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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 17, No. 1, February 1992 
Printed in U.S A. 

CORRELATED EQUILIBRIA IN TWO-PLAYER REPEATED 
GAMES WITH NONOBSERVABLE ACTIONS* 

EHUD LEHRER 

Four kinds of correlated equilibrium payoff sets in undiscounted repeated games with 
nonobservable actions are studied. Three of them, the upper, the uniform, and Banach lead 
to the same payoff set, whereas the lower one in general is associated with a larger set. The 
extensive form correlated equilibrium is also explored. It turns out that both the regular and 
extensive form correlated equilibria yield the same sets of payoffs. 

1. Introduction. In repeated games with nonobservable actions a player gets, 
after each stage, a signal that depends on the joint action played. This signal does not 
reveal necessarily the opponents' actions nor does it reveal their payoffs. The 
question naturally arises: What are the possible equilibrium outcomes and how do 
players use the information they collected during the game? 

We confine ourselves to undiscounted repeated games, where the payoffs are 
determined by the limit of partial average of the stage payoffs. This model enables 
one to examine the long-run impact of imperfect monitoring. The paper characterizes 
several types of long-term correlated equilibrium payoffs in two-player repeated 
games with nonobservable actions. 

Correlated equilibrium (introduced by Aumann in [Al]) allows the players to utilize 
an exogenous mediator who provides each one with private information. The players, 
based on this private information, adopt a pure strategy to be played in the repeated 
game. Such coordination between players may, in general, sustain equilibrium payoffs 
that were not supportable by an equilibrium without it (namely, by regular Nash 
equilibrium). The correlated equilibrium can be thought of also as a Nash equilibrium 
of an extended game in which a mediator sends messages to the players and then they 
choose strategies. 

Correlated equilibrium is a more attractive solution concept than Nash equilibrium 
for several reasons: (1) it better reflects real-life phenomena in which players may 
condition their behavior on their private information; (2) it allows for coordination 
excluded by Nash equilibrium; and (3) it is simpler to compute (see [GZ] and [HS]). 
In repeated games with imperfect monitoring the introduction of a mediator facili- 
tates the characterization of the equilibrium payoffs set and simplifies the supporting 
equilibrium strategies. 

In addition to the regular correlated equilibrium in which a mediator coordinates 
between the players before starting the game and then disappears, we present the 
extensive form correlated equilibrium (introduced by Forges [F1]). In this type of 
correlated equilibrium the mediator remains active all over the game. He sends 
messages to each participating player before each stage. In general, the extensive 
form type sustains a larger set of equilibrium payoffs than the regular one. However, 
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so it turns out, in the model investigated here both yield the same set of equilibrium 
payoffs. 

Four types of long-run equilibria are defined: the upper, the uniform, Banach, and 
lower. The payoffs sets associated with the first three coincide, whereas the one 
associated with the lower equilibrium is usually greater. The various types of equilib- 
ria differ in the ways players evaluate possible deviations. The upper equilibrium 
corresponds to "optimistic" players for whom the best periods matter most. The 
uniform equilibrium (see [S]) concept views the infinite game as an "approximation" 
to large finitely repeated games. Thus, a joint strategy is a uniform equilibrium if it 
induces an E-equilibrium in a sufficiently long, finitely repeated game. The Banach 
equilibrium concept incorporates a Banach limit in order to evaluate profitability of 
possible deviation. The lower equilibrium relates to "pessimistic" players, taking into 
account the worst averages they are about to experience. 

We find, unexpectedly, that the set of lower correlated equilibrium payoffs coincide 
with the set of Nash lower equilibrium payoffs. In other words, the correlation device 
does not enlarge the players' possibilities (in terms of payoffs). However, the payoff 
sets corresponding to other correlated equilibria types are, in general, larger than the 
respective Nash equilibrium payoffs sets. 

In order to describe the main results of the paper, two relations between a player's 
actions must be introduced. Two actions of a player are indistinguishable if they yield 
the same signal for the opponent, no matter what the latter is playing. In other words, 
the opponent cannot distinguish between two indistinguishable actions of a player. 
One might think that if a player who is assigned to play a certain action decides to 
play another action, indistinguishable from the assigned one, the opponent will not be 
able to detect the deviation. As was pointed out by [L2] and [L4], this is not the case. 

A player can deviate to an indistinguishable action but a less informative one, that 
is, to an action by which he is able to collect less information. By playing a less 
informative action a player will know less about previous actions of his opponent. In a 
communication phase of the repeated game strategies, to be described in detail 
below, the player can discern that his opponent knows less than what he should know 
had he adhered to the prescribed action. Thereby, players can detect a deviation to 
an action which is indistinguishable from the prescribed action but less informative 
than it. Thus, in order to define an undetectable deviation one should introduce 
another relation. An action a' is more informative than a, if by playing a', a player 
can distinguish between two actions of his opponent better than by playing a. 

It is shown that any deviation from the prescribed action to another, either 
distinguishable from it or less informative than it, is detectable. Moreover, any other 
deviation is not detectable. In equilibrium, a player will not have an incentive to 
deviate because all possible deviations are either detectable (and the player is 
threatened by punishment) or undetectable but also unprofitable. 

The set of upper, uniform, or Banach correlated equilibrium payoffs is character- 
ized as the set of all the individually rational payoffs of the following form. They 
should be associated with correlated actions (probability distribution over the joint 
pure actions) in which any action assigned a positive probability is a best response 
among the class of actions, which are indistinguishable from and more informative 
than itself. 

On the other hand, the set of lower correlated equilibrium payoffs set is character- 
ized by the individually rational payoffs associated with two (possibly different) 
correlated actions. In the first one, actions of player 1 are best responses (among the 
class of actions, etc., as above) and in the second, actions of player 2 are best 
responses (among the class of actions, etc.). Obviously, this set is larger than the one 
corresponding to the upper equilibrium. 
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The paper contains six sections. The model and various equilibria types are 
presented in ?2. ?3 is devoted to the definition of the relation just described, and to 
the formulation of the main theorems. ?4 and ?5 provide the proofs of the theorems. 
?6 contains comments on some alternative approaches and on some possible exten- 
sions. 

2. The model. 

2.1. The components of the game. The two-player repeated game with nonob- 
servable actions consists of: 

(i) Two finite sets of actions 1 and 2. Set E = 1 X 2. 

(ii) Two information functions 11 and 12 and two signals sets L1 and L2, s.t. 
11: I - Li. Elements in Li are called signals. 

(iii) Two payoff functions h1 and h2, where hi: X - > R. 

2.2. Pure strategies. A pure strategy of player i is a sequence of functions 
(f , f2,...) s.t. f t: L-1 > i, where L- 1 is the Cartesian product of Li with itself 
t - 1 times. Denote by S* the set of all pure strategies of player i in the repeated 
game. A pair of pure strategies (f, g) e ZT X E* is called a joint strategy. 

A joint strategy (f, g) induces two sequences {x}fU, i = 1,2, of numbers, where 
x is the payoff of player i at stage t. 

2.3. Upper correlated equilibrium. An upper correlated equilibrium is a tuple 
(A x B, ix 9, P, o, r), where 

(i) A x B is a product set of points; 
(ii) sx v is a o-algebra of A x B; 

(iii) P is a probability measure defined on VSx S; 
(iv) ar is a measurable function from (A, /) to I4; 
(v) r is a measurable function from (B, Y) to I;, satisfying: 

T - 

(la) limE,S p (1/T) xt exists for i = 1,2. 
t=l 

Denote it by H.*(a, T). 

- T 

(lb) limsupE,,r r (1/T) E xt < H*(o, r) for all -. 
T t=l 

(lc) limsupE, , p (1/T) x\ < H2(t, r) for all T. 
T t=l 

Denote by UCEP the set of all the upper correlated equilibrium payoffs 
(Hm(ur, T),rH2 m(, T)). 

2.4. The lower correlated equilibrium. The lower correlated equilibrium is defined 
as the upper one with the change that liminf replaces limsup in (lb) and (Ic). 

Denote by LCEP the set of all lower correlated equilibrium payoffs. Obviously 
UCEP c LCEP. The lower and the upper equilibria differ in the way an infinite 
stream of payoffs is evaluated by the players. The former corresponds to "pessimistic" 
players taking into account the worst averages they are about to experience, while the 
latter assumes "optimistic" players for which the best periods matter most. 
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2.5. The uniform correlated equilibrium. A uniform correlated equilibrium is a 
tuple U = (A x B, (x , P, o-, r) for which and for every e > 0 there is To s.t. if 
T > To then U induces an e-Nash equilibrium in the extended (including the 
messages of the mediator) T-truncated game. In other words, (la) is satisfied and for 
every E > 0 there is a To s.t. T > To implies 

T - 

(lb') Ev,r, (1/T) E xt < H*(or, r) + E for all T> To, 
t=l 

and a similar condition for player 2. 
Denote the set of uniform correlated equilibrium payoffs by UNIC. 
It is clear that UNIC c UCEP. 

