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High frequency repeated games with costly monitoring
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We study two-player discounted repeated games in which one player cannot
monitor the other unless he pays a fixed amount. It is well known that in such
a model the folk theorem holds when the monitoring cost is on the order of mag-
nitude of the stage payoff. We analyze high frequency games in which the mon-
itoring cost is small but still significantly higher than the stage payoff. We char-
acterize the limit set of public perfect equilibrium payoffs as the monitoring cost
tends to 0. It turns out that this set is typically a strict subset of the set of feasible
and individually rational payoffs. In particular, there might be efficient and indi-
vidually rational payoffs that cannot be sustained in equilibrium. We also make an
interesting connection between games with costly monitoring and games played
between long-lived and short-lived players. Finally, we show that the limit set
of public perfect equilibrium payoffs coincides with the limit set of Nash equi-
librium payoffs. This implies that our characterization applies also to sequential
equilibria.

Keywords. High frequency repeated games, costly monitoring, Nash equilib-
rium, public perfect equilibrium, no folk theorem, characterization.
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1. Introduction

A key result in the theory of discounted repeated games with full monitoring is the
folk theorem, which states that as the discount factor goes to 1, the set of subgame-
perfect equilibrium payoffs converges to the set of feasible and individually rational
payoffs.1 The folk theorem implies in particular that a long-term interaction enables
efficiency: the efficient and individually rational feasible payoffs can be sustained in
equilibrium. This observation is valid when players fully monitor each other’s moves
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and, consequently, can enforce any pattern of behavior that results in an individually
rational payoff.

In practice, more often than not, players do not perfectly monitor each other’s ac-
tions, but do obtain signals that depend on their actions. This paper discusses situations
where players cannot freely observe the actions taken by their opponents. Rather, play-
ers observe other players’ actions only if they pay a monitoring fee. For instance, viola-
tions of various treaties, such as the Treaty on the Non-Proliferation of Nuclear Weapons
or the Convention for the Protection of Human Rights and Fundamental Freedoms, are
often difficult to identify. As a result, the international community conducts periodic
inspections to ensure that these treaties are kept. Similarly, espionage among countries
and industrial espionage with the goal of revealing actions and intent of opponents is a
common practice.

Repeated games with costly monitoring have been previously studied in the litera-
ture. In such models where the monitoring cost is fixed, namely, independent of the
discount factor, the folk theorem has been obtained (see an elaboration below). Our
goal in the current paper is to evaluate the robustness of this result to changing mon-
itoring costs. We are particularly interested in the role played by the order of magni-
tude of monitoring costs relative to stage payoffs. To this end we study a high frequency
discrete-time repeated game, a model that can be thought of as a good approximation to
a continuous-time game. We consider the impact of small period length in a two-player
repeated game, where the inspection cost is small, but of higher order than per period
payoffs. This model is relevant when an inspection requires a fixed amount of effort that
does not depend on the interaction frequency. It may occur, for instance, when prepar-
ing to launch an inspection team or when the inspection itself is expected to take a fixed
amount of time and effort that are not affected by the length of the period inspected.
An inspection by the tax authority, for example, is highly time consuming, even when it
aims to inspect just one single taxpayer in one single year. Another example is a country
that uses a collaborator to obtain important information from an enemy country. The
employment of a collaborator puts him or her in danger of being captured, thereby in-
flicting, regardless of the significance of the information obtained, a huge cost on the
spying country.

In the presence of inspection costs, it is too costly to monitor the other player at ev-
ery stage. There are simple equilibria that do not require any inspection, such as playing
constantly an equilibrium of the one-shot game. Furthermore, by playing different con-
stant one-stage equilibria in different stages, one can obtain, as a limit of public perfect
equilibrium (PPE) payoffs of the repeated game, any point in the convex hull of the one-
shot game equilibrium payoffs. A natural question arises as to whether additional (and
maybe more efficient) payoffs can be supported by equilibria.

The main objective of the paper is to characterize the limit set of PPE payoffs as the
players become more patient. We show that the equilibrium payoffs of a player cannot
exceed a certain upper bound determined by the structure of the one-shot game. This
implies that costly monitoring typically impedes cooperation: not all the efficient and
individually rational payoffs can be sustained by an equilibrium, and so there is an anti-
folk theorem.
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The goal of anti-folk theorems, such as the one presented here, is to identify the as-
sumptions needed to get a folk theorem. An important insight from our result is that
whether the folk theorem applies depends on the magnitude of the monitoring cost rel-
ative to the stage-game payoffs. When the monitoring cost is of the same magnitude as
the stage-game payoffs, a folk theorem is obtained, while when the monitoring cost is
much higher, efficiency is lost and an anti-folk theorem is obtained.

To explain why efficiency is lost, suppose that at some stage of an equilibrium,
player i does not play a best response to player j’s mixed action. In this case, so as to de-
ter player i from gaining by a deviation that would go unnoticed, player j must monitor
player i with a sufficiently high probability. Since monitoring is costly, player j should
be later compensated for monitoring player i. Moreover, since the monitoring cost is
higher than the contribution of a single stage payoff on the total payoff, when player j
monitors player i, her continuation payoff that follows the monitoring must be higher
than her expected payoff prior to monitoring.

Now consider player 1’s maximal equilibrium payoff in a repeated game with costly
monitoring and an equilibrium that supports it. If player 1 monitors player 2 with
positive probability at the first stage, his continuation payoff following the monitoring
should be higher than his expected payoff prior to the monitoring. In other words, the
continuation payoff should be higher than the maximal equilibrium payoff, which is im-
possible. Consequently, at the first stage, player 1 does not monitor his opponent. This
implies that in the first stage, player 2 should not have an incentive to deviate: she al-
ready plays a one-shot best response and there is no need for player 1 to inspect her. This
reasoning not only shows the connection between player 1’s maximal equilibrium pay-
off and action pairs in which player 2 plays a one-shot best response payoff, it also im-
poses an upper bound on player 1’s equilibrium payoffs and thereby restricts efficiency.
Player 2’s equilibrium payoffs are also subject to a similar upper bound.

It turns out that the upper bound over equilibrium payoffs thus obtained is similar to
the upper bound over equilibrium payoffs in case of long-lived players playing against
a sequence of short-lived players (see Proposition 3 in Fudenberg et al. (1990), which
is analogous to our Theorem 1). In such an interaction, a short-lived player has only
short-term objectives, threats of punishment are not effective against such a player, and
he therefore always plays in equilibrium a one-shot game best response. Consequently,
the maximal equilibrium payoff of a long-lived player is characterized by action profiles
where the short-lived players play a best response. This observation comprises an inter-
esting similarity with our model: the maximal equilibrium payoff of each player in our
model is precisely the bound on the long-lived player defined in Fudenberg et al. (1990).

Despite the similarities, there are two essential differences between the results in the
two models. First, the restricted inefficiency in a game with short-lived players is a con-
sequence of the fact that these players consider only the immediate stage interaction.
In our model, in contrast, both players have long-run objectives. It is only when the ex-
pected payoff of one player from this stage and on is equal to his maximal equilibrium
payoff that the other player behaves like a short-lived player. Moreover, even in this case,
this behavior is temporary and applies only to the current stage of the game. Once the
expected payoff of the player from this stage and on falls below his maximal equilibrium
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payoff, the opponent’s behavior is no longer the behavior of a short-lived player. The
second difference is that in Fudenberg et al. (1990), the upper bound on payoffs applies
only to the long-lived player, while in our model it further restricts efficiency since it
applies to both players.

In constructing equilibria, monitoring is crucial both to sustain and to enforce equi-
librium payoffs. Specifically, monitoring serves three different purposes.

1. Monitoring the other player with sufficiently high probability, coupled with a threat
of punishment, ensures that in equilibrium the other player will not deviate to an
action that he is not supposed to play.

2. When a player plays a mixed action, different actions played with positive probabil-
ity may yield different payoffs. To make the player indifferent as to which action he
takes, different continuation payoffs must be attached to different actions. Moni-
toring is used to enable the players to coordinate the continuation payoffs. When
a player is supposed to play a mixed action, he is monitored with a positive prob-
ability, and in case he is monitored, the continuation payoff is set in such a way as
to make the player indifferent between his actions.

