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Abstract This paper introduces a novel approach to integrals with respect to capac-
ities. Any random variable is decomposed as a combination of indicators. A pre-
specified set of collections of events indicates which decompositions are allowed and
which are not. Each allowable decomposition has a value determined by the capacity.
The decomposition-integral of a random variable is defined as the highest of these
values. Thus, different sets of collections induce different decomposition-integrals. It
turns out that this decomposition approach unifies well-known integrals, such as Cho-
quet, the concave and Riemann integral. Decomposition-integrals are investigated
with respect to a few essential properties that emerge in economic contexts, such as
concavity (uncertainty-aversion), monotonicity with respect to stochastic dominance
and translation-covariance. The paper characterizes the sets of collections that induce
decomposition-integrals, which respect each of these properties.
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34 Y. Even, E. Lehrer

1 Introduction

In economics, and particularly in the decision theory under uncertainty, a rational
decision maker is often described as an expected utility maximizer. The expected
utility is calculated with respect to (w.r.t.) some prior probability over the state space.
Although expected utility theory is useful and convenient to work with, different
experiments, among which the Ellsberg’s paradox (1961), show that decision makers
often violate this theory.

1.1 Non-additive integral

Schmeidler (1986) proposed a theory of decision making, where the belief of the
decision maker is represented by a non-additive probability (henceforth referred to as
capacity). The representation of the belief by a capacity might reflect an incomplete
or imprecise information the decision maker has about the uncertain aspects of the
decision problem under consideration. Schmeidler (1986) proposed a model where
the expected value of a random variable is calculated according to Choquet integral
(1955): among all alternatives (in this literature, they are called acts), the decision
maker chooses the one that maximizes Choquet expected utility.

As an integration scheme, Choquet integral poses two essential properties and
lacks one. On one hand, it is monotonic w.r.t. first-order stochastic dominance and it
is translation-covariant. That is, Choquet expected value of a portfolio with an added
constant is equal to the expected value of the original portfolio plus the constant. On
the other hand, a diversification, according to Choquet integral, does not necessarily
have an advantage. In formal words, according to Choquet integral, the expected value
of two portfolios mixed together is not necessarily greater than, or equal to, the mixture
of the expected values of the two portfolios calculated separately.

Lehrer (2009) introduced the concave integral with respect to capacities, which dif-
fers from Choquet integral. It hinges on the idea underlying the Lebesgue integral and
thus respects uncertainty-aversion. The concave integral is based on decomposition
of random variables to simple ingredients. A decomposition is a representation of a
random variable as a positive linear combination of indicators.1 A capacity assigns to
each decomposition a value: replacing each indicator by the value of its correspond-
ing event, transforms the decomposition to a linear combination of numbers. This
value enables the decision maker to evaluate any portfolio, even when the informa-
tion available is incomplete or imprecise. The expected value of a random variable,
according to the concave integral, is defined as the maximum value obtained among
all its decompositions.

Not only the concave integral can be expressed in terms of decompositions, but
Choquet integral can also be described in these terms. While the concave inte-
gral does not impose any restriction on the decompositions allowed, Choquet inte-
gral does. A chain of events is a sequence of decreasing events w.r.t. inclusion.
A Choquet decomposition is a decomposition that uses only chains. Like the con-

1 An indicator of event A, denoted IA , is the random variable that attains the value 1 on A and the value 0,
otherwise.
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cave integral, Choquet integral of a random variable is defined as the maximum
value obtained among its decompositions, but in this case, only among its Choquet
decompositions.

Based on the decomposition method, this paper develops a new notion of integral
w.r.t. capacities: the decomposition-integral. This integral scheme is determined by
a set of collections that dictates which decompositions are allowed and which are
not. For instance, when all possible decompositions are allowed, the decomposition-
integral coincides with the concave integral, and when only Choquet decompositions
are allowed, the decomposition-integral coincides with Choquet integral. It turns out
that the decomposition approach to integration unifies many other integral schemes,
including Riemann and Shilkret (see Shilkret 1971).