2.6. The Banach correlated equilibrium. Let L be a Banach limit. A Banach 
correlated equilibrium is a tuple (A X B, dx ,P, P, , r) which satisfies 

( 
= t=i JT \t= T L(E-, P( 1/T) EXl} < L{Ea, ,P(/T) , IX1}T 

for all a, and a similar inequality for -, replacing x by x2. 
Denote by CEPL the set of all L-Banach equilibrium payoffs. 

2.7. Description of the game in words. Before the game starts a mediator chooses 
a point (a, f8) e A x B according to P. He informs player 1 (hereafter PI) of a and 
player 2 (PII) of f8. a and f8 are called messages. PI then plays in the repeated game 
according to the pure strategy o, = a(a) and PII plays according to r, = r(f8), i.e., at 
the first stage PI plays or2 and PII plays r~. Denoting z1 = (ora, ,), player i receives 
the signal s/ = i,(zl) and the payoff xJ = hi(z'). At the second stage PI plays (r2(s1) 
and PII plays 32). Denoting z2 = ( 1(s), r(s)) player i gets the signal s2 = 

12(z2) and the payoff x2 = hi(z2), and so forth. 
The choice of the particular pure strategies is done by functions oa and r. These 

choice functions are in equilibrium if any other player's choice function would not 
increase his expected payoff in the repeated game, evaluated with either the upper, 
lower, Banach limit, or sufficiently large partial averages (which correspond to 
uniform equilibrium). 

EXAMPLE 1. The repeated game of: 

bl b2 b3 b4 bl b2 b3 b4 

a1 6,6 2,7 6,6 0,0 A,A A,?) A,7 A', 8 
a2 7,2 0,0 0,0 0,0 7, A 77,77 77,y 7', 

a3 6,6 0,0 0,0 0,0 , A Y,r7 Y,Y y , 
a4 0, 0,0 0,0 0,0 0,0 6,A' ,7' 8, y E, E 

payoffs signals 

In this example, 21 = {al, a2, a3, a4}, 2 = {b, b2, b3 b4} and Li 
{A, 77, y, , A', 77', E}, i = 1,2. If, for instance, PI played a2 and PII played b1, the 

payoffs are 7 and 2 for PI and PII, respectively, and the signals are 71 and A for PI 
and PII, respectively. 

REMARK 1. In the framework described here the players are not allowed to 
randomize. Any randomization, if and when it takes place, should be provided by the 
mediator. However, all the messages are given to the players before starting the 
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game. Therefore, the message should contain a random signal on which the players 
base their actions when the need of randomization arises (e.g., in case of punishment 
or in a case where a random stage is chosen). For our purposes it will be enough if 
player i will get in addition to previously mentioned messages also a string 
(Si, s2, s,...), where sf is drawn randomly from [0, 1] according to the uniform 
distribution independently of all other messages' components. (Actually, it would 
suffice to get a message consisting of one number which is independently drawn from 
[0,1] according to the uniform distribution.) 

In the sequel, when it is said that a player randomizes, it should be understood as a 
player bases his action on the random message he got from the mediator. 

2.8. An extensive form correlated equilibrium. As opposed to the correlated 
equilibrium, where the mediator correlates between the players only before the game 
starts, we consider here a mediator who is active at all stages. Before stage t the 
mediator selects a message (a,, pt) E (At, Bt) according to a probability distribution 
Pt, which may depend on his previous selected messages {(a,, P3)} <t,. Relying on all 
the signals and messages previously received, a player chooses an action to be played 
at stage t. For a more elaborate study see [F1] and [F2]. 

Precisely, an upper extensive form correlated equilibrium is a tuple (( X = A,) x 
(X = Bt), 'x 9, P, f, g), where: 

(i) (( X A,) x (X t Bt), V.x ., P) is a product sample space; 
(ii) f = (f1, f2,...), where ft is a measurable function from L -l x A, x * * x 

A, to El; and 
(iii) g = (g1, g2,...), where gt is a measurable function from L'~- x B1 x .. x 

Bt to Y2, satisfying convergence and incentive compatibility conditions. Namely, 
having the properties (la)-(lc), replacing a with f, r with g, a with f, and r 
with g. 

Similarly, lower, uniform and Banach extensive form correlated equilibria can be 
defined. In the sequel, an asterisk attached to a correlated equilibrium payoffs set will 
indicate that the set corresponds to extensive form correlated equilibrium. 

Notice that any correlated equilibrium payoff is an extensive form correlated 
equilibrium payoff (UECP c UECP*, LECP c LECP*, UNIC c UNIC*, and 
CEPL c CEPL ), but the opposite, typically, is incorrect. The following game, quoted 
from [M], is an example in which there is an extensive form correlated equilibrium 
payoff that is not a correlated equilibrium payoff. 

EXAMPLE 2. PI chooses either t or -t. If he chooses t, both players get 2; 
otherwise, he should choose between m and b. PII is informed of the first choice of 
PI (i.e., either t or -t), but not of the second one. After PI takes his actions, PII 
should choose between I and r. The various combinations of actions result in payoffs 
depicted in Figure 1. 

2,2 

'., 0. 

' 1,5 
FIGURE 1 
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A mediator recommends to PI at the first node to choose -t. After PI has made 
his choice, the mediator picks either (m, 1) or (b, r), with probability 2 each. If the 
former was the outcome, he recommends PI to play m and PII to play 1, and if the 
latter was the outcome he recommends b to PI and r to PII. 

Notice that after the choice of -t has been made (and then t is no longer 
available), neither player can gain by disobeying the mediator's recommendations, 
provided that the other player obeys them. The expected payoff of this correlation 
mechanism is 3 for both players. 

However, (3, 3) cannot be achieved as a correlated equilibrium payoff, because PI 
would not be willing to play consecutively - t and then b (and get the payoff 1) if he 
can play the dominating action t (and get the payoff 2). 

3. The main theorems. In order to state the main results, a few notations are 
needed. 

3.1. Comparison of actions. We first define two relations on the set of actions Ii. 
The first one is an equivalence relation and the other is a partial order. 

Two actions, a',a E 1i are indistinguishable (denoted a' a) if 13_i(a,b)= 
13_i(a', b) for any b E 13-i. In words, a and a' are indistinguishable if by playing any 
b, player 3 - i cannot distinguish between them. 

The action a' is more informative than the action a if li(a, b) 4 li(a, b') implies 
li(a', b) s li(a', b'), for any b, b' E .3-i. In other words, a' is more informative than 
a if, whenever by playing a, player i can distinguish between b and b' he can do so 
also by playing a'. Namely, by playing a', player i can collect more information about 
his opponent's action than by playing a. 

An action a is strictly less informative than a' if a' is more informative than a and 
a is not more informative than a'. 

EXAMPLE 3. In Example 1, al and a2 are indistinguishable, while a, and a4 are 
distinguishable. In the same example a2 is more informative than a3, while a3 is not 
more informative than a2, because by playing a2 PI can distinguish between b3 and 
b4, while he cannot do so by playing a3. 

3.2. Correlated actions and the sets Bi, Bi. Denote by A the set of probability 
distributions on E. Elements of A are referred to as correlated actions. We can 
extend the domain of the payoff function hi to correlated actions. For any Q E A, 
define hi(Q) = E(a,,b)E Q(a, b)hi(a, b). Let h(Q) = (h,(Q), h2(Q)). 

For any joint pure action, (a0, bo) E X, define 

h1(Qlao) = Q(ao, b)h(ao, b) and 

h2(Qlbo)= E Q(a, b)h2(a, bo) 
a E1 

i.e., hl(QIao) and h2(Qlbo) are the unnormalized (the probabilities do not sum up to 
1) expected payoffs of PI and PII, given the actions a0 and b0, respectively. 

Now we are ready to define two sets, B1 and B2, consisting of correlated actions. A 
distribution Q in A is in B1 if any action a0, assigned a positive probability by Q, is a 
best response, versus the expected mixed action of PII, among the class of actions 
that are both indistinguishable from and more informative than itself. Precisely, 

DEFINITION 1 

B, = iQ E AIh(Qlao) > E Q(a,b)h1(a,b) 

for all aO, a E ZI satisfying a - a0 and a is more informative than ao. 
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Notice that if instead of playing a0 PI plays a, his unnormalized payoff is 
Eb e2Q(aO, b)hl(a, b). B2 is defined in a similar way. 