3. Since monitoring is costly, in equilibrium a player can monitor the other player so
as to burn money. He will do so because otherwise he will be punished, and the
resulting payoff would be worse. This possibility of forced monitoring enables one
to design relatively low continuation payoff. For instance, suppose that a player
prescribed to play a certain mixed action is monitored, and it turns out that the
realized pure action yields him a high payoff. This player can be instructed later on
to monitor and pay the monitoring cost, and thereby reduce his own payoff.

In our model, monitoring is common knowledge. In particular, both players know its
outcome. This implies that the problem of characterizing the set of equilibrium payoffs
is recursive. Indeed, our proof method is recursive in nature: we have a “conjecture”
about the limit set of PPE payoffs, and for each point in this set, we provide a proper
one-shot game and continuation payoffs in the set that render it an equilibrium.

The literature on games with imperfect monitoring

When the magnitude of monitoring costs equals that of stage payoffs, a repeated game
with costly monitoring can be recast as a game with imperfect monitoring, which is sur-
veyed in, e.g., Pearce (1992), Mailath and Samuelson (2006), and Mertens et al. (2016).
Indeed, the choice weighed by each player at every stage is composed of two compo-
nents: (a) which action to play and (b) whether to monitor the other player. The payoff
function can be adapted accordingly: in case no monitoring is performed, the stage
payoff coincides with the original payoff and is equal to the original payoff minus the
monitoring cost otherwise. In our setup, the monitoring cost depends on the discount
factor and is significantly larger than the stage payoff, and therefore the game cannot be
modelled as a repeated interaction with imperfect monitoring: monitoring cannot be
considered as a regular action of an extended base game.
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Undiscounted repeated games with imperfect monitoring have been studied by

Lehrer (1989, 1990, 1991, 1992). Abreu et al. (1990) analyzed discounted games and used

dynamic programming techniques to characterize the set of public equilibrium payoffs.

Fudenberg et al. (1994) provided conditions that guarantee that any feasible and indi-

vidually rational payoff is a perfect equilibrium payoff when players are sufficiently pa-

tient. Fudenberg and Levine (1994) characterized the limit set of public perfect equilib-

rium payoffs in the presence of both public and private signals as the discount factor

goes to 1. Compte (1998) and Kandori and Matsushima (1998) proved a folk theorem

for repeated games with communication and independent private signals. Hörner et al.

(2011) extended the characterization to stochastic games.

Several authors studied specifically repeated games with costly observations. Ben-

Porath and Kahneman (2003) studied a model in which, at the end of every stage, each

player can pay a fixed amount and observe the actions just played by a subset of other

players. They proved that if the players can communicate, the limit set of sequential

equilibrium payoffs when players become patient is the set of feasible and individually

rational payoffs. Miyagawa et al. (2008) assumed that monitoring decisions are not ob-

served by others, that players have a public randomization device, and that they observe

a stochastic signal that depends on other players’ actions even if they do not purchase

information. They proved that under full dimensionality condition, the folk theorem is

still obtained. In the model studied by Flesch and Perea (2009), players can purchase

information on actions played in past stages and in the current stage. They proved that

in case at least three players (resp. four players) are involved and each player has at least

four actions (resp. three actions), a folk theorem for sequential equilibria holds.

The results attained by the last three papers mentioned is different from ours. They

obtain the standard folk theorem, while we do not. The reason for this difference is that

in their models, the monitoring cost is bounded. As mentioned above, this kind of model

is a special case of repeated games with imperfect monitoring.

Another related paper in a different strand of literature is Lipman and Wang (2009),

who studied repeated games with switching costs. In this model a player has to pay a

fixed cost whenever playing different actions in two consecutive stages. Similarly to our

cost structure, the switching cost in Lipman and Wang (2009) is much higher than the

stage payoff. Nevertheless they obtain a folk theorem.

The structure of the paper

The model is presented in Section 2. Section 3 provides the upper bounds on the payers’

payoffs and a no-folk-theorem result. Section 4 characterizes the set of public perfect

equilibrium payoffs, while Section 5 provides the main ideas of the equilibrium con-

struction. Final comments are given in Section 6. The proofs appear in the Appendix,

available in a supplementary file on the journal website, http://econtheory.org/supp/

2627/supplement.pdf.

http://econtheory.org/supp/2627/supplement.pdf
http://econtheory.org/supp/2627/supplement.pdf
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2. The model

2.1 The base game

Let G= ({1�2}�A1�A2�u1�u2) be a two-player one-shot base game in strategic form. The
set of players is {1�2}, Ai is the finite set of player i’s actions, and ui : A→ R is his payoff
function, where A := A1 ×A2. As usual, the multi-linear extension of ui is still denoted
by ui. For notational convenience, we let j denote the player who is not i.

The minmax value (in mixed strategies) of player i in the base game is given by2

vi := min
αj∈�(Aj)

max
αi∈�(Ai)

ui(αi�αj)�

We assume without loss of generality that the maximal payoff in absolute values,
maxi=1�2 maxa∈A |ui(a)|, does not exceed 1. Denote the minmax point by v := (v1� v2).
A payoff vector x ∈ R

2 is individually rational (resp. strictly individually rational) for
player i if xi ≥ vi (resp. xi > vi). Denote by F the set of all vectors in R

2 dominated by a
feasible vector in the base game:3

F := {
x ∈R

2 : ∃y ∈ conv
{
u(a)�a ∈A

}
such that y ≥ x

}
�

Since monitoring is costly, players can use the monitoring option to burn money. There-
fore, the set of feasible payoff vectors in the repeated game is the set of vectors domi-
nated by feasible payoffs in the base game.

2.2 The repeated game

We study a repeated game in discrete time, denoted G(r� c��), which depends on three
parameters, r ∈ (0�1), c > 0, and �> 0, and on the base game G. This game is described
as follows.

1. The base game G is played over and over again.

2. The duration between two consecutive stages is �.

3. The discount factor is r.

4. At every stage of the game each player chooses an action in the base game and
whether to monitor the action chosen by the other player. Monitoring the other
player’s action costs c and becomes common knowledge. We denote by Oi (resp.
NOi) the choice of player i to monitor (or observe; resp. not to observe) player j’s
action.

A private history of player i at stage n (n ∈ N) consists of (a) the sequence of actions
he played in stages 1�2� � � � � n− 1, (b) the stages in which player j monitored him, (c) the
stages in which he monitored player j, and (d) the actions that player j played in those

2For every finite set X , we denote by �(X) the set of probability distributions over X .
3Let x� y ∈ R

2. We denote y ≥ x if yi ≥ xi for each i = 1�2. In this case we say that x is dominated by y . The
vector x is strictly dominated by y when yi > xi for each i = 1�2.
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stages. Denote by Hi(n−1) the set of all such private histories. The set Hi(n−1) consists
of all player i’s information sets before making a decision at stage n. Note that Hi(n− 1)
is a finite set. A public history at stage n consists of (a) the stages in which each player
monitored the other player prior to stage n and (b) the actions that the monitored player
took in these stages. The public history is commonly known to both players. Denote by
HP(n− 1) the set of public histories at stage n. Let Fn−1 be the σ-algebra defined on the
space of infinite plays H∞ and spanned by the set of all public histories of length n− 1.

A pure (resp., public pure) strategy of player i is a function that assigns two compo-
nents to every private (resp., public) history in Hi(n − 1) (resp., HP(n − 1)): an action
in Ai to play at stage n and a binary variable, either Oi or NOi, that indicates whether
player i monitors player j at stage n.

A behavior (resp. public behavior) strategy of player i is a function that assigns a
probability distribution over Ai × {Oi�NOi} for every stage n and every private (resp.
public) history in Hi(n − 1) (resp. HP(n − 1)). In our construction we only use public
behavior strategies in which these distributions are product distributions. That is, the
action played at stage n is conditionally independent of the decision whether to mon-
itor at that stage. Since the players have perfect recall, by Kuhn’s theorem every public
behavior strategy is strategically equivalent to a mixed public strategy and vice versa.