A decision maker who holds a non-additive belief would like to use it in order to
choose the best act. However, different integration methods might result in different
evaluations and ultimately in different decisions. One of the advantages of the decom-
position method is that it clarifies the trade-off between different integration methods
w.r.t. essential properties. Once this trade-off is well formulated, the decision maker
can compare between the various available integration schemes and choose the one
that owns the properties she value most.

Few essential properties are maintained by all decomposition-integrals, regardless
of the particular set of collections used. It is said that one random variable is greater than
another if the former obtains a higher value than the latter in every possible state. It turns
out that when one random variable is higher than another, its decomposition-integral
is greater than that of the other. A similar property remains valid when comparing
two capacities. A capacity is greater than another if it assigns every event a higher
value than the other. Regardless of the set of collections used, the decomposition-
integral of the same random variable w.r.t. two capacities maintains the order among the
capacities. Furthermore, decomposition-integral is homogeneous2 and is independent
of irrelevant events.3 However, there are essential properties that are respected by
some decomposition-integrals but not by other, depending on the sets of collections
used.

We study in depth three properties of this type: concavity (uncertainty-aversion),
monotonicity w.r.t. first-order stochastic dominance and translation-covariance. It
turns out, for instance, that uncertainty-aversion and monotonicity w.r.t. first-order
stochastic dominance cannot live together. Roughly speaking, the concave integral is
the only plausible scheme that respects uncertainty-aversion, while Choquet integral
is the only plausible scheme that respects monotonicity w.r.t. first-order stochastic
dominance, as well as translation-covariance. This kind of a trade-off is essential for a
decision maker to understand before using an integration scheme in order to compare,
for instance, between two portfolios, or two working groups (as in the motivating
example given in Sect. 2).

2 The integral is homogeneous if for every random variable X , and for every positive number c,
∫

cXdv =
c
∫

Xdv.
3 The integral is independent of irrelevant events if for every A ⊆ N ,

∫
IAdv = ∫

IAdvA , where vA is
defined over A, vA (T ) = v (T ) for every T ⊆ A.
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1.2 Other integral schemes and unifying approaches

There are well-known integral schemes that can be expressed in terms of decomposi-
tions. A decomposition of a random variable is partitional if any two of its indicators
are disjoint (i.e., they obtain the value 1 on disjoint events). Riemann integral (or Pan-
integral, see Wang and Klir 1992) coincides with the decomposition-integral when
the set of collections allows only partitional decompositions. Another example of
decomposition-integral is Shilkret integral (see Shilkret 1971). Suppose that the col-
lections allowed to be used for decompositions consist of only one event. In this case,
the linear combination consists of merely one indicator. Obviously, in this case, there
is no way to obtain any random variable as one indicator multiplied by a positive scalar.
This is why the integral scheme allows also sub-decompositions. A sub-decomposition
of a random variable is a linear combination of indicators, but unlike a decomposition,
it does not necessarily coincide with the random variable—it may be smaller. Using
the language of decomposition-integrals, Shilkret integral of a random variable is the
maximum among all its sub-decompositions that employs only one indicator.

Another well-known concept for integration w.r.t. capacities is Sugeno (1974), also
known as the Fuzzy integral. When the capacity takes only the values zero and one
(a simple game, in the terminology of cooperative games), Sugeno integral coincides
with Choquet integral (see Murofushi and Sugeno 1993), but it does not coincide with
the expected value when the capacity is additive. Sugeno integral is not generalized
by the decomposition approach. That is, there is no set of collections that induces a
decomposition-integral, which coincides with Sugeno integral.

Other unifying approaches were proposed in the literature. One approach (see de
Campos et al. 1991) unifies Choquet and Sugeno integrals through four essential
properties. Another approach (see Klement et al. 2010), which builds on Choquet,
Sugeno and Shilkret integrals, defines a universal integral. Both methods use different
binary operations instead of the regular addition and multiplication, and both do not
generalize the concave integral. It is worth noting also that these unifying approaches
do not necessarily coincide with the Lebesgue integral (i.e., the expectation) when the
underlying capacity is a probability distribution.

