-Bondareva theorem that does not rely on any duality argument.

We define the allocation rule R2 inductively. Alongside this definition two sequences

will be defined: the allocation process z1, z2, ... of vectors in IRn and an auxiliary sequence

x1, x2, ... , of vectors in IRk. Let i1 be an arbitrary player. Set z1 = ei1 and x1 = yi1 .

Suppose that the sequences z1, ..., zt and x1, ..., xt have been defined so that for every r ≤ t

there is a player ir such that zr = eir and xr = yir . Furthermore,

〈min(xr, 0), xr+1〉 ≤ 0 for all r < t.

By the assumption that v is balanced, there is a player it+1 such that

〈min(xt, 0), yit+1〉 ≤ 0.

Define R2(z1, ..., zt) = eit+1 and set xt+1 = yit+1 .

Theorem 2. Let z1, z2, ... be the allocation process induced by R2. Then, zt converges

to the core of the game. That is, any accumulation point of the sequence zt is in the core.

Proof: By construction, the sequence x1, x2, ... satisfies the condition of the approacha-

bility principle with the target set being {0} (in IRk). Therefore, min(xt, 0) converges to

0. This means that any accumulation point of xt(`) is greater than or equal to 0.

The `th coordinate of xt, denoted x`
t, is 1

t

∑t
r=1 1lir∈S`

− v(S`). Thus, for every `

lim inft x`
t ≥ 0. That is, for every ` lim inft

1
t

∑t
r=1 1lir∈S`

≥ v(S`). In other words, for

every ` lim inft

∑
i∈S`

zi
t ≥ v(S`).
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Since all zt are in the unit simplex, so are all the accumulation points. Let z be an

accumulation point of the sequence zt, t = 1, 2, ... . The point z satisfies
∑

i∈S`
zi ≥ v(S`)

for every `. Thus, z is in the core.

The intuition behind this process is the following. The figure x`
t measures the historical

average surplus of the coalition S` up to stage t. At this stage the coalitions are weighted

with respect to these surpluses: Those coalitions with a positive surplus are neglected

while the other coalitions are assigned a weight proportional to their (negative) surplus

(that is, for such a coalition, say, S`, the weight is −min(xt(`), 0) ). Then, a player i

whose weighted actual surplus (i.e.,
∑k

`=1

(
−min(x`

t, 0)
)(

1li∈S`
−v(S`)

)
) is non-negative

is chosen and is given the entire budget v(N). The vector zt is the historical distribution

of the budget up to time t. Any limit point of the sequence zt is in the core.

It is worth emphasizing that there is no guarantee that every point in the core is

approached by the sequence zt.

Note that this process provides an algorithm for approximating the core: zt approaches

the core at the rate of 1√
t
. In other words, the distance of zt to the core is O( 1√

t
). Note

also that whenever v is balanced, one can find a sequence zt whose accumulation points are

in the core. Once again, since the process defined does not depend on any dual argument

or separation theorem, it establishes another proof of the difficult part of the Shapley-

Bondareva theorem.

4.1 The Process that Converges to the Least Core.

In constructing the allocation process that converges to the core we assumed that the

game is balanced. When the game is not balanced the allocation rule R2 is not defined.

However, R2 can be modified to fit this case.

For any ε (positive or negative), the ε-core, Cε of the game is the set of all payoffs

(i.e., vectors in Z) z such that z(S) =
∑

i∈S zi ≥ v(S) − ε for every S 6= ∅, N . It is clear

that the ε-core correspondence (as a function of ε) is monotonically increasing with respect

to inclusion. The least core, denoted LC, is the intersection of all non-empty ε-cores.

Definition 3. We say that v is ε-balanced if for every k-dimensional vector α = (α`)k
`=1,

with α` being a number greater than or equal to ε for every `, there is a player i such that
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〈α, yi〉 ≥ 0.

For any ε let −→−ε denote the n-dimensional vector (−ε, ...,−ε).

Suppose that the game v is ε-balanced. Given this information, we can modify the

definition of R2 as follows. At period t, xt+1 is chosen so as to satisfy

〈min(xt,
−→−ε), xt+1〉 ≤ 0.

The approachability principle ensures that for every `,

lim inft x`
t ≥ −ε. That is, for every ` lim inft

1
t

∑t
r=1 1lir∈S`

≥ v(S`)−ε. In other words,

if the induced allocation process is z1, z2, ..., then for every ` lim inft

∑
i∈S`

zi
t ≥ v(S`)−ε. A

similar argument to that appearing in the proof of Theorem 2 shows that any accumulation

point of this allocation process is in the ε-core.

5. Another Process Converging to the Least Core

In the previous section we presented an allocation process whose accumulation points

are in the ε-core, provided that the game is ε-balanced. Without this information, we

could not define the corresponding allocation rule. The advantage of the process defined

in this section is that it does not rely on the information regarding the ε-balancedness.

There is no need to know for what ε’s the game is ε-balanced. The identity of the ε0 that

satisfies LC = Cε0 is eventually revealed by the process.