Every pair of strategies (σ1�σ2) induces a probability distribution Pσ1�σ2 over the set
of infinite plays H∞, supplemented with the σ-algebra generated by all finite cylinders.
We denote by Eσ1�σ2 the corresponding expectation operator. Denote by αn

i player i’s
mixed action at stage n, and αn = (αn

1�α
n
2). The total (expected) payoff to player i when

the players use the strategy pair (σ1�σ2) is

Ui(σ1�σ2) := Eσ1�σ2

[
(1 − r�)

( ∞∑
n=1

r�(n−1)ui(α
n)

)
− c

(∑
k

r�(τ
k
i −1)

)]
� (1)

where (τki )k∈N are the stages in which player i monitors player j.
It is worth noting that the contribution of the stage payoff to the total discounted

payoff depends on the duration � between stages, and is equal to (1 − r�)ui(α
n). The

discounted value of the nth stage payoff is therefore equal to (1 − r�)r�(n−1)ui(α
n). Con-

versely, the monitoring cost is much higher than the stage payoff. It is constant and
does not depend on the duration between stages. This is why the cost of the kth obser-

vation, which is performed at stage τki , is multiplied by r�(τ
k
i −1) and not by (1 − r�). The

difference between the nature of the stage payoff and that of the monitoring cost is the
point where our model departs from the literature.

2.3 Equilibrium

A pair of strategies is a (Nash) equilibrium if no player can increase his total payoff by
deviating to another strategy. A public equilibrium is an equilibrium in public strategies.
In such an equilibrium, no player can profit by deviating to any strategy, public or not
public. A public perfect equilibrium is a pair of public strategies that induces an equilib-
rium in the continuation game that starts after any public history. Let NE(r� c��) be the
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set of Nash equilibrium payoffs in the game G(r� c��) and let PPE(r� c��) be the set of
public perfect equilibrium payoffs of this game.

Define

NE∗(r) = lim sup
c→0

lim sup
�→0

NE(r� c��)�

PPE∗(r) = lim sup
c→0

lim sup
�→0

PPE(r� c��)�

These are the limit sets of Nash equilibrium payoffs and public perfect equilibrium pay-
offs as both the duration between stages and the observation cost go to 0, and the former
goes to 0 faster than the latter.

By definition, PPE(r� c��) ⊆ NE(r� c��) for every discount factor r, every observation
cost c, and every duration �, and therefore PPE∗(r) ⊆ NE∗(r). Our main result charac-
terizes these sets in terms of the base game. It turns out that under a weak technical
condition these two sets coincide.

Playing a Nash equilibrium of the base game at every stage and after every history,
without monitoring each other, is a stationary equilibrium of the game G(r� c��). We
therefore conclude that the set PPE(r� c��) contains the set NE of Nash equilibrium pay-
offs of the base game. By partitioning the set of stages into disjoint subsets, and play-
ing the same Nash equilibrium in all stages of the subset, without monitoring the other
player, we construct an equilibrium payoff in the convex hull of NE. When r� > 1

2 , this
construction can yield any vector in the convex hull of NE. We thus obtain the following
lemma.

Lemma 1. For every r > 0, the set PPE∗(r) contains the convex hull of the set NE.

A maxmin mixed action of player i in the base game is any mixed action αi ∈ �(Ai)

that satisfies ui(αi� aj) ≥ vi for every aj ∈ Aj . By repeating his maxmin mixed action in
the base game and not monitoring the other player, player i guarantees a payoff vi in the
repeated game G(r� c��). We conclude with the following result.

Lemma 2. For every r� c�� > 0 and x ∈ NE(r� c��), one has x ≥ v.

3. No folk theorem

In this section, we show that the folk theorem does not hold in games with costly moni-
toring. In Section 3.1, we present two quantities M1 and M2, and in Section 3.2, we show
that Mi is an upper bound to player i’s payoff in NE(r� c��). In some games these bounds
are restrictive, in the sense that they are lower than the highest payoff of player i in the
set of feasible and individually rational payoffs. In particular, it may happen that the set
NE(r� c��) may be disjoint from the Pareto frontier of F ∩ V . In subsequent sections, we
characterize the sets NE∗(r) and PPE∗(r) using the quantities M1 and M2.
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Figure 1. The prisoner’s dilemma.

3.1 Best response and the index Mi

We say that player i plays a best response at the mixed-action pair α = (α1�α2) if

ui(α1�α2) = max
ai∈Ai

ui(ai�αj)�

Player i is indifferent at α = (α1�α2) if for every action ai such that αi(ai) > 0,

ui(αi�αj) = ui(ai�αj)�

We now define two indices M1 and M2 that play a major role in our characterization.
Let

Mi := max
{

min
ai : αi(ai)>0

ui(ai�αj) : (α1�α2) ∈ �(A1)×�(A2)

and αj is a best response to αi

}
�

(2)

To explain the definition in (2), consider M2. Let α2 be a mixed action of player 2 and
let α1 be a best response of player 1 to α2. By playing α2, player 2 does not necessarily
optimize against α1, implying that any pure action in the support of α2 might induce
a different payoff for player 2. We focus on the minimum among these payoffs, which
is a function of the pair (α1�α2). The index M2 is the maximum of all these minimal
numbers, over all pairs (α1�α2), where α1 is a best response of player 1 to α2.

The next example illustrates the quantity M2 in the prisoner’s dilemma.

Example 1 (The prisoner’s dilemma). The prisoner’s dilemma is given by the base game
that appears in Figure 1.

We calculate M2 for this game. Fix a mixed action α2 of player 2. The best response
of player 1 to α2 is D and mina2∈supp(α2) u2(D�a2) is either 1 or 0, where supp(αi) := {ai ∈
Ai : αi(ai) > 0}. The maximum over these minima is 1, implying that M2 = 1. ♦

By the definition of Mi, if αj is a best response to αi, then

Mi ≥ ui(ai�αj) for at least one action ai ∈ supp(αi)�

Consequently, Mi is at least as high as the payoff of player i in any equilibrium of the
base game. Formally, for every Nash equilibrium α of the base game,

Mi ≥ ui(α)� i ∈ {1�2}�
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Figure 2. The game in Example 2.

The following example shows that Mi might be strictly higher than player i’s payoffs
in all Nash equilibria.

Example 2. Consider the 3 × 3 base game that appears in Figure 2.
By an iterative elimination of pure strategies, one deduces that the action pair (T�L)

is the unique equilibrium of the base game, and it yields the payoff (1�1). Since C is a
best response to I, we deduce that M1 ≥ 2, and since B is a best response to R, we deduce
that M2 ≥ 2. ♦

The significance of Mi becomes apparent in Theorem 1 below. It states that Mi is
the upper bound of player i’s payoffs in the repeated game G(r� c��). The intuition is
as follows. We first explain why the definition of Mi concerns mixed actions at which
player j plays a best response. When player i monitors player j, the former incurs a
significant monitoring cost (recall that c is significantly larger than �). Consequently,
in equilibrium, player i’s continuation payoff after monitoring must be higher than his
expected payoff before doing so. This implies that in equilibrium that supports player i’s
maximal payoff in the set NE(r� c��), he does not monitor his opponent at the first stage,
because otherwise his continuation payoff following the monitoring would exceed the
maximal payoff. Therefore player j must have, in equilibrium, no incentive to deviate in
the first stage, meaning that he must play a one-shot best response.