1.3 Organization

Section 2 provides a motivating example. Section 3 introduces the notion of decompo-
sitions and the way they are used to define the decomposition-integral. It is shown that
the decomposition-integral generalizes the concave, Choquet, Riemann and Shilkret
integrals. Section 4 studies a few properties of integral schemes: positive homogeneity,
coincidence with the expectation whenever the capacity is a probability distribution,
monotonicity and additivity. Section 5 examines three essential properties that Cho-
quet and the concave integrals do not commonly share. Concavity (the main property
of Lehrer’s concave integral) is discussed first, then monotonicity w.r.t. stochastic
dominance and finally, the property of translation-covariance. The sets of collections
that induce decomposition-integrals which respect each of these properties are fully
characterized. The dual approach to the decomposition-integral is discussed in Sect. 6.
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The paper ends with Sect. 7.1, which reviews in a brief and partial way the literature
on the Choquet and the concave integrals.

2 A motivating example

Three workers work on a joint project. However, each worker is willing to put a
different amount of time on the project, and moreover, the workers’ output depends
on the team working together. For instance, if workers 1 and 2 are working one month
together, they complete 0.9 of the project. We say then that v(12) = 0.9. The following
figures provide a full information about the teams’ productivity rates per month. v(1) =
v(2) = v(3) = 0.2, v(23) = 0.5, v(13) = 0.8 and v(123) = 1. We denote by Xi

the time (in months fractions) that worker i is willing to invest on the project. Let
X1 = 1, X2 = 0.4, X3 = 0.6. This means, for instance, that worker 1 is willing to
invest one month on the project. The question is what is the maximal product that can
be obtained, given the workers’ willingness to invest (henceforth, time endowment)
and the teams’ productivity rates.

Suppose that team {1, 2} is working 0.4 of a month together and team {1, 3} is
working 0.6 of a month together. This way all workers exhaust their time endowment,
and the total product is v(1, 2) · 0.4 + v(1, 3) · 0.6 = 0.9 · 0.4 + 0.8 · 0.6 = 0.84.
With this team structure, the output is 84 % of the project. It turns out that this is the
maximum that can be produced. In other words, any other team structure would result
in a smaller product. This method is akin to what is later referred to as the concave
integral (Lehrer 2009).

Suppose, however, that the players are not free to choose the teams they are working
with the way they want. Rather, the entire group should start working together, and then,
workers gradually leave without returning to work again on the project. Under these
constraints, the maximum that the workers could produce is attained when {1, 2, 3}
work 0.4 of a month together, 2 leaves and let {1, 3} work 0.2 of a month together, and
finally {1} works 0.4 of a month alone. The output is then 1 ·0.4+0.8 ·0.2+0.2 ·0.4 =
0.64. That is, due to the constraint on teams formation, the output reduces to 64 %.
This method is the one induced by the Choquet integral (Choquet 1955).

While the method related to the concave integral seems to be more suitable to
measuring the productivity of a group, the method defined by the Choquet integral
is extensively used in the theory of decision making under uncertainty. The question
arises as to what makes one method more suitable than the other in one context and
less so in another. Furthermore, these two methods suggest that there might exist other
methods, possibly more suitable for applications in some other contexts.

In order to address these issues, we define a large family of integration schemes
that contains both the concave and the Choquet integrals. We examine the schemes
in this family vis-a-vis a few essential properties that are significant in various eco-
nomic contexts. In particular, the paper characterizes those schemes in the family
that satisfy concavity (which is equivalent to ambiguity aversion—see Schmeidler
1989), monotonicity with respect to stochastic dominance (which is used in order-
ing stochastic prospects—see, for instance, Hadar and Russell 1969; Bawa 1975) and
translation-covariance (which is one of the axioms that characterize coherent risk
measures—see Artzner et al. 1999). This study enables decision makers to choose an
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adequate integration scheme, depending on the case under consideration, when the
need arises.

3 Capacity, decompositions and integrals

3.1 Capacity and a decomposition of a random variable

Let N be a finite set (|N | = n). A collection D is a set of subsets of N . That is,
D ⊆ 2N . A capacity v over N is a function v : 2N → [0,∞] satisfying: (i) v (φ) = 0;
and (ii) S ⊆ T ⊆ N implies v (S) ≤ v (T ).