In Definition 1 we required that a0 is a best response among all actions a that 
satisfy a - aO and that a is more informative than ao. Had we required in Definition 
1 only a - ao, namely, that ao is a best response among a greater class of actions (of 
those indistinguishable from ao), we would have obtained a smaller set of distribu- 
tions. Denote the set of all these distributions by B1. Formally, 

B, = IQ e Alh1(Qlao) > E Q(a, b)hl(a,b) 
b E=I2 

for all aO, a E E1 satisfying a a0}. 

B2 is defined similarly. The set Ci (resp., Di), defined initially in [L2], is defined like 
Bi (resp., Bi) with the additional qualification that the distribution Q is a product of 
its marginal distributions. Precisely, let A' be the set of all Q E A s.t. Q is a product 
of its marginal distributions. Define Ci = Bi n A' and Di = Bi ( A'. Thus, Ci c B. 
and Di cBi, i = 1,2. 

REMARK 2. (i) Any distribution induced by a Nash equilibrium (of the one-shot 
game) is included in B1 n B2. Thus, B1 n B2 is nonempty. 

(ii) It can be easily verified that Bi and Bi are convex sets. 
EXAMPLE 4 (inspired by [A2]). In the following game, the information is either 

standard (the players are informed of the joint action played) or trivial (each player is 
informed solely of his own action). Standard information is indicated by an asterisk. 

b, b2 b3 

a1 0,0 8,0 0,0 
a2 0,8 6,6 2,7 
a3 0,0 7,2 0,0* 

Notice that under a standard-trivial information structure (like the one just 
described) two actions are indistinguishable if and only if both yield trivial informa- 
tion regardless of the opponent's action. Moreover, if an action a' is strictly more 
informative than a, then there is no action indistinguishable from the first. 

Let Q be the distribution assigning 3 to each of the pairs (a3, b2), (a2, b2) and 
(a2, b3). Notice that Q is not a correlated equilibrium in the one-shot game, since PI 
(resp., PII) can gain by deviating from a3 (resp., b3) to a1 (resp., bl). However, 
al - a3 and bl, b3. Thus, Q e B n B2. 

3.3. Some properties of B BB. The following propositions are interesting in their 
own right and they will be used in Theorem l's proof. 

PROPOSITION 1. conv h(Ci) = h(Bi), for i = 1, 2. 

PROOF. We will show this for i = 1. By Definition 1, h(C1) c h(B1). By Remark 
l(ii), conv h(Cl) c h(Bl). It remains to show the inverse inclusion. 

Let Q e B1. Denote by Q1 the marginal distribution over I,. For any a e E1 s.t. 
Qi(a) > 0, we have 

(a, E (Q(a,b)/Q1(a))sb) EC1, 
b E2 
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where 8b is the probability measure assigning a mass 1 to b. Thus, 

h(Q) = E Qi(a)h(a, E (Q(a,b)/Ql(a)),b) 
aE 1, Ql(a)>0 bE 2 

is included in conv h(C1). Therefore, h(Bl) c conv h(C1), and the proposition fol- 
lows. // 

Similarly, one can obtain: 

PROPOSITION 2. conv h(Di) = h(Bi), for i = 1,2. 

Let Q be a correlated action. Denote by UDi(Q) (for undetectable) the set of all 
the correlated actions that are the results of undetectable deviations of player i. 
Namely, Q' E UD1(Q) if (i) there is a map y from S1 to S1 such that y(a) - a and 
y(a) is more informative than a and (ii) Q'(a', b) = Ea E- 1(a )Q(a, b) for any (a', b) 
lY. UD2(Q) is defined similarly. In words, y attaches to any action a an action which is 
indistinguishable from and more informative than itself. Moreover, the probability of 
the pair (a', b) w.r.t.1 Q' is the sum of all the probabilities w.r.t. Q of all the pairs 
(a, b), where a is attached to a'. 

The class BRi(Q) (for best response) is the set of the distributions in UDi(Q) which 
yield the maximum payoff to player i, i.e., BRi(Q) = {Q'lhi(Q') > hi(Q") for all 
Q" e UDi(Q)}. Clearly, BRi(Q) c Bi. 

The following lemma will be useful in ?4. 

LEMMA 1. Suppose that K is a straight line that divides lR2 into two parts, K- and 
K+. Furthermore, suppose that h(B,) c K- and2 dist(h(Bi), K) = d > O. Then there 
exists E > 0 s.t. h(Q) E K+ and Q' E BRi(Q) imply 

hi(Q') > hi(Q) + E, i = 1,2. 

PROOF. Assume to the contrary that there exists a sequence Qn E A which 
satisfies (i) h(Q) E K+ and (ii) for every Q E BRi(Qn) the following holds: 

hi(Qn) < hi(Qn) + En, where En_-> 0. We can assume that Qn -> Q. Since h is 
continuous, h(Q) < h(Q) for all Q e UDi(Q). Thus, Q E Bi. 

On the other hand, dist(h(Qn), h(Bi)) > d and therefore dist(h(Q), h(Bi)) > d, a 
contradiction. // 

A similar statement holds for h(Bi) as well. The following lemma will be used in ?5. 

LEMMA 2. Let K be a straight line satisfying dist(h(B1 fn B2), K) = d > 0. Then 
there exists an E > 0 s.t. for all correlated actions Q, if K separates between h(Q) and 
h(B1 n B2) then there is an i satisfying 

hi(Q) > hi(Q) + E for all Q E BRi(Q). 

PROOF. Assume to the contrary that there are sequences of correlated actions 
{Qn), ({} and {Q2} satisfying: (i) hi(Qn) < hi(Qn) + En for i = 1, 2, where E, - 0, 

and (ii) Q E BRi(Qn), i = 1,2. 
W.l.o.g.3 we can assume that Qn -> Q. Thus, Q E B1 n B2. On the other hand, 

since h is continuous, dist(h(Q), h(Bi n B2)) > d, a contradiction. // 

1With respect to. 
2dist(., * ) is the distance induced by the Euclidean metric. 
3Without loss of generality. 
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3.4. The lower equilibrium. The lower Nash equilibrium (not the correlated one) 
is defined like the correlated equilibrium with the further qualification that the 
probability measure P on A x B is the product of its marginal distributions. In other 
words, the distribution according to which a player picks his pure strategy, before 
playing the game, is fixed across messages his opponent gets. In [L4] the set of all the 
lower equilibrium payoffs, LEP, is characterized. This characterization is done by the 
sets Ci, Di. For the sake of completeness we present it here. 

A player has trivial information if all his opponent's actions are indistinguishable 
from one another. The main result of [LA] is: 

LEP = conv h(C1) n conv h(C2) n IR 

if both players do not have trivial information, and 

LEP = conv h(D1) n conv h(D2) n IR 

otherwise, where IR is the set of the individually rational payoffs. 

3.5. Characterization of LCEP. In the case where the information of both 
players is not trivial the characterization will be done by using Bi, and in the trivial 
case by using Bi. 

THEOREM 1. In two-player games4 the following hold: 
(i) if both players have nontrivial information, then LCEP = LCEP* = cony h(C1) 

n conv h(C2) n IR = h(B1) n h(B2) n IR; and 
(ii) if at least one of the players has trivial information, then LCEP = LCEP* 

conv h(D1) n conv h(D2) n IR = h(Bl) n h(B2) n IR. 

In words, the lower correlated equilibrium payoffs set and the extensive form 
correlated equilibrium payoffs set coincide. Moreover, in the nontrivial case, they are 
equal to the set of payoffs associated with a correlated action in B1 and (possibly 
different) correlated action in B2. 

One of the implications of Theorem 1 is: 

COROLLARY 1. LCEP = LEP. // 

In other words, the introduction of a mediator to the game does not enlarge the set 
of lower equilibrium payoffs. 

REMARK 3. In a case in which both players have trivial information, LCEP equals 
the set of correlated equilibrium payoffs of the one-shot game. 

EXAMPLE 5. One can compute h(Bi) of Example 1 and find 

IR n h(Bi) = conv((0,0),(7,2), (2,7),(6,6)}, i = 1,2. 

Thus, LCEP = conv{(0,0), (7,2), (2,7), (6,6)}, which coincides with the feasible and 
individually rational payoffs. 

EXAMPLE 6. In Example 4 the payoff (6,6) is not in h(B(), i = 1,2, and thus 
(6,6) e LCEP. Thus, not all the feasible payoffs are necessarily associated with lower 
correlated equilibrium. 