We now explain why Mi is indeed an upper bound of the set of equilibrium payoffs.
Assume by contradiction that player i’s maximal payoff in the set NE(r� c��), denoted
x∗
i , is strictly higher than Mi. Denote by α = (α1�α2) the mixed action pair that the play-

ers play at the first stage of an equilibrium that supports x∗
i . As we saw above, player j

plays a best response at α. Consider now the event that player i plays at the first stage a
pure action a∗

i that minimizes the stage payoff ui(ai�αj) among the actions ai such that
αi(ai) > 0. By the definition of Mi we have ui(a

∗
i � αj) ≤ Mi < x∗

i . Since a∗
i is played with

positive probability at the first stage, x∗
i is a weighted average of ui(a∗

i � αj) and the con-
tinuation payoff that follows it. This continuation payoff is also an equilibrium payoff
and therefore cannot exceed x∗

1. We obtain that x∗
1 is a weighted average of two smaller

numbers, of which one is strictly smaller. This is a contradiction.

3.2 Bounding the set of Nash equilibria

In this subsection, we consider fixed r� c�� > 0. Since the set of strategies is compact and
the payoff function is continuous over the set of strategy pairs, one obtains the following
result.
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Lemma 3. The set NE(r� c��) of Nash equilibrium payoffs in the repeated game is com-
pact.

The following theorem states that when � is sufficiently small, player i’s equilibrium
payoff cannot exceed Mi. In particular, it means that not all feasible and individually
rational payoffs are equilibrium payoffs (i.e., not all of them are in NE(r� c��)): costly
monitoring typically impairs efficiency.

Theorem 1. Fix �> 0, i ∈ {1�2}, and x ∈ NE(r� c��). If �<
ln(1− c

1−xi
)

ln(r) ), then xi ≤Mi.

Example 1 (Revisited). As mentioned before, in the prisoner’s dilemma M1 =M2 = v1 =
v2 = 1. Since, by Theorem 1, any Nash equilibrium payoff cannot exceed Mi, we obtain
NE(r� c��) = {(1�1)} provided that � is sufficiently small. In other words, in the repeated
prisoner’s dilemma, mutual defection is the only equilibrium payoff in the presence of
a high monitoring fee. The intuition behind this result is that to implement a payoff
that is not (1�1), at least one player, say player 2, must play the dominated action C.
This implies that to deter a deviation to D, player 1 has to monitor player 2 with a pos-
itive probability. Whenever player 1 monitors player 2, he should be compensated by
a higher continuation payoff for having to bear the monitoring cost. The only circum-
stance whereby the continuation payoff may compensate player 1 is in case player 2
plays the dominated action C with a higher probability. In that case, player 1 must con-
tinue monitoring player 2 with positive probability. It might therefore happen, although
with a small probability, that player 1 will have a long stretch of stages in which he mon-
itors player 2, the continuation payoff of player 1 will keep increasing and eventually
exceed 4, which is impossible. ♦

Proof of Theorem 1. We prove the theorem for i = 1. By Lemma 3, the set NE(r� c��)

is compact. Let x∗ be a payoff vector in NE(r� c��) that maximizes player 1’s payoff.
That is, x∗ ∈ argmax{x1 : x ∈ NE(r� c��)}. Assume to the contrary that M1 < x∗

1. When �

is sufficiently small, we obtain a contradiction.
Consider an equilibrium σ∗ that supports x∗, and denote by α = (α1�α2) ∈ �(A1) ×

�(A2) the mixed-action pair played under σ∗ at the first stage. For every action a1 ∈A1,
denote by I1(a1) the event that player 1 plays the action a1 and monitors player 2 at the
first stage. Denote by I1 := ⋃

a1∈A1
I1(a1) the event that player 1 monitors player 2 at the

first stage. Let z1 be player 1’s continuation payoff from stage 2 onward, conditional on
his information following stage 1.

The proof is divided into two cases.

Case 1: Pσ∗(I1) > 0. Since σ∗ is an equilibrium, the expected payoff of player 1 con-
ditional on the event that he monitors player 2 at the first stage must be equal to x∗

1.
Furthermore, the event I1 is common knowledge. If both players monitor each other
at the first stage, then the actions of both players are known to both and the continu-
ation play is a Nash equilibrium (of the repeated game). If only player 1 monitors at
the first stage, an event that is known to both players, then the expected play following
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the first stage and conditional on the action of player 2 at the first stage is an equilib-
rium. Consequently, the expectation of z1 conditional on I1 and a1

2 is at most x∗
1, that is,

Eσ∗ [z1|I1� a
1
2] ≤ x∗

1. We therefore deduce that

x∗
1 = Eσ∗

[
(1 − r�)u1(α)− c + r�z1|I1

] ≤ 1 − r� − c + r�x∗
1�

This inequality is violated when �<
ln(1−c/(1−x∗

1))

ln(r) .

Case 2: Pσ∗(I1) = 0. Since player 1 does not monitor player 2 at the first stage, α2 is a best
response at α. Otherwise, player 2 would have a profitable deviation at the first stage that
would go unnoticed. The definition of M1 implies that M1 ≥ mina1∈supp(α1) u1(a1�α2).
Denote by a∗

1 ∈ supp(α1) an action that attains the minimum. Since by assumption M1 <

x∗
1, one has u1(a

∗
1�α2) < x∗

1.
We claim that Eσ∗ [z1|a∗

1] ≤ x∗
1. If player 2 did not monitor player 1, then each player’s

play after the first stage is independent of his opponent’s action at the first stage, and the
expected continuation play is a Nash equilibrium. If player 2 monitors player 1, then as
in Case 1 the expected play after the first stage conditioned on the action of player 1 at
the first stage is an equilibrium. We thus conclude that Eσ∗ [z1|a∗

1] ≤ x∗
1, and therefore

x∗
1 = (1 − r�)u1(a

∗
1�α2)+ r�Eσ∗ [z1|a∗

1]
< (1 − r�)x∗

1 + r�x∗
1 ≤ x∗

1�

a contradiction. �

4. The main result: Characterizing the set of public perfect

equilibrium payoffs

The set of individually rational payoff vectors that are (a) dominated by a feasible point
and (b) yield to each player i at most Mi, is denoted by

FM := {x ∈ F : v1 ≤ x1 ≤M1 and v2 ≤ x2 ≤M2}�
Theorem 1 and Lemma 2 imply that NE(r� c��) ⊆ FM , provided that � is sufficiently
small, and consequently the set PPE(r� c��) is a subset of FM for every � sufficiently
small. Our main result states that the sets NE(r� c��) and PPE(r� c��) are close to FM ,
provided that c and � are sufficiently small. This result implies in particular that the
bound Mi, established in Theorem 1, is tight.

We now define the closeness concept between the sets that we use. A set K of payoff
vectors is an asymptotic set of Nash equilibrium payoffs (resp. of PPE payoffs) if any point
in the set is close to a point in NE(r� c��) (resp. PPE(r� c��)) for every c and � small
enough and every discount rate r.

Definition 1. A set K ⊆ R
2 is an asymptotic set of Nash equilibrium payoffs if, for every

r > 0 and every ε > 0, there is cε > 0 such that for every c ∈ (0� cε] there is �c�ε�r > 0 such
that for every � ∈ (0��c�ε�r) we have

max
y∈K

min
x∈NE(r�c��)

d(x� y) ≤ ε�
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Figure 3. A game where M1 = v1.

The set K is an asymptotic set of PPE payoffs if an analogous condition holds with respect
to the set PPE(r� c��).

Note that Definition 1 concerns only one direction of the Hausdorff distance: it re-
quires that any point in K is close to a Nash equilibrium payoff (or a PPE payoff), but
not vice versa.

Theorem 2. If M1 > v1 and M2 > v2, then for every discount factor r ∈ (0�1) the set FM

is an asymptotic set of Nash equilibrium payoffs and an asymptotic set of PPE payoffs. In
particular, NE∗(r) = PPE∗(r) = FM .

The proof of Theorem 2 appears in Section 5 and in the Appendix. As the following
example shows, the condition in Theorem 2 requiring that M1 > v1 and M2 > v2 cannot
be disposed of.