A random variable (r.v. or simply, a variable) X over N is a function X : N → R.
A subset of N will be called an event. For any event A ⊆ N , IA denotes the indicator
of A, which is the random variable that takes the value 1 over A and the value 0
otherwise.

The paper deals with non-negative random variables, and therefore, when we say
a random variable, we refer to a non-negative one.

Definition 1 Let X be a random variable.

1. A sub-decomposition of X is a finite summation
∑k

i=1 αi IAi such that
(i)

∑k
i=1 αi IAi ≤ X ; and

(ii) αi ≥ 0 and Ai ⊆ N for every i = 1, . . . , k.
2. Let D be a collection.

∑k
i=1 αi IAi is a D-sub-decomposition of X if it is a sub-

decomposition of X and Ai ∈ D for every i = 1, . . . , k.

We say that
∑k

i=1 αi IAi is a decomposition of X if equality replaces inequality in
(i). That is,

∑k
i=1 αi IAi is a decomposition of X if it is a sub-decomposition of X , and

∑k
i=1 αi IAi = X . A similar definition applies to D-decomposition of X .
Suppose, for instance, that D = 2N and X = IN . Then, X = ∑n

i=1 I{i}, and at the
same time, X = IN . Both decompositions use subsets in D.

3.2 Decompositions and integrals

Using the terminology of D-decompositions, we can reiterate the definition of the
concave integral w.r.t. the capacity v (see Lehrer 2009):

cav∫
Xdv = max

{
k∑

i=1

αiv(Ai );
k∑

i=1

αi IAi is 2N-sub-decomposition of X

}

. (1)

Note that since v is monotonic w.r.t. inclusion, one can replace sub-decomposition
in Eq. (1) by decomposition. That is,

cav∫
Xdv = max

{
k∑

i=1

αiv(Ai );
k∑

i=1

αi IAi is 2N-decomposition of X

}

. (2)
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In words,
∫ cav Xdv is the maximum of the values

∑k
i=1 αiv(Ai ) among all possible

decompositions of X . The concave integral imposes no restriction over the decomposi-
tions being used: all possible decompositions are taken into account when considering
the maximum.

We show that Choquet integral can also be expressed in terms of decompositions.
However, unlike the concave integral, Choquet integral does impose restrictions. We
recall first the traditional definition of the Choquet integral. Let σ be a permutation
on N , such that Xσ(1) ≤ · · · ≤ Xσ(n). The Choquet integral of a r.v. X , denoted
∫ Ch Xdv, is defined by the following summation:

∑n
i=1(Xσ(i) − Xσ(i−1))v(Ai (X)),

where Xσ(0) = 0 and Ai (X) = {σ(i), . . . , σ (n)}, i = 1, . . . , n. We say that two
subsets A and B of N are nested if either A ⊆ B or B ⊆ A. A collection D is called
a chain if any two events A, B ∈ D are nested. Denote by FCh the set of all chains.

The following proposition states that the Choquet integral is the maximum of∑k
i=1 αiv(Ai ), among all decompositions in which every Ai and A j are nested.

Proposition 1

Ch∫
Xdv = max

{
k∑

i=1

αiv(Ai );
k∑

i=1

αi IAi is FCh-sub-decomposition of X

}

(3)

= max

{
k∑

i=1

αiv(Ai );
k∑

i=1

αi IAi is FCh-decomposition of X

}

. (4)

Stated differently, Choquet integral is the maximum of
∑k

i=1 αiv(Ai ), over all decom-
positions in which every Ai and A j are nested. The proof is deferred to the “Appendix”.

Since any chain is a subset of 2N , it is evident from Eqs. (2) and (4) that

Ch∫
· dv ≤

cav∫
· dv.

Example 1 Let N = {1, 2, 3} , v (N ) = 1, v (12) = v (13) = 1/2, v (23) = 11/12
and v (1) = v (2) = v (3) = 1/3. Define X = (3, 5, 2) to be a variable over N . The
decomposition X = 3I12 + 2I23 is the one at which the maximum of the right-hand
side of (1) is obtained. Therefore, the concave integral of X is

cav∫
Xdv = 3 · (1/2) + 2 · (11/12) = 10

3
.