3.6. The characterization of UCEP. The upper equilibrium is more restrictive. 
This fact is reflected in the characterization of the corresponding payoffs set. While a 
typical payoff in LCEP is associated with two correlated actions (one in B1 and one 

4Here and in the sequel, "games" refers to repeated games with nonobservable actions. 
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in B2), a payoff in UCEP is associated with one correlated action which is in both B1 
and B2. 

THEOREM 2. In two-player games, (i) if both players have nontrivial information, 
then 

UCEP = UCEP* = UNIC = UNIC* = CEPL = CEPL = h(B1 n B2) n IR, 

for all Banach limit L; and (ii) if at least one player has trivial information, then 

UCEP = UCEP* = UNIC = UNIC* = CEPL = CEPL* = h(B, n B2) n IR, 

for all Banach limit L. 

EXAMPLE 7. In Example 4, since IR = R2, one obtains 

h(B1 n B2) = UCEP = conv[{a(7,2) + ,(2,7) + y(6,6)1 

a + + y = 1; a, p, y > 0; y < a; y < ,u {(0, 8),(8, 0), (0,0)}]. 

4. The proof of Theorem 1. From here on it is assumed that h is bounded 
between 0 and 1. We will use the result quoted in ?3.4 above. 

The first step in the proof is to show that 

(4.1) h(B1) n h(B2) n IR c LCEP. 

It is clear that any lower equilibrium payoff is also a correlated equilibrium. Thus, 
LEP c LCEP. By Proposition 1 and by ?3.4: 

convh(CI) n convh(C2) = h(B,) n h(B2). 

Therefore (4.1) is established. It remains to show the converse inclusion. We will 
show that LCEP* c h(B1) n h(B2) n IR. 

Assume to the contrary that U = ((X t= At) X (X 1 B), P, f, g) is an extensive 
form correlated equilibrium and that the payoff associated with it, (w, w2), lies 
outside of h(Bl) n h(B2). W.l.o.g. we may assume that (w1, w2) 4 h(B2). We will 
define a function g (a deviation, according to which PII chooses his pure strategy), 
which results in a higher payoff for PII. Precisely, 

T T 

liminfEf g p (l/T) E x2 > w2. 
T t=l 

Thereby, we will prove that U is not an equilibrium. The deviation g is described as 
follows. Instead of playing the prescribed action (defined by g) PII plays the best 
undetectable deviation. However, the play of PII should be continued in a consistent 
way, so as not to affect the distribution of PI's signals. Lemma 4 ensures that there 
exists such a continuation. In order to verify that, indeed, g is a profitable deviation, 
we show that on a large set of states (Lemma 3), PII increases his expected payoff by 
at least E > 0 (Lemma 1). 

Let K be a straight line that divides the plan into two disjoint parts: K-, the open 
one, and K+, the closed one. Moreover, assume that (w1, w2) E K- and h(B2) c K+, 
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and that dist((w1, w2), K) = dist(h(B2), K) = d > 0. There exists such a separating 
line because h(B2) is closed and convex. 

Denote by Rt the distribution over histories (consisting of messages and joint 
actions) of length t - 1. Recall that together with Rt the functions f and g induce a 
correlated action to be played at stage t. In other words, the histories and f, g induce 
a distribution over joint actions. This distribution, denoted by Qt, indicates the 
probability for any joint action to be played at stage t had the players adhered to 
(f,g). 

The following lemma states that the set of stages t on which Qt is associated with a 
payoff in K- (far away from h(B2)) is relatively a large set. 

LEMMA 3. The set of stages M = {tlh(Qt) E K-) has a positive lower density, 71, 
i.e., 

liminfM n {1,...,T} /T = > 0. 
T 

PROOF. Notice that by the definition of (w1, w2) one obtains 

(4.2) (wl,w2) = lim E h(Qt). 
t=l 

Suppose to the contrary that r7 = 0. Thus, there exists a sequence {Tn} satisfying 

IM n{1,...T, I/T=n -- 0. 

For every n one gets 

1 T1 1 
(4.3) T Eh(Qt) = T h() h(Q) Qt) 

= tM, t Tn t=l n tM, t t <Tn 

1 
< T E h(Qt) + 77n(l,1) 

t M, t<Tn 

=(1 - 7n) (1/Tn)(1 - n) E h(Qt) + 7n(1,1). 
t M, t < Tn 

The term in brackets is a convex combination of payoffs in K+, which is in K+ (recall 
that K+ is convex and closed). Thus, the right side of (4.3) converges to a point in 
K+. This contradicts (4.2), and the lemma follows. // 

The following lemma mimics the functions g and g after a certain stage, say, t - 1. 
I is the set of all PI's histories of length t - 1 and J, J stand for the set of all PII's 
histories of the same length. The sample space (I x J, u), where ,u is the probability, 
defined on I x J, is the distribution over the joint histories induced by the original 
extensive form correlated equilibrium, U. The sample space (I X J, j) is the one 
induced by the deviation g. By playing undetectable deviations (in particular, more 
informative action) in the previous stages, PII did not lose the ability to distinguish 
between actions of PI. This fact is represented in the lemma by a map, if, between 
possible histories that correspond to g and actual histories that correspond to g. The 
conclusion of the lemma is that PII can pretend as if he abides by the prescribed 
action e (to be played at stage t), while actually he plays e. e will be utilized later in 
the construction of g. 
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LEMMA 4. Let there be given two finite sample spaces (I x J, ,L) and (I x J, j), 
and let $f be a one-to-one function if: I x J -> I x J, which satisfies the following: 

(i) 1i(a, p1) = a, where f1 = ($11, $2), 
(ii) q$ is measure preserving, i.e., t(f~- '(a, )) = ~l(a, P), 

(iii) if (a', ), (a, 1f) e support(-i), 4(a', 3) = (a', 3) and q(a, y) = (a, 13), then 
3 = y. 

Then, for any function e: B - An (the unit simplex in Rn), there is a function e: 
B - An s.t., for all a E I, E,(ela) = E,e(\la). 

PROOF. Denote by i1, 1 2 (resp., Fi, , 2) the marginal distributions of A (resp., jE) 
over I, J (resp., I, J). W.l.o.g. we can assume that E2(P) > 0 for all 13 e J, and 
AL1(a) > 0 for all a E I. For every p E B, in order to define b(1), take any (a, ,) E 

support(Ju) and any (a, ,) satisfying ic(a, 13) = (a, P) and set b(f3) = 3. By (iii), b(/3) 
is well defined. (f() and b(-) are one to one. Define e(f) = e(b(13)). By (ii), we 
obtain 

E,(a) 
= E e()b(ca,)/il(a) = E e(b(j))a41'(a-?, ))/,l(at) 

,EJ fEJ 

(by (i) and (ii)) 

= E e(b(l))L(q-'(aa,~ ))/(1(a) = E e(3)LY(a, 1)/Ll1(a) _ 
j t3 peJ peJ 

=E,(ela). \\ 

Now we are ready to define g = (gl, g2,...). It will be done by defining first a 
sequence of functions gn = (g g, . ), and second by defining g as the diagonal, 
i.e., g" = gn for all n. 

The function gn is an improvement of gn-1 in the sense that gn agrees with gn- 
on the first n - 1 stages, and it increases PII's payoff without being detectable. 
Furthermore, at the rest of the stages, gn is a continuation of the play without giving 
a chance to PI to detect the previous deviation. 

(gn)n is defined inductively. Set g l = gl, the original function. Suppose that gj is 
defined for all j < n. Define g- = g_ for all t < n. 

Recall that gn (the nth function of the strategy gn) maps elements consisting of 
v E L2-1 and a string of messages, p,1..., 1,, to actions in 2. Denote for such v 
and 3i,..., 3n 

kn(U, *l,., n) 

E E pr(ail,. ..,a n, 81,., *n, , U V) 
f 
f (U, al,..., an), 

uEL-L1 al,... ,an 

where the probability pr(-) is the probability induced by f, gn 1 and {Pt}t < n and at is 
the message PI got at stage t. Thus, kn(v, 31, ..., 1n) is the expected mixed action PI 
is supposed to play, given that the history of PII is (v, 31,..., 1n). gn(v, 31,..., 3n) 
will be defined as a best response versus kn(v, 1,..., Pn), among all the actions that 
are indistinguishable from, and more informative than gn_ (v, j1,..., 3n). 