For this reason I find this section important, although it merely involves a re-interpretation

of well-known results.

5.1 Converting the Problem of Finding the Least Core to a Zero-Sum Game.

Consider a 0− 1 normalized cooperative game v (i.e., v(i) = 0 for every player i and

v(N) = 1, where N is the set of all players).

In order to avoid confusion with the players of the cooperative games under discussion,

the players of the non-cooperative game about to be defined will be called agents.

Let G be the following non-cooperative two-agent zero-sum game. The row agent (the

maximizer) chooses i ∈ N and the column agent (the minimizer) chooses a coalition S ⊆ N

providing that S 6= ∅, N . Thus, the matrix of G is n × 2n − 2. The payoff corresponding
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to the pair (i, S) is 1li∈S − v(S), where 1l is the characteristic function. The payoff when

(i, S) is the pair of strategies chosen, is the net payoff the players in S receive beyond the

worth of S, v(S).

5.2 The Allocation Process that Converges to the Least Core.

We define the allocation rule R3 using the fictitious play algorithm (Robinson (1951))

to G. At stage 1 an arbitrary player i1 is chosen (and given the whole budget, v(N)). That

is, the first allocation z1 is ei1 for some player i1. Furthermore, an arbitrary coalition S1

is chosen.

Suppose that up to time t − 1 the players i1, ..., it−1 and the coalitions S1, ..., St−1

were chosen, so that for every r ≤ t − 1, zr = eir . Denoting2 gr(S) =
∑

u<r
1liu∈S

r−1 − v(S)

and fr(i) =
∑

u<r
1li∈Su−v(Su)

r−1 , 2 ≤ r ≤ t− 1, it is assumed that for every r ≤ t− 1, Sr is

a coalition that minimizes gr(S) and the player it is chosen so as to maximize fr(i).

At time t, set St to be a coalition that minimizes gt(·) and let the player it maximize

ft(·). That is, define R3(z1, ..., zt−1) = eit .

Theorem 3. Let z1, z2, ... be the allocation process induced by R3. Then, zt converges

to the least core of the game. That is, any accumulation point of the sequence zt is in the

least core.

Proof: Since the allocation rule R3 follows the algorithm of Robinson (1951), the em-

pirical distribution of the agents i1, ..., it, which is zt, converges to an optimal strategy of

the row agent. Note that the set of optimal strategies of the row agent in G is the least

core of v.

The interpretation of the allocation rule R3 is the following. Given the historical

distribution of wealth up to time t, the net wealth of coalition S is gt(S) =
∑

u<t
1liu∈S

t−1 −
v(S). The most deprived coalition is St. Thus, S1, S2, ..., St is the list of all historical,

most-deprived coalitions.

On the other hand, fr(i) =
∑

u<t
1li∈Su−v(Su)

t−1 is the average contribution of player i to

the wealth of the historical most-deprived coalitions, if i is the one who receives the entire

2 In traditional terms of cooperative game theory gt(S) is referred to as the minus of the empirical
excess of coalition S.
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budget. The player chosen at time t, it, maximizes this average contribution.

5.3 A Slightly Different Process.

One can deal with another non-cooperative game G. Agent 1’s set of actions is as in

G. Agent 2 chooses a coalition S which is not the grand coalition nor the empty one, such

that v(S) > 0. Let the payoff corresponding to (i, S) be 1li∈S

v(S) .

We adapt the fictitious play algorithm (Robinson (1951)) to G and define the allocation

rule R4. At stage 1 an arbitrary player i1 is chosen (and given the whole budget, v(N)).

That is z1 = ei1 . Furthermore, an arbitrary coalition S1 is chosen. Suppose that up to

time t − 1 the players i1, ..., it−1 and the coalitions S1, ..., St−1 were chosen and zr = er1 ,

r ≤ t− 1. Define, gt(S) =
1

t−1

∑
r<t

1lir∈S

v(S) , and f t(i) = 1
t−1

∑
r<t

1li∈Sr

v(Sr) .

The coalition at time t, St, minimizes gt(S) and the player it is chosen so as to

maximize f t(i). In other words, R4(z1, ..., zt−1) = eit .

In this case the extent to which a coalition is deprived up to time t is measured by the

ratio of the total cumulative wealth of a coalition and its value. Here again, the coalition

chosen is one of the most deprived ones. On the other hand, the player chosen at time

t, it, maximizes the sum of the ratios 1
v(S) over all the coalitions that were chosen in the

past.

As in Theorem 3, the allocation process induced by R4 converges to the least core.

6. Final Remarks

6.1. We described a few allocation rules that induce allocation processes that converge

to well-known solution concepts. None of these rules has been obtained axiomatically. It

would be interesting to find appealing axioms that are based on the dynamic aspect of the

game and yield a converging allocation process.

6.2. In Section 4 we described processes that converge to the core when it is not empty.

As noted, not all the points in the core are necessarily accumulation points of the process.

What characterizes those core points that can be approximated by allocation processes, is

a matter for further study.
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