Example 3. Consider the 2 × 2 base game illustrated in Figure 3.
The minmax value of both players is 0. Since the maximum payoff of player 1 is 0,

we deduce that M1 = 0, implying that M1 = v1. Since B is a best response to R and not
to L, it follows that M2 = 2. In particular, the set FM is the interval between (0�0) and
(0�2). We argue that the unique equilibrium payoff in the repeated game G(r� c��) is
(0�0), implying that the conclusion of Theorem 2 does not hold. Indeed, since v1 = 0
and the maximal payoff of player 1 is 0, his payoff in every Nash equilibrium of G(r� c��)

as well as his continuation payoff after any public history is 0. The action L strictly dom-
inates the action R, and therefore whenever player 2 plays R with positive probability, he
must be monitored by player 1. However, player 1 cannot be compensated for monitor-
ing; hence in equilibrium player 2 always plays L. Since u1(B�L) = −1, player 1 always
plays T : in equilibrium the players repeatedly play (T�L) and, consequently, the unique
equilibrium payoff is (0�0), as claimed. ♦

Remark 1. We assumed that the monitoring fee c is the same for both players. The
results remain the same if the monitoring fees of the two players are different, pro-
vided that the duration � is significantly smaller than both. That is, for every c1� c2 >

0 sufficiently small, the set of equilibrium payoffs of the two-player repeated game
G(r� c1� c2��), in which the monitoring costs of the two players are c1 and c2, is close
to the set FM , provided that � is sufficiently close to 0. In fact, in our proof it is more
convenient to assume that the monitoring fees of the players differ.

The sets of Nash and public perfect equilibrium payoffs in G(r� c1� c2��) are denoted
by NE(r� c1� c2��) and PPE(r� c1� c2��), respectively.
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5. The structure of the equilibrium

Theorem 1 implies that the set NE∗(r) is included in FM . To complete the proof of The-
orem 2, it remains to prove that PPE∗(r) contains FM . We first prove that NE∗(r) ⊇ FM

by constructing equilibria in which detectable deviations trigger indefinite punishment.
We then see how the indefinite punishment can be replaced by a credible threat, imply-
ing that PPE∗(r) ⊇ FM .

At a technical level our proof uses a classical technique. We identify sets X of payoff
vectors that have the following property. Every x ∈ X is an equilibrium of a one-shot
game whose payoffs are composed as a payoff from the base game plus a continuation
payoff from X itself. We start with a small set X and expand it until we obtain a set
close to FM . The novelty of the proof is in the burning-money process that we proceed
now to introduce. This process allows one to decompose the continuation payoff into
two parts: a target continuation payoff and the gap between the actual continuation
payoff and the target payoff. This gap is precisely the amount the players must burn.
While the recursive calculation of continuation payoffs, based on the actual play in the
previous stage, is rather complicated, each of the two parts can be easily calculated in a
recursive way. The decomposition of the continuation payoff into two parts significantly
simplifies the construction of equilibria in the current model, and may be useful in other
models as well.

5.1 Liability and burning-money processes

To simplify the computations in our construction, we apply a positive affine transforma-
tion on the payoffs. Applying such an affine transformation to the player’s payoffs in the
base game does not change the strategic considerations of the players. However, it does
change their monitoring fees and no longer allows us to assume that the monitoring
costs are identical for both players. We thus assume from now on that the monitoring
costs differ and we denote the monitoring cost of player i by ci (see Remark 1).

In our construction, players monitor each other for two purposes. First, monitoring
is aimed to deter players from deviating. This type of monitoring takes place at random
stages. Second, monitoring is used to establish continuation payoffs that ensure that
players are indifferent between their prescribed actions. This type of monitoring takes
place at known stages.

To implement the second purpose, we introduce burning-money processes. The
value of the burning-money process at stage n, which is called the player’s debt, repre-
sents the amount that the player has to burn from stage n onward. This amount is mea-
surable with respect to the public history at that stage, and thus each player knows the
other player’s debt. Moreover, each player can verify whether the other player burned
money as required. The nature of the burning-money process is that as long as the debt
is smaller than ci, the debt is deferred to the next period, and due to discounting, it in-
creases. This happens until the debt exceeds ci. At this point in time, player i has to
monitor player j and as a result, his debt is reduced by ci. Failing to do so triggers a pun-
ishment. The debt might also increase due to other reasons. This might happen when,
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under equilibrium, a player plays with positive probability two actions that yield differ-
ent stage payoffs. To ensure that the player is indifferent between the two actions, his
debt increases when he is monitored and plays the higher-payoff action.

The definition of the debt process relies on liability processes.

Definition 2. A liability process is a nonnegative stochastic process ξ = (ξn)n∈N such
that ξn is measurable with respect to Fn+1 for every n ∈ N.

The liability is meant to stand for the additional debt that a player incurs at stages in
which he is monitored. The role of the liability process is to make all actions played by
the monitored player payoff-wise equivalent to him. This is the reason why the liability
at stage n depends on the play at that stage and, therefore, ξn is Fn+1-measurable.

Definition 3. Let ξi = (ξni )n∈N be a liability process of player i. A burning-money
process based on ξi is a stochastic process Di = (Dn

i )n∈N that satisfies the following
properties:

• We have D1
i ≥ 0: the initial debt is a nonnegative real number.

• If Dn
i ≥ ci, then Dn+1

i = Dn
i −ci+ξni

r�
. The interpretation is that at a stage in which the

debt exceeds ci, player i has to monitor the other player and incurs a cost of ci,
thereby reducing his debt by this amount. The debt Dn+1

i is obtained by adding
the liability ξni to the revised debt, and the total is divided by the discount rate r�.

• If Dn
i < ci, then Dn+1

i = Dn
i +ξni
r�

. When the debt is below ci, no mandatory inspection
takes place, the liability ξni is added to the current debt, and the total is divided by
the discount rate.

Note that the debt Dn at stage n depends only on the history up to (and including)
stage n: Dn

i is measurable with respect to Fn. This implies that at the beginning of stage
n the debts of both players are common knowledge. Moreover, the debts are always
nonnegative.

In our construction, the liability of player i at stage n is at most 2(1 − r�). Here 2 is
the maximal difference between two stage payoffs, and (1 − r�) is the weight of a single

stage payoff. Consequently, player i’s debt is bounded by ci+2(1−r�)
r�

.

5.2 Monitoring to detect deviations

Let α = (α1�α2) be a pair of mixed actions played at some stage. When player 1 is indif-
ferent at α and α1 is not a best response at α, the only way player 1 can gain is by deviat-
ing to an action outside the support of α1. Suppose that player 2 monitors player 1 with
probability p. A threat to punish player 1 down to his minmax level in case a deviation is
detected is effective if the expected loss due to the punishment is greater than the poten-
tial gain: 2(1 − r�) < p · r�(x1 − v1), where x1 is player 1’s expected continuation payoff
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when he is monitored and no deviation occurs. It follows that to deter deviations to ac-
tions outside the support of α1, we need to set the per-stage probability of monitoring p

to satisfy

p>
2(1 − r�)

r�(x1 − v1)
� (3)

An analogous inequality holds when player 1 tries to deter deviations of player 2. Note

that lim�→0
1−r�

� = − ln(r), and thus the probability that a player is monitored should be

larger than 2�(− ln(r))
x1−v1

, which is of magnitude �.

5.3 The general structure of the equilibrium

In this section, we describe the outline of our construction of Nash equilibria, which are
all public equilibria. The public strategy of player i is based on a burning-money process
Di = (Dn

i )n∈N, and for every public strategy of length n − 1, it assigns two parameters:
(a) the one-shot mixed action αn

i to play at stage n and (b) the probability pn
i to monitor

player j at that stage. The monitoring probability pn
i takes one of three possible values:

• The value pn
i = 1. Here player i is required to burn money, which takes place when

his debt exceeds ci.

When player i’s debt is below ci,

• The value pn
i = 0 when player j plays a best response and need not be monitored.

• The value pn
i = pi, where pi is some fixed positive but low constant that satisfies

(3). This happens when player j is not playing a best response, hence has to be
deterred from deviating.