We will define gn for t > n, using Lemma 4. Let t = n + 1. I is the set of all the 
(u, a,,...,an+) and J is the set of all the (v, J,,...,,n+,), where u E Ln and 
v E L2, ,L is the probability distribution induced by f and g_1, gn-1. ., gn_ and 
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where 
- 

is the one induced by f and gl,..., g. - on I X J is defined as follows: 

1((U, a1,', an+1), (U, , 1 ., 3n+ 1)) = (U, a,...,an+1) and 

42((U, al,''', ln+l)(U, 1 U,..., n+l)) (, l,..,, Pn+l), 

where i = (v1,..., un) E L2 coincides with v on the first n - 1 coordinates and 
Un = 12(fl(u, a1, . .. n), g,n(U, 1, ... Pn)). 

In order to use Lemma 4 we have to show that i satisfies the hypothesis of the 
lemma. Obviously, i is a one-to-one function. By the definition of f,, (i) holds. Since 
gn(u, 81 ..., 3,) is indistinguishable from gn_1(v, l,... , n) (ii) is satisfied and 
because the former is more informative than the latter, (iii) is implied. 

Apply Lemma 4 for e = gn,+1, which is defined on histories of length n, to obtain 
the function e. e satisfies E,(ela) = E,L(ela) for all a e A. Define + = e. 

In words, PII adjusts his behavior. Instead of playing according to gn he plays 
according to gn+1. However, PI cannot differentiate between the two since both 
induce the same mixed action, no matter what the history of PI is. 

So far we defined gn up to stage n + 1. In order to continue defining 
gn+2 n+3, . we should repeatedly use Lemma 4. gn+l, just defined, induces, 
together with f, a distribution over the joint histories. By playing according to gn+1, 
PII does not lose information, in the sense that a function $i, applied to histories of 
length n + 1, can be found so as to satisfy hypotheses (i)-(iii) of Lemma 4. Thus, 
gn+2 can be defined without affecting the distribution PI is expecting (from gni2). In 
the same way, all the strategy gn is defined, thereby ensuring that 

(4.4) Ef, xt) = Ef gn( xt) for all t > n. 

Namely, the_expected payoffs after stage n are not changed by gn' Moreover, letting 
Qn (resp., Qn) denote the probability distribution of the set of joint actions (to be 
played at stage n) induced by f and g (resp., gn), one obtains 

(4.5) Qn E BR2(Qn). 

This is because gn was defined as a best response among all the actions indistinguish- 
able from and more informative than the prescribed one. In other words, 

(4.6) Ef, gn(X) >Ef,gn_l(X 

and Ef,g(Xn) E h(B2). 
Define gn = gnn. (4.6) and (4.4) imply that 

(4.7) Ef g(X) = Ef, ,(X2) > Ef, g, (x) 

= Ef, g,2(x) 
. 

Ef, g(X) for all t. 

(4.5) and (4.7) and Lemma 1 imply that there is an E > 0 satisfying 

Ef,g(x2t) > 
Elf,g(Xn) + E for all n eM. 
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From Lemma 3 and (4.8) it follows that 
' 

T ' T 

liminfEf g 1 E x > limEf, gT 2 + E . 
T T 2 

T T F, 2 
= t=1 t= 

It shows that PII has a profitable deviation, g, which establishes the fact that U is not 
an extensive form correlated equilibrium. Recall that it derives from the assumption 
that the payoff associated with U is not in h(B2). Thus, we have shown that 
LCEP* c h(Bl) n h(B2) n IR in the nontrivial case and the proof of Theorem 1 is 
concluded. // 

5. Proof of Theorem 2. We consider here only the nontrivial case; the other case 
is left to the reader. 

The proof will be divided into three steps. In the first one, it is shown that 
UCEP* c h(B1 n B2) n IR. Since UNIC* c UCEP*, it will provide also a proof to 
UNIC* c h(B1 n B2) n IR. In the second step it will be shown that CEPL c h(B1 n 
B2) n IR for every Banach limit L. 

The first two steps are proven by the same method. It is assumed, to the contrary, 
that there is an equilibrium (the one in question) payoff not in h(B1 n B2) n IR. 
Since any equilibrium payoff should be in IR it can be assumed that the payoff is not 
in h(B1 n B2). Based on this assumption, a profitable deviation is constructed in the 
way it has been built in the previous section. The existence of profitable deviation 
contradicts the fact that the payoff is associated with an equilibrium. 

The third step is devoted to the converse direction. It is shown that h(B1 n B2) n 
IR c UNIC. Since UNIC is the smallest set of correlated equilibrium payoffs men- 
tioned in this paper, this step concludes the proof of the theorem. 

Step 1. UCEP* c h(B1 n B2) n IR. It is obvious that UCEP* c IR. Assume that 
(w, w2) 0 IR \h(B1 n B2) and that U = ((XA,) x (XB,), sVx , P, f, g) is an 
extensive form correlated equilibrium associated with (wl, w2). 

Let K be a separating straight line between (w1,w2) and h(B, n B2) so that 
dist((w1, w2), K) = dist(h(B1 n B2), K) = d > 0. Denote the half-plane that contains 

(wl, w2) by K-. 
Denote by Qn the distribution on ; induced by U. Set M = {tlh(Qt) E K-}. In 

words, t is the set of the stages on which the expected payoff is far away from 
h(B1 n B2). On this set of stages the deviating player will benefit at least by e > 0. 

By Lemma 2 there is an e > 0 s.t. if Q satisfies h(Q) e K-, then there is i s.t. 
hi(Q) > hi(Q) + e for all Q E BRi(Q). Thus, M can be written as a union of Mi, 
i = 1, 2, where Mi = {t E Mlhi(Q) > hi(Q) + E for all Q E BRi(Q)}. 

LEMMA 5. There is i s.t. Mi has a positive upper density, i.e., 

limsup IM n {1,..., T}|/T= 77 > 0. 
T 

PROOF. By Lemma 3, 

0 < liminfM n {1,..., T}I/T 
T 

= liminfl(M uM2) n {1,..., T} /T 
T 

< limsup IM n {1,. .., T} I/T + limsup IM2 U {1,..., T} I/T. 
T T 

Therefore, one of the terms on the right side should be positive. // 

188 



CORRELATED EQUILIBRIA IN TWO-PLAYER REPEATED GAMES 

W.l.o.g., i of Lemma 5 equals 2. Define the deviation of PII, g, as it was defined in 
the previous section. The deviation g results in (similar to (4.8)): 

Ef,g(X ) > Ef,g(X ) + E for all n E M2, 

where e is the one obtained by Lemma 2 and employed in the definition of M2. 
Moreover, as in (4.7), 

Ef (X2) > E g(X2) for all t. 

Thus, 

T 

limsup(1/T) , Ef, g(x) 
T t=l 

=limsup(1/T) E Ef g(x ) + E Ef ,(x ) 
T t<T, teM2 t<T, teM2 

> limsup(1/T) E f ,g(xt) + E Ef,g(X) + E 
t < T, tM2 t < T, t EM2 

T 

=limsup(1/T) E Ef,g(x) + E 
t=1 t <T, tEM2 

T 
= lim(1/T) E Ef,g(xt) + limsup(1/T) E e > w2 + r7. 

t=l T t<T, tM2 

Hence, g is a profitable deviation which contradicts the assumption saying that U is 
an equilibrium. We therefore conclude that 

UCEP* ch(B nB2) n IR. 

Step 2. CEPL c h(BI n B2) n IR. The key to the proof of the previous step was to 
show that there is a significantly large set of stages (M2 had a positive upper density) 
on which PII gains by at least E, while on the other stages he guarantees at least what 
he would get had he adhered to the prescribed strategy. 

Fix a Banach limit L. The objective of the proof is to show that the deviator may 
profit on a big set (w.r.t. L) at least by e without losing on the other stages. The next 
lemma deals with the size of the set on which the deviator gains. 

LEMMA 6. Suppose that Qn is a sequence of correlated actions satisfying 

(Wl, W2) = L(h(Qn)) q h(Bl n B2). 

Suppose, furthermore, that Q1 E BRi(Qn) for all n and i. Then there is i s.t. 

(5.1) L (1/N) E hi(Q?) > wi. 
n=l 

In words, there is a player who gets, in the long run, more than his prescribed payoff. 
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PROOF. Recall that Q' E UDi(Q) is characterized by an admissible function 
y: Yi -> i (i.e., y(a) is indistinguishable from and more informative than a for all 
a E Zi). Thus, one can divide N into a finite number of sets MY (M7 is the set of all 
stages n for which Q7 is characterized by the function y). 