On the other hand, Choquet integral of X is obtained at the chain {(2), (12), (123)},
where the decomposition of X is 2I2 + 1I12 + 2IN and

Ch∫
Xdv = 2 · (1/3) + 1 · (1/2) + 2 · 1 = 19

6
.
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3.3 Allowable decompositions and the decomposition-integral

In this part we show that the method of sub-decomposition enables us to unify many
well-known and useful methods of integration under one general method. Suppose
that F is a set of collections. A sub-decomposition of X is F-allowable if it is a
D-sub-decomposition of X , with the restriction that D ∈ F . In other words, it has the
form

∑
Ai ∈D αi IAi , where D ∈ F . Thus, in the sub-decomposition of X , only events

from the same collection D in F are allowed to be used. The key concept of this paper
is introduced in the following definition.

Definition 2 The decomposition-integral w.r.t. the set of collections F is defined as
follows.

∫

F
Xdv = max

{
∑

A∈D

αAv(A);
∑

A∈D

αAIA is F-allowable sub-decomposition of X

}

.

(5)

The integral
∫
F · dv is the maximum over all sub-decompositions that use only Ai ’s

from the same collection D ∈ F . The sub-decomposition attaining the maximum in
(5) is called the v-optimal sub-decomposition (or decomposition) of X w.r.t. F . When
no ambiguity arises, we just call it an optimal sub-decomposition (or decomposition)
of X .

Remark 1 The decomposition-integral is defined as the maximum over the set on the
RHS of (5). Considering the maximum rather than the supremum is justified because
for any collection D ∈ F , the set of vectors

{

(αA)A∈D ; αA ≥ 0 for every A ∈ D and
∑

A∈D

αAIA is D-sub-decomposition of X

}

is compact, and the function
∑

A∈D αAv(A) defined over this set is continuous. There-
fore, for any collection D ∈ F ,

max

{
∑

A∈D

αAv(A);
∑

A∈D

αAIA is D-sub-decomposition of X

}

exists. Since there are finitely many collections D in F , writing the maximum in (5)
is justified.

The following example illustrates the reason why in Definition 2 we allow for sub-
decompositions and do not insist on decompositions.

Example 2 (Example 1 continued) Consider F defined as follows.

F = {{(1) , (23)} , {(12)} , {(2) , (13)}} .
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Here, F consists of three collections. It turns out that a sub-decomposition, rather than
a decomposition, attains the maximum in (5). The optimal sub-decomposition of X
is 3I(1) + 2I(23) obtained at the collection {(1), (23)}, and

∫
F Xdv = 3 · (1/3) + 2 ·

(11/12) = 34
12 .

Denote by Fcav the set of collections consisting of merely the collection 2N . Then,∫
F cav · dv = ∫ cav · dv. Proposition 1 states that4

∫
FCh · dv = ∫ Ch · dv. Hence, the

concave and Choquet integral differ from each other in the decompositions that the
respective sets of collections allow. While the concave integral allows for all possible
decompositions, the Choquet integral allows for chain decompositions (or Choquet
decompositions) only. Since the set of collections Fcav allows for all decompositions,
the following statement (given without a proof) is obtained.

Proposition 2 Suppose that F is a set of collections. Then,

∫

F
· dv ≤

cav∫
· dv

for every v.

In other words, of all the decomposition-integrals, the concave integral is the highest.

3.4 Riemann integral, Shilkret integral and the minimum

It turns out that other integration schemes also conform to the decomposition method.
A partition of N is a collection D = {A1, A2, . . . , Ak} consisting of pairwise disjoint
events whose union is N itself. Denote by F part the set of all partitions of N . The
integral

∫
F part · dv is Riemann integral (or Pan-integral—see Wang and Klir 1992).

Consider now the set F sing = {{A}; A ⊆ N }. This set of collections consists of
all the singletons whose members are events. The maximum in