In principle, the decision whether to monitor may be correlated with the player’s ac-
tion. In our construction, however, the random variables αn

i and pn
i are independent,

conditional on the current history of length n− 1.
To facilitate the description of the strategy, we introduce a real-valued process xi =

(xni )n∈N. The quantity xni is the discounted value of the future stream of payoffs starting
at stage n, including monitoring fees at stages m ≥ n, where pm

i < 1. Player i’s debt at
stage n, Dn

i , indicates the debt of player i at stage n, to be paid by monitoring fees in
stages m≥ n in which pm

i = 1.
The actual continuation payoff in the repeated game following the public history

hn−1 of length n− 1 under the strategy pair σ = (σ1�σ2) is therefore

U(σ |hn−1) = xn −Dn� (4)

The process Di = (Dn
i )n∈N indicates the amount of money player i should burn. We

thus require the following condition.

Condition C1. We have pn
i = 1 whenever Dn

i ≥ ci, for each player i and every stage n.

Condition C1 means that whenever Dn
i exceeds ci, player i should burn money by mon-

itoring the other player.
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The process (αn
i �p

n
i )1=1�2;n=1�2���� induces a public equilibrium if for every stage n and

player i, the following Conditions (C2)–(C6) are satisfied:

Condition C2. We have xni −Dn
i ≥ vi.

Condition C2 ensures that the payoff of each player along the play is individually ratio-
nal: it is at least his minmax value.

Condition C3. When player j does not play a best response at αn, for every action aj /∈
supp(αn

j ),

pn
i >

2(1 − r�)

r�(Eαni �aj
[xn+1

i −Dn+1
i ] − vi)

�

where Eαni �aj
[·] denotes the expected value when, at stage n, player i plays the mixed

action αn
i and player j plays the pure action aj .

As discussed in Section 5.2 (see (3)), Condition C3 ensures that, provided an observed
deviation triggers an indefinite punishment at the minmax level, player j cannot profit
by deviating to an action that is not in the support of αn

j .
Because G(r� c��) is a discounted game, a pair of public strategies is a Nash equi-

librium if the behavior of the players following every public history that occurs with
positive probability is an equilibrium in the static game in which the payoffs consist
of the actual stage payoff plus the continuation payoff (the one induced by σ). The next
conditions take care of the incentive compatible constraints associated with this static
game.

Denote by Ini the event in which player i monitors player j at stage n. Denote by
Eai�NOi�α

n
j �p

n
j
[·] the expectation operator when at stage n player i plays ai, he does not

monitor (NOi), while player j plays αn
j and monitors with probability pn

j . The notation
Eai�Oi�α

n
j �p

n
j
[·] receives an analog interpretation with the difference that here player i does

monitor at stage n.

Condition C4. If 0 <pn
i < 1, then for every action ai ∈ supp(αn

i ),

xni −Dn
i = (1 − r�)ui(ai�α

n
j )+Eai�NOi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
= (1 − r�)ui(ai�α

n
j )+Eai�Oi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
�

Condition C5. If pn
i = 0, then for every action ai ∈ supp(αn

i ),

xni −Dn
i = (1 − r�)ui(ai�α

n
j )+Eai�NOi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
≥ (1 − r�)ui(ai�α

n
j )+Eai�Oi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
�

Condition C6. If pn
i = 1, then for every action ai ∈ supp(αn

i ),

xni −Dn
i = (1 − r�)ui(ai�α

n
j )+Eai�Oi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
≥ (1 − r�)ui(ai�α

n
j )+Eai�NOi�α

n
j �p

n
j

[
r�(xn+1

i −Dn+1
i )− ci · 1Ini

]
�
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Conditions C4–C6 guarantee that no player can profit by an undetectable deviation.
Condition C4 states that in case an inspection has a nontrivial probability, all actions in
the support of αn

i guarantee the same payoff, both when an inspection takes place and
when it does not. Condition C5 states that in case an inspection occurs with probability
0, all actions in the support of αn

i guarantee the same payoff if an inspection does not
take place and guarantee a lower payoff if an inspection takes place. Thus, there is no
incentive to monitor when the probability of monitoring is 0. Similarly, Condition C6
states that in case an inspection occurs with probability 1, all actions in the support of
αn
i guarantee the same payoffs if an inspection takes place, and a lower one if inspection

does not take place.4

Conditions C4–C6 imply that

xni −Dn
i = Epn�αn

[
(1 − r�)ui(a

n)+ r�(xn+1
i −Dn+1

i )− ci · 1Ini

]
� (5)

which guarantees that (4) holds. Indeed, using (5) recursively one obtains (compare with
(1))

xNi −DN
i = Eσ

[ ∞∑
n=N

(1 − r�)r(n−1)�ui(a
n)− c

∞∑
n=N

r(n−1)� · 1Ini

∣∣∣Fn−1

]
� (6)

where 1Ini
is the indicator of the event Ini that player i monitors at stage n. The right-hand

side of (6) is player i’s payoff in the repeated game, starting at stage N .

5.4 Monitoring to deter deviations

To better explain the idea of our construction, we start with a simple case in which moni-
toring is performed for one purpose: to deter deviations. In particular, a burning-money
process is unnecessary in this case. In Section 5.5, we handle the general case, which
requires the use of burning-money processes.

Suppose that there are two mixed-action pairs β�γ ∈ �(A1)×�(A2) that satisfy (see
Figure 4) (a) u1(β) < u1(γ), (b) u2(β) > u2(γ), (c) at β, player 1 plays a best response
while player 2 is indifferent, and (d) at γ, player 2 plays a best response while player 1 is
indifferent. Roughly speaking, we show that any point in the line segment between u(β)

and u(γ) is an equilibrium point.
For every η> 0, let Jη be the line segment that connects the points u(β)+ (η�−2η)

and u(γ)+ (−2η�η) (see Figure 4).
Assume that the parameters η, r, �, c1, and c2 satisfy the following smallness

conditions: Condition A1. η > 1−r�

r�
; Condition A2. c1 ≤ (u1(γ)−u1(β)−η)(r�− 1

2 )

1+r�
; Condi-

tion A3. c2 ≤ (u2(β)−u2(γ)−η)(r�− 1
2 )

1+r�
; Condition A4. r�η2 > 2ci > 1 − r� for i = 1�2. Con-

ditions A1–A4 hold whenever � � c1� c2 � u1(γ)− u1(β)−η�u2(β)− u2(γ)−η.

4We could state Conditions C4–C6 more concisely. Condition C5 could be required to hold whenever
pn
i < 1 (instead of whenever pn

i = 0) and Condition C6 whenever pn
i > 0 (instead of whenever pn

i = 1). In this
case, Condition C4 would be redundant. We prefer to keep the three conditions as above for expositional
purposes.
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Figure 4. The construction in the proof of Lemma 4.

Lemma 4. Let β�γ ∈ �(A1)× �(A2) be two mixed-action profiles that satisfy the follow-
ing conditions:

(i) We have u1(β) < u1(γ) and u2(β) > u2(γ).

(ii) At β, player 1 plays a best response and player 2 is indifferent.

(iii) At γ, player 2 plays a best response and player 1 is indifferent.

Then the set NE(r� c1� c2��) contains the line segment Jη, provided that the parameters η,
r, c1, c2, and � satisfy Conditions A1–A4.

Since player 1 plays a best response at β, we have v1 ≤ u1(β). Similarly, v2 ≤ u2(γ).
In particular, all the points on the line segment Jη are feasible and strictly individually
rational.

The proof of Lemma 4 is relegated to Section A1 in the Appendix. The key idea of
the construction is the following. Any point between u(β) and u(γ) can be obtained by
playing only the mixed actions β and γ throughout the game. When playing β, player 2
may have a profitable deviation, and when playing γ, player 1 may have a profitable
deviation. To deter deviations, when playing β, player 1 monitors player 2 with small
probability, and when playing γ, player 2 monitors player 1 with small probability. We
set the probability of monitoring in such a way that the expected cost of monitoring per
stage is η, the distance between the line segment [u(β)�u(γ)] and Jη.