For A c N denote by FA the infinite sequence whose nth coordinate equals 
IA nr {1,..., n}l/n. Thus, for all i, E,L(FMY) = 1, where the summation is taken over 
all admissible functions y. Fix y. Denote P- = Q" and P^ = Qi if n E My and 0 
(the matrix 0) otherwise. Since all Qi (n E M) retain the same system of linear weak 
inequalities and since Banach limit preserves such inequalities one obtains: 

(1) L((1/N)En LPn) is a matrix whose entries sum up to L(FMy). 
(2) If L(FM) > 0, then the matrix 

N ' ' ' N 

L (1/N) E Py /L(FMY) e BRi L (1/N) E Pyn /L(FM) . 
nl n n 

Since L((1/N)EN=lh(Qn")) h(B n B2) and since there are a finite number of 
admissible functions, there exist i and an admissible function y which satisfy 
L(FMy) > 0 and 

' ' N ' ' N N 

hi L (l/N)z , /L(FmT) >hi L (1/N) E / ) > (1/N) P /L(FM) 
i n=l , n \ \ n=1 

Since for all other y's (A.1) is satisfied with weak inequality, providing that L(FM4) > 
0, the proposition follows. // 

Suppose that the extensive form correlated equilibrium U = ((XA,) x (XB), 
San ,, P, f, g) is given and, moreover, the payoff associated with U (w.r.t. L) is 
(wl, w2) e h(B1 n B2) n IR. Since (wl, w2) should be in IR we may assume that 
(WI, W2) ~ h(Bl n B2). 

Denote by Qn the correlated action at stage n induced by f and g. Thus, 
L((1/N)E,Nlh(Q)) = (w,lw2). Let Qn be an element in BRi(Q"). By Lemma 6 
there is a player i for which (5.1) holds. W.l.o.g., i = 2. 

Define the deviation of PII, g, as it was defined in ?4. Denote by Qn the correlated 
action at time n induced by f, g. By (4.5) and (5.1), replacing Qn by Qn, one obtains 

N ' 

(5.2) L (1/N) E h2(Q") > w2. 
n=l 

The parenthetical term of (5.2) is PII's payoff up to stage N associated with f, g. 
Thus, g is a profitable deviation of PII. This concludes the proof of Step 2. 

Step 3. h(B1 n B2) n IR c UNIC. The objective is to construct for any Q E B1 n 
B2 satisfying h(Q) E IR a uniform correlated equilibrium associated with the payoff 
h(Q). Before going into technical details, I would like to give an informal, textual 
description of the correlated strategy, defined later. Suppose that before starting the 
game a mediator draws a joint action in X according to Q, infinitely many times. 
Each draw is independent of the other. Let the outcomes at the tth draw be denoted 
by (at, bt). The message for player 1 is (a1, a2,...) and the message for player 2 is 

(bl, b2,...). Suppose, furthermore, that PI plays at at stage t and PII plays bt. Does 
this generate an equilibrium? Certainly not. The player might have incentives to 
deviate and disobey the recommendation of the mediator. However, we assumed 
Q e B1 n B2. Thus, any profitable deviation is either distinguishable from or less 
informative than the recommended action. 
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With a slight modification the former correlated strategy would be able to cope 
with deviations from the assigned actions to distinguishable ones. Such deviations 
change the distribution of the opponent's signals. Hence, by making tests on the 
previous signals, a player can detect, with high precision, his opponent's deviations. 
But for this test, sometimes a player should play some actions outside the support of 
Q. In other words, in order to detect deviation to an action, distinguishable from the 
recommended one, a player may need to play actions that are assigned zero 
probability by Q. For this purpose we modify the way the mediator chooses the 
messages (a1, a2,...), (b, b2,...). 

Let Q' be a perfectly mixed correlated action, assigning each joint action a positive 
probability. Furthermore, Q' tends to Q. The pair (a,, b,) is drawn according to Qt 
independently of the previous draws. PI plays at and PII plays bt at stage t. The 
players are supposed to check the signals they got and compare it with the expected 
signals. If a player finds a discrepancy between the two, he should start punishing his 
opponent for a long period of time and then resume the game from the beginning. 
Does this form an equilibrium? Still not. The reason is that a player can deviate to an 
action indistinguishable from, yet less informative than the recommended one. 

Say, for instance, that a and a' are two actions of PI, indistinguishable one from 
the other. Moreover, a is strictly less informative than a'. In other words, PI, by 
playing a', can distinguish between the actions b and b' of PII, while by playing a he 
cannot. Suppose that in a certain stage PII knows when PI is supposed to play a', 
while PI does not know that PII knows it. In this case, PI may deviate to a (he does 
not suspect that PII will detect it) and thereby lose his ability to distinguish between b 
and b'. However, if PII plays with probability 2 either b or b', and PI reports to PII 
(by a method that will be described in the sequel) whether or not he observed the 
signal corresponding to b or b', PI is going to be mistaken with probability -. This is 
so because by playing a, PI observes the same signal, no matter if PII plays b or b'. 
PII knows that PI was supposed to play a' and to be able to report it correctly. Thus, 
PII, with probability 2, infers that PI has deviated to a less informative action, and he 
can start punishing PI. 

The previous explanation suggests that in a correlated strategy we are about to 
define, there will be stages in which PII (resp., PI) knows what PI (resp., PII) is 
supposed to play while PI (resp., PII) does not know that PII (resp., PI) knows it. 
Moreover, there should be a way to communicate, so that one player will be able to 
elicit information from the other. 

The mediator, instead of drawing (at, bt) from X, draws (at, bt, it), where it E 

{0, 1, 2. In a case where it = 0, the mediator sends PI and PII the messages at and 
bt, respectively. However, if it = 1, he informs PI of (at, bt) and PII of bt. If it = 2, 
he informs PII of (at, bt) and PI of at. In other words, if i, # 0, the player i, knows 
what his opponent is recommended to act while the latter does not know that player 
it knows it. Obviously, the majority of the weight (w.r.t. which (at, bt, it) is drawn) 
should be put on (at, bt, 0). Thus, the additional possible selections of the mediator 
do not distort the payoffs by much. 

How do players communicate? We assume that each player has nontrivial informa- 
tion. Therefore, each player can distinguish between two of his opponent's actions at 
least. Different combinations of these two actions can encode different reports. The 
correlated strategy hereby defined will specify who and when should report on what. 
This should be designed carefully, because the mediator should not reveal to PI on 
which actions he will have to report. This information will be disclosed only to PII. 
When the time comes, PII will announce (by a special combination of actions) what 
stage PI should report on. The uncertainty about the stage on which PI will have to 
report will prevent him from deviating at all stages. 
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FIGURE 2 

Before coming to the rigorous formal definition of the strategy, recall Remark 1. 
Divide the set of stages N, into consecutive superblocks, Sl, S2,.... Each block Sk 

will be divided into consecutive blocks, Mk, M2,..., and each Mk will be divided 
into subblocks M'1, Mk'2,... 

Let IMk'e = k + 4[lg k + 1], IMkl = kSMk eI and ISkl = klMkI. In words, the size 
of the subblock Mk'e is k + 4[lg k + 1]. There are k5 subblocks of the same size in 
any block, and there are k blocks of the same size in any superblock. 

Any subblock is divided into three phases. The first one, called the master phase 
and denoted Mk'e(l), the players are supposed to play according to the message of 
the mediator. In the second phase, denoted M' e(2), the players will choose randomly 
a stage on which they will have to report to their opponents on the third phase, 
Mke(3). The last two phases will last 2[lg k + 1] stages each. Since the length of the 
first phase is k and since 4[lg k + l]/k tends to zero, the master phase is dominant 
in the sense of determining the average payoff. 

Denote X = E u (E U {1}) U (E x {2}). Let Qk be a probability measure assigning 
each point (a, b) E E the probability Q(a, b)(1 - 21I1/k) and other points probabil- 
ity 1/k each. Let ZI, Z2,... be a sequence of i.i.d. random variables attaining values 
in X and Zt is distributed like Qk whenever t E Sk. The message (a, ao2,...) the 
mediator sends to PI is defined by: 

a if Z,= (a,b) or (a,b,2), 
at 

= (a,b) ifZt= (a,b,1). 

In words, the mediator chooses randomly an element of E and informs PI of the 
action a if (a, b) or (a, b, 2) was chosen and of the joint action (a, b) if (a, b, 1) was 
chosen. Thus, when PI gets (a, b) as a message, he knows with precision what PII is 
supposed to play. 

The message for PII is defined similarly. 
Denote by (a,, bt) the joint action corresponding to (a,, ,8). We can now describe 

the strategies in t E Mk' e(l), i.e., in the master phase of the subblock Mk' e. PI should 
play at and PII bt, unless one of them ascribes a deviation to his opponent in one of 
the previous blocks of the same superblock. 

When does a player ascribe a deviation to his opponent? Each player checks his 
opponent as to whether the latter deviated to actions that are indistinguishable from 
the prescribed one or to less informative actions. Either checking requires a different 
method. A player checks possible deviation to actions indistinguishable from the 
recommended ones by comparing the expected signal to the actual one at the stages 
when a player knows exactly what his opponent is supposed to play. 
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For instance, in a case where a, = (a, b), PI knows that PII is supposed to play b. 
Therefore, he expects to observe the signal 11(a, b). If at that stage the signal was 
different, he knows that his opponent deviated. 

Precisely, PI ascribes a deviation to PII in Mk if: 

there are t e Mk and (a, b) e E satisfying (1) a, = (a, b) and (2) the 
(5.3) signal PI observed at t, differs from 11(a, b). 

In order to detect deviations to strictly less informative actions, a different proce- 
dure must be introduced. The parts Mk (2and M 3)and M are devoted to it. The idea 
of the following procedure was introduced first by S. Sorin [S]. 

Each player has nontrivial information. Thus, there are vl, v,ul e 1 and 
V2 , u, U2 E 2 so that 

11(u1, 2) 1(ul, v') and 12(l1, u2) 12(V1, u2). 

By playing sequentially either v2 or v', PII can send to PI a string of signals 
consisting of 11(ul, v2) and 11(ul, v'), providing that at the same time PI plays u1. In 
the first half of the second phase M'k e(2), PI plays u1 and PII plays with probability 
each v2 and v'. They repeat this procedure mk = [lg k + 1] times. Thus, after mk 
stages PI observes a random string of length ml consisting of 11(u1, v2) and 11(u1, v). 
Such strings can encode stages in Mk' e(1). Any encoding induces a distribution on the 
states in M,' (1). If the encoding is appropriately designed, each stage in M1 e(l) is 
assigned a probability of at least 1/2k by the induced distribution (recall IMk e(1) = 
k). To sum up, PII chooses and reports to PI a random stage, denoted by tk e(1). 

In the second half of the second phase, PI chooses a random stage from Mk e(l), 
denoted by tj e(II), and reports on it to PII. This is done by playing mk times either 
vu or vr with probability 2 each, while PII plays u2. 

In the third phase, PI reports on the signal he received at stage ti e(I) and PII 
reports on the signal of the stage t e(II). 

How to report on a signal? There are finitely many possible signals. Each of them 
can be encoded by a finite string of two different symbols. In any stage of the first part 
of M'e(), PII plays u2 while PI plays either v1 or v\, so as to transmit the string 
consisting of 12(vl, u2) and 12(vr, u2) which encodes the symbol he (PI) has received 
in the stage tk' e(1). In other words, at the end of the first portion of Mk e(3), PII can 
look at the string of the signals he received in Mk,'e(3) and infer about the identity of 
the signal on which PI reported. 

Similarly, PII reports to PI on his signal. Namely, while PI plays u1, PII plays 
sequentially either v2 or vr according to the string encoding the signal PII received 
at the stage t, e(II). 

Denote the signal reported to PI (resp., PII) by PII (resp., PI) as sk e(II) (resp., 
s e(I)). To sum up, after the last stage of Me(3), PI knows tha P tt PII reported on 
k e(II) as the signal he received at stage t ke(11), and PII knows that PI reported on 

sij, e(I) as ig of the signal of the stage (). Both players can check whether these reports 
are consistent with the strategies and with the actions they played in ti e(I) and 
tki e(II. 

When no ambiguity arises, we denote ) by t(I) b ) and t], e(II) by t(II). 
The report of PII is inconsistent if at(II) = (a,t(I), bt(II)), i.e., PI knows that PII is 

supposed to play bt(II) at stage t(II) and 

(5.4a) 
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In that case PI ascribes a deviation in Mke to PII. The report of PI is inconsistent if 
It(I) = (at(I), bt(i))- Namely, PII knows what PI is supposed to play at t(I) and 

(5.4b) S,e(I) -A ll(at(), bt(i)) 

In such a case, PII ascribes a deviation in Mk e to PI. 
To recapitulate, PI attributes a deviation in Mk e to PII if either (5.3) or (5.4a) 

holds. In this case, PI should punish PII by playing the mixed action that "minmaxes" 
PII. Notice that in our model of deterministic signalling, a player ascribes a deviation 
to his opponent only when the latter had, indeed, deviated. 

We will denote the strategies defined above by U = (A x B, P, a, r), where A and 
B are the sets of the strings (a1, a2,...) and (i1, ,2,...), respectively; P is the 
probability measure induced by the random selection of the mediator described above 
and U, r are the strategies of PI and PII, respectively. 

In what follows we show that the payoff associated with U is h(Q) and that U is a 
uniform equilibrium. The next proposition shows the first assertion. 

PROPOSITION 3. limT (1/T)Et= E,, p(xt) exists and equals h(Q). 

PROOF. Suppose that both players adhere to the strategies described above. In 
that case a deviation is detected with probability 0. Thus the expected payoff at time t 
is close to h(Q) up to 211//k (recall that Qk assigns a total probability of 21I1/k to 
points out of E). This concludes the proof. // 

In the next proposition it is proven that U is a uniform correlated equilibrium. It 
cannot be assumed that an action of a player at one stage is independent of previous 
ones. Therefore, we need the following generalization of Chebyshev inequality, which 
is quoted from [Ll]. 

LEMMA 7. Let R1,..., Rn be a sequence of identically distributed Bernoulli random 
variables, with parameter p (i.e., pr(R1 = 1) = p = 1 - pr(R1 = 0)). Let Y, ... , Yn be 
a sequence of Bernoulli random variables such that for each i < m < n, Rm is 
independent of R, . . ., Rm_ ,, Y,.., Ym. Then, for every E > O, 

pr( R1Y1 
+ - 

+RnYn Y + +Yn } l/n2. // 

We are now in a position to finish the proof of Theorem 2 by showing: 

PROPOSITION 4. U is a uniform correlated equilibrium. 

PROOF. Assume that PI plays r. 
We show that PII can gain at the block Mk by more than h(Q) + 1/ /k without 

being detected only with probability O(k). Therefore, a profitable deviation will lead 
with probability 1 - O(k) to a punishment. 

Denote by Mk = U M' e(), where the union is taken over all the subblocks M'e 
contained in Mk. Mk is the union of all the master phases. Recall that x2 is the 
payoff of PII at stage t. 

Suppose that 

(5.5) (1/IMI) E x2 > h2(Q) + 1/4v. 
t E?Mk 
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Fix b E E2. Denote by Fb the set of all stages in M,k in which PII was informed of 
the action b. Precisely, Fb = {t e ME j13t = b}. Denote by Q1(a), Q2(b) the probabili- 
ties assigned by Qk to the actions a E1 and b e E2, respectively, i.e., Q(a) = 

Qk({(a, b)lb E E2}), Q k = Qk({a, b)la E 1}). 
By Chebyshev inequality with probability of at least 

1 - lE2lk2/lIMk = 1 - 121/k4 = 1 - cl(k) 

the following holds: 

(5.6) Fbl > IMI\(Q2(b) - l/k) for all be E2. 

Now we evaluate the probability that (5.4a) does not hold given that (5.3) does not 
hold and that (5.5) and (5.6) hold. In words, the probability that PI discovers a 
deviation of PII in Mk (by means of PI's reports), given that (1) PI did not detect a 
deviation by an inconsistent signal; (2) PII's average payoff in Mk is greater than 
h2(Q) + 1/ vk; and (3) the relative frequency of any action b (of PII) is close to its 
expectation. 

If (5.5) holds, then there is an action bo satisfying 

(5.7a) Q2(bo) > 0 and 

(5.7b) h2(Pb,' bo) + 1/24 < (1/Fb,o) E x2, 
tE 

Fbo 

where Pbo is PI's mixed action induced by Qk given bo (i.e., Pbo(a) = Qk(a, bO)/Qk(bo) 
for all a E El). However, according to (5.6), Fbo contains a large number of states. 
Therefore, the relative frequency of the times PI plays a is close to Pbo(a), with high 
probability. 

Formally, for any t E Fbo, denote Rt(a) = 1 if PI plays a at stage t, and 0 
otherwise. Denote Yt(b) = 1 if PII played b at stage t and 0 otherwise. By Lemma 7, 
with probability of at most IEIk2/lFboI = c2(k), there holds 

(5.8) (1/IFbol) (Yt(b)R,(a) -Pb(a)Yt(b)) > 1/k for all (a, b) E E. 
t E Fbo 

Notice that in view of (5.6), c2(k) tends to zero as k goes to infinity. From (5.7b) 
and (5.8) one obtains that, given (5.5) and (5.6), with probability of at least 1 - c2(k), 
the following holds: 

(5.9) h2(Po, bo) + 1/24k < (1/IFbol) E xt 
t E 

Fbo 

(1/lFbol) E Yt(b)Rt(a)h2(a,b) 
teFbo a,b 

< E ((1/ Fbl) E Pbo(a)Yt(b)h2(a,b) + l/k) 

= (/lFbol) E Yt(b)h2(bo, b) + l,il/k. 
b tEFbo 
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Denote 

(5.10) q(b) = (1/IFbol) E Y,(b) for all b E e. 
tE Fbo 

Notice that q is a random variable attaining values in the set of PII's mixed actions. 
The right side of (5.9) equals 

(5.11) Eq(b)h2(Pbo, b) + Il1l/k < h2(Pbo, q) + IYI/k. 
b 

From (5.9) and (5.11) we get 

(5.12) h2(b0, bo) + 1/2k < h2( Pbo, q) + IIl/k. 

To sum up, if (5.5) and (5.6) hold, then (5.12) holds with probability of at least 
1 - c2(k). 

The next step is to show that if (5.3) does not hold, then with high probability those 
actions assigned a relatively high probability by q (recall (5.10)) are indistinguishable 
from b0. 

Fix a E S1. Define R' = 1 if ac = (a, b), namely, PI knows that PII is supposed to 
play b, and 0 otherwise. Define Y' = 1 if PII plays at t an action b' that satisfies 
11(a, b) = Il(a, b'). Again, by Lemma 7: 

Pr(l(l/IFbl) E [(1 Fb o 
- Y )R - pr{Rt = 1}(1 - Y')] > 1/k2} < k4/lFb. 

t EFbo 

Assuming that (5.3) does not hold (namely, that (1 - Y()R; = 0 for all t E Fbo), we 
obtain that with probability of at least 1 - k4/IFbol the following occurs: 

(1/IFbol)21ElkE E Fbo(1 
- Yt') < 1/k2. In other words: 

(5.13) (1/IFbol) E Y' > 1 - 211/k. 
tEFbo 

Recall that (5.13) was obtained for a fixed a. Denote by Yt = 1 if PII plays an 
action indistinguishable from b0, and 0 otherwise. By applying (5.13) to every a, one 
obtains 

(5.14) (1/IFbol) E Yt' > 1 - 21Z12/k 
tE Fbo 

with probability of at least 1 - IEllk4/lFbol = 1 - c3(k). From (5.14) we deduce that 
with probability of at least 1 - c3(k), the mixed action q assigns a probability of at 
least 1 - 2lEl2/k to actions that are indistinguishable from bo. In view of (5.12), 
recalling that Q E B2, q should assign a probability of at least 1/4V4 to actions that 
are strictly less informative than bo. Precisely, with probability of at least 1 - c2(k) - 
c3(b) the following holds: 

(5.15) (1/lFbol) E Yt(b) > 1/4v', 
b tEFbo 
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where the summation is taken over all the actions b that are strictly less informative 
than bo. 

Denote Fb = Mk'e n F,. F is the set of all the states in Mk'e in which bo was 
the message of PII. Given (5.6), inequality (5.15) implies that the fraction of those 
"good" subblocks M' e for which 

(5.16) E(/lFbol) E Yt(b) > /k, 
b t F^o 

where the summation is like that of (5.15) and 

(5.17) IFboe/\Mk'el > 1/k 

is greater than 1/k. Thus, there are at least k4"good" subblocks satisfying (5.16) and 
(5.17). The probability of detecting a deviation in such a subblock is the probability to 
choose t satisfying Y(b) = 1 for some b which is strictly less informative than bo, 
times the probability to play an action a about which PII would have known more 
had he played bo (and not b). 

In other words, the probability of detecting a deviation in a "good" subblock is 
iFbeo/22Mk'e{k2 (the number 2 appears because PII has probability 2 of guessing the 
signal correctly. One k stands for 1/k in (5.16). The other k in the denominator is 
for the probability of PI to get a message of the type (a, bo), where a is an action by 
which PI can detect a deviation to a less informative action than bo). By (5.17) it is 
greater than l/k 31,l. Since there are at least k4"good" subblocks, the probability of 
evading PI's detection is at most (1 - (1/k3)1)k4 = e-(k). 

To recapitulate, given that (5.3) does not hold and that (5.5) and (5.6) do hold, with 
probability of at least 1 - c2(k) - c3(k) - e- (k) PI will discover a deviation by PII 
and the latter will be punished thereafter. However, (5.6) holds with probability of at 
least 1 - c1(k). Thus, given that (5.3) does not hold and that (5.5) does hold, PI 
discovers a deviation with probability of at least 1 - c1(k) - c2(k) - c3(k) - e-?(k) 

Notice that (5.5) deals with stages in Mk. The remaining stages in Mk are 
negligible in the sense that IMk \ MkI/IMkI is of the order of (lg k)/k-in particular, 
smaller than 1/ fk-. Thus, the event defined in (5.5) is included in the one defined by 

(5.5') (1/IMkI) E xt > h2(Q) + 2/vf = h2(Q) + d,(k). 
tE M 

To conclude the proof, notice that the length of any block Mk compared to the total 
length of its precedents goes to zero. Namely, IMkl/min Mk < 1/2k = d2(k). Thus, 
for any t > max Sk1_, the correlated equilibrium U induces a [cl(k) + c2(k) + 
c3(k) + e-(k2) + d1(k) + d2(k)]-correlated equilibrium in the t-fold repeated game. 
Since the term in brackets goes to zero as k tends to infinity, it follows that U is a 
uniform equilibrium. // 

6. Related topics and concluding remarks. 

6.1. Extensive form correlated equilibrium simplifies strategies. In the presence of 
an active mediator, namely, a mediator who gives messages before any stage, the 
proof given in the last step of the previous section could have been simpler. Instead 
of choosing randomly a stage in the second phase of each subblock, the mediator can 
provide that information, i.e., the mediator chooses randomly two stages, t, and t2. 
On the first, PI has to report, whereas on the second one PII has to report. Moreover, 
when t1 is informed to PI, PII is provided with additional information: the action that 
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was recommended to PI at stage t1. Thus, PII knows exactly what should be the signal 
observed by PI, and therefore what signal PI should report on. 

6.2. Pointwise version of convergence. It can be proven that the strategy U, 
constructed at the last stage of the previous section, yields that the partial averages 
converge almost surely to h(Q). Moreover, it can be shown that the upper limit of the 
partial averages is less than the prescribed payoff with probability one under any 
deviation. 

6.3. Getting rid of the mediator. The mediator provides private information to 
each one of the participating players. However, in repeated games with imperfect 
monitoring, even when players start with common knowledge and even if no exoge- 
nous correlation device exists, players can acquire private information during the 
course of the game. What kind of correlations can emerge from histories (which are 
private knowledge), and what is an efficient way to utilize the internal coordination 
(perhaps to achieve a higher level of cooperation) is still unsolved. 

One simple case in which the phenomenon of internal correlation is demonstrated 
is given in [L3]. This is the case of standard-trivial information (recall Example 4). 

6.4. Correlated equilibrium in games with more than two players. In a case of two 
players, a deviation can be attributed to one player-the opponent. However, if there 
are more than two players, who should be blamed for the deviation and who should 
be punished? In some cases a punishment of one player may benefit another. The 
latter has an incentive to pretend as if the former had deviated and to gain by the 
resulting punishment. The question is then to describe those outcomes that are 
supported by a "steady" behavioral pattern. 

Another difficulty involved is to describe the most efficient way to punish a player. 
Typically, cooperation is needed to effectively punish a deviator. However, it may be 
the case that not all the players noticed the deviation, and the information about the 
alleged deviation should be spread among the players. How to do that in an 
"optimal" way without violating incentive compatibility is a subject for future study. 

6.5. Games with stochastic signaling. In cases where the signaling is stochastic, 
even when a player knows what his opponent is supposed to play, he does not know 
exactly what was the resulting signal. It takes the right definition of indistinguishabil- 
ity and of being more informative to extend the deterministic results to stochastic 
ones. It seems that checking deviation would require statistical tests both on the 
signals received during the master phase and on the reports transmitted during the 
communication phases. 
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