The gist of the construction appears in Figure 4. Let xn ∈ Jη and suppose further-
more that xn lies on the upper half of the line segment Jη. To support xn as the ex-
pected payoff from stage n onward, at stage n the players play the mixed action β, and
player 1 monitors player 2 with probability p1. The continuation payoff xn+1 depends on
whether player 1 monitored player 2: if player 1 monitored player 2, he paid the mon-
itoring cost, and his continuation payoff should be higher than the case when he did
not monitor player 2. We thus have to choose two continuation payoffs on Jη that leave
the players indifferent. The way this is done and the precise calculations appear in Sec-
tion A1 in the Appendix. In case xn lies on the lower half of the line segment Jη, the play-
ers play in an analogous fashion: they play the mixed action γ and player 2 monitors
player 1 with probability p2.
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Figure 5. The set Qη�R1�R2 .

Lemma 4 implies in particular that Jη is a subset of NE∗(r), provided η< min{u1(γ)−
u1(β)�u2(β)− u2(γ)}.

5.5 Monitoring to burn money

In the next lemma, we relax the conditions of Lemma 4 and extend it in the following
ways.

• Condition (i) is violated, that is, u1(β) ≥ u1(γ) or u2(β) ≤ u2(γ).

• Condition (2) or (3) is violated: player 1 need not be indifferent at γ and player 2
need not be indifferent at β.

• Not only the points on the line segment Jη are equilibrium payoffs, but also all
individually rational points dominated by points on Jη.

Note that we keep the conditions that player 1 plays a best response at β and that
player 2 plays a best response at γ, which are the only crucial requirements for our
construction.

For every two points R(1)�R(2) ∈ R
2 that satisfy R

(1)
1 >R

(2)
1 ≥ v1 and R

(2)
2 >R

(1)
2 ≥ v2,

and for every η> 0 that satisfies η<
R
(3−i)
i −vi

2 and η<
R
(i)
i −R

(3−i)
i

3 for i = 1�2, let Qη�R(1)�R(2)

be the pentagon whose extreme points are (v1 + η�v2 + η), (v1 + η�R
(2)
2 − 2η), (R(1)

1 −
2η�v2 +η), (R(2)

1 +η�R
(2)
2 − 2η), and (R

(1)
1 − 2η�R(1)

2 +η) (see Figure 5). It is convenient
to phrase the result in terms of asymptotic sets of Nash equilibrium payoffs.

Lemma 5. Let β= (β1�β2) and γ = (γ1�γ2) be two mixed-action pairs and let R(1)�R(2) ∈
R

2 be such that the following conditions hold:

(i) We have u1(β) > R
(2)
1 > v1 and u2(γ) > R

(1)
2 > v2.

(ii) Player 1 plays a best response at β and u2(β1� a2) ≥ R
(2)
2 for every action a2 ∈

supp(β2).
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(iii) Player 2 plays a best response at γ and u1(a1�γ2) ≥ R(1)
1 for every action a1 ∈

supp(γ1).

Then the set Q0�R(1)�R(2) is an asymptotic set of Nash equilibrium payoffs.

It is sufficient to prove that for every η > 0, the set Qη�R(1)�R(2) is a subset of
NE(r� c1� c2��), provided that c1, c2, and � are sufficiently small. The proof of Lemma 5
is based on the construction employed in the proof of Lemma 4: the players play ei-
ther β or γ, and whenever a player is supposed to play a mixed action that is not a best
response, he is monitored with a small probability. To prove the lemma, we use burning-
money processes. These processes have several roles:

• To implement an equilibrium payoff ξ in the interior of Qη�R(1)�R(2) , we choose a

point x on the line segment [R(2)+(η�−2η)�R(1)+(−2η�η)] that dominates ξ. We
implement x and use burning-money processes with initial values (xi − ξi)i=1�2.
This way each player i obtains xi, burns xi − ξi, and is left with ξi.

• When a player is not indifferent between the pure actions in the mixed action he
is supposed to play, we use a burning-money process to make him indifferent be-
tween the pure actions involved. Suppose for example that player 1 is not indif-
ferent at γ. Whenever player 1 plays γ and is being monitored, his debt increases

by
u1(a1�γ2)−R

(1)
1

p2
≥ 0, where a1 is the actual action that he played. This quantity is

player 1’s observed excess over R(1)
1 divided by the per-stage probability that he

is monitored. This way, player 1’s debt increases by a quantity that makes him
indifferent between the pure actions in supp(γ1).

• To accommodate the case that u1(β) ≥ u1(γ) or u2(β) ≤ u2(γ), we apply the
construction of Lemma 4, assuming that the players’ payoff when they play β

(resp. γ) is R(2) (resp. R(1)) rather than u(β) (resp. u(γ)). Since the payoff is in
fact u(β) (resp. u(γ)), at every stage in which the players play β (resp. γ), we add
(1 − r�)(u(β)−R(2)) (resp. (1 − r�)(u(γ)−R(1))) to the players’ debts.

The details of the proof appear in Section A2.
By choosing β to be the mixed action in which the maximum in the definition of

M2 is attained and choosing γ to be the mixed action in which the maximum in the
definition of M1 is attained, we obtain that R(1)

1 (resp. R(2)
2 ) can be assumed to equal to

M1 (resp. M2). From Lemma 5 we therefore obtain the following result.

Corollary 1. Assume that M1 > v1 and M2 > v2. Let β be a mixed-action profile in
which β2 is a best response and mina1∈supp(β1) u1(a1�β2) = M1, and let γ be a mixed-
action profile in which γ1 is a best response and mina2∈supp(γ2) u2(γ1� a2) = M2. Then the
pentagon Q∗ whose extreme points are (v1� v2), (v1�M2), (u1(β)�M2), (M1�u2(γ)), and
(M1� v2) is an asymptotic set of Nash equilibrium payoffs.
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Figure 6. Three cases of u(a) in Lemma 6 with t1
2 =M2 and t2

1 =M1.

5.6 Equilibria in which both players monitor each other

The construction in the previous section uses action pairs in which one player plays a
best response and therefore need not be monitored. In the present section, we use ac-
tion pairs in which neither player plays a best response. Consequently, there is a positive
probability that both players monitor each other.

For every two points x� y ∈R
2, denote by 〈〈x; y〉〉 the rectangle with extreme points x,

(x1� y2), (y1�x2), and y.

Lemma 6. Let J be an asymptotic set of Nash equilibrium payoffs, let t1 and t2 be two
points in J such that the slope of the line segment [t1� t2] is negative and such that the
rectangles 〈〈v; t1〉〉 and 〈〈v; t2〉〉 are subsets of J, and let a be an action profile such that
u(a) is not dominated by any point on the line that passes through t1 and t2 (see Figure 6).
The intersection of FM and the convex hull of J and u(a) is an asymptotic set of Nash
equilibrium payoffs.

Denote by J′ the intersection of FM and the triangle whose extreme points are t1,
t2, and u(a). The idea is to define for every payoff vector x in the triangle J ′, a one-
shot game in which (a) each player has two actions, to monitor or not to monitor, and
(b) the payoff is (1 − r�)u(a)+ r�y, where y is a continuation payoff that depends on the
actions of the players and is in J ∪ J′. We choose the continuation payoffs in such a way
that there is an equilibrium in the one-shot game in which (a) the expected payoff is x

and (b) both players monitor each other with a probability that satisfies (3). Since the
game is discounted, an iterative use of this construction yields for any point y ∈ J ′ an
equilibrium of the repeated game with payoff y. The details are elaborated in Section A3
in the Appendix.

We argue that an iterative application of Lemma 6 implies that FM ⊆ NE∗(r). Let
γ∗ be a mixed-strategy pair in which M1 is attained; that is, player 2 plays a best re-
sponse at γ∗ and mina1∈supp(γ∗

1)
u1(a1�γ

∗
2)= M1. Similarly, let β∗ be the analogous mixed-

action pair with respect to M2. Denote t1 := u1(β
∗) and t2 := u2(γ

∗), and let J be the
pentagon whose extreme points are (v1� v2), (v1�M2), (M1� v2), (t1�M2), and (M1� t2)
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Figure 7. There are payoff vectors u(a) in the Pareto frontier of FM . The Pareto frontier of FM

is denoted by the dark line.

Figure 8. No payoff vectors u(a) in the Pareto frontier of FM .

(see Figure 7(A)). By Lemma 5 with t1 = (t1�M2) and t2 = (m1� t
2), the pentagon J is an

asymptotic set of Nash equilibrium payoffs.
We distinguish between two cases, according to whether there are payoff vectors

u(a) in the Pareto frontier of FM . Consider first the case that appears in Figure 7(A), in
which the Pareto frontier of FM contains the points u(a1) and u(a2). Apply Lemma 6
to J and u(a1) to prove that the convex hull of J and u(a1) is an asymptotic set of Nash
equilibrium payoffs (see Figure 7(B)). Apply next Lemma 6 to u(a2) and to the Pareto
frontier of the convex hull of J and u(a1) to prove that the convex hull of J, u(a1), and
u(a2) is an asymptotic set of Nash equilibrium payoffs (see Figure 7(B)). To conclude
that FM is an asymptotic set of Nash equilibrium payoffs, apply Lemma 6 to the Pareto
frontier of the resulting set and to u(a0) and u(a3).

Consider now the case illustrated in Figure 8(A), in which there are no payoff vectors
u(a) in the Pareto frontier of FM . Note that each application of Lemma 6 generates a



110 Lehrer and Solan Theoretical Economics 13 (2018)

larger pentagon. We apply Lemma 6 to u(a1) and to u(a2) alternately, each time with
the previously generated pentagon (see Figure 8(B)). The sequence of pentagons thus
generated converges to the intersection of FM and the convex hull of J, u(a1), and u(a2).
This way we show that the intersection of FM and the convex hull of J, u(a1), and u(a2)

is an asymptotic set of Nash equilibrium payoffs.
The general observation, which allows us to conclude that an iterative application of

Lemma 6 completes the construction, is the next lemma. Recall that J is the pentagon
whose extreme points are (v1� v2), (v1�M2), (M1� v2), (t1�M2), and (M1� t2).

Lemma 7. Let X be the smallest subset of FM that satisfies the following properties: (a) X
contains Q∗ (see Corollary 1) and (b) for every two points t1 and t2 in X such that the slope
of the line segment [t1� t2] is negative and such that the rectangles 〈〈v; t1〉〉 and 〈〈v; t2〉〉
are subsets of X , and for every action profile a such that u(a) is not dominated by any
point on the line connecting t1 and t2, the set X contains the intersection of FM and the
triangle 〈t1� t2�u(a)〉. Then X is the intersection of FM and the convex hull of Q∗ and the
set {u(a) : a ∈A�a ≥ v}.

5.7 Public perfect equilibria: Showing that NE∗(r) ⊆ PPE∗(r)

In the construction of Nash equilibria, we use threats of punishment. To show that
NE∗(r) ⊆ PPE∗(r), we observe that in our construction the continuation payoffs of
each player i are at least vi + η, and therefore it suffices to show that the vector ξ∗ :=
(v1 + η�v2 + η) is a public perfect equilibrium payoff, provided η is sufficiently close
to 0. This way, every Nash equilibrium can be transformed into a public perfect equilib-
rium, by having the players switch to a PPE that implements ξ∗ instead of punishing a
deviator at his minmax value.

Lemma 8. Suppose that η > 0 satisfies η < min{M1 − v1�M2 − v2}. Then (v1 + η�v2 + η)

is a PPE payoff.

As is common in the literature, the implementation of a credible punishment is ac-
complished by having the players lower their payoffs for a fixed number of stages before
returning to the equilibrium path. This is attained by having each player play a minmax
strategy against the other player in the base game while monitoring the other player for
a fixed number of stages. Monitoring the other player lowers one’s own payof and is ob-
servable. If at some stage a player fails to monitor the other, the counter that counts the
number of stages in which players monitored each other is reset. During these stages
each player plays a minmax strategy against the other player, hence the expected payoff
of each player i during this phase is below vi. Consequently, lengthening this phase
would not be profitable. To ensure that players do not have incentives to deviate during
these stages by playing a mixed action that is not their minmax strategy, we note that
once the phase of lowering payoffs ends, each player knows the payoffs that the other
player has accumulated since the counter was last reset, and thus, by using burning-
money processes in future stages, we can render the players indifferent between future
plays that are consistent with the equilibrium play. For more details, see Section A7 in
the Appendix.
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6. Comments and open problems

6.1 Repeated games in which the one-shot game has no equilibrium

Similarly to the folk theorem, our construction does not require the existence of an equi-
librium in the base game. Indeed, the proof is valid as soon as M1 and M2 are well de-
fined and Mi > vi for each i ∈ {1�2}. Such a case occurs, for example, in the following
game with infinitely many actions. This game is the well known game of picking the
higher natural number, supplemented with a punishment action (the action P), which
gives a bad payoff to both players.

• There are two players with identical action sets: A1 = A2 = {P�1�2� � � �}.

• The payoff function is

u(a1� a2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1�0) if 1 ≤ a2 < a1�

(0�1) if 1 ≤ a1 < a2�(
1
2
�

1
2

)
if 1 ≤ a1 = a2�

(−1�−1) if a1 = P�a2 ≥ 1 or a1 ≥ 1� a2 = P�

(−2�−2) if a1 = a2 = P�

In this case, M1 =M2 = 0, v1 = v2 = −1, and PPE∗(r)= NE∗(r) = [−1�0]2.

6.2 More than two players

Two difficulties arise when more than two players are present. First, the players face
a coordination problem: if player i monitors player j and finds out that player j devi-
ated, to effectively punish the deviator, player i has to make the fact that the deviation
occurred common knowledge, and it is not clear how this task can be achieved. This
difficulty does not arise in cases in which the action played by a monitored player is
observed by all other players and not just by the player who paid the monitoring fee.
Indeed, in this case all players share the same information on each other, and they all
know when a deviator should be punished.

Second, one has to adapt the equilibrium construction to more than two players.
While the construction in the proof of Lemma 5 can be adapted to games with any num-
ber of players (assuming monitored actions become common knowledge), we do not
know whether the construction in the proof of Lemma 6 generalizes to more than two
players.

6.3 Cheap talk

Another interesting issue that arises when more than two players are involved concerns
cheap talk. Suppose that the players can costlessly send messages at the beginning of
every stage. When only two players are present, the characterization of PPE payoffs and
NE payoffs does not change. However, when three players or more are present, new
coordination schemes become possible. For example, player 1 may ask player 2 to play
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a specific action and ask player 3 to monitor it and to report the action he observed. This
kind of communication might expand the set of equilibrium payoffs. We do not know
whether this is the case and, if so, what the new set of equilibrium payoffs is.

6.4 Monitoring is imperfect and public

We assumed that the act of monitoring is common knowledge. This assumption is cru-
cial for our results: if monitoring goes unnoticed by the other party, there is no way to
compensate a player for monitoring the other player.

Consider now a model in which monitoring is imperfect yet public: at the end of ev-
ery period, the players observe two public signals, which indicate whether each of them
monitored the other at that stage. If player i did not monitor player j, then the public
signal indicates that no monitoring was done by player i; if player i monitored player j,
then with some known probability, the signal indicates that monitoring was done by
player i, and with the remaining probability, it indicates that monitoring was not done
by player i. Our results carry over to this model: the only differences in the construc-
tion of the equilibrium strategies are that (a) any unobserved monitoring is ignored and
(b) the effective monitoring cost is updated to reflect the fact that sometimes monitoring
is ignored.

6.5 Different discount factors

In this paper, we assume that the discount factors of the two players coincide. We leave
open the question of characterizing the equilibrium sets in case the players differ in
their time preferences (see Lehrer and Pauzner (1999) for a characterization of the set of
subgame-perfect equilibrium payoffs in repeated games without monitoring cost and
with different discount factors).

6.6 The method of fudenberg and levine

A natural question arises regarding whether the general method of Fudenberg and
Levine (1994) applies to our model. Since the monitoring cost here is “infinitely” higher
than the stage payoff, we do not know whether their method could be applied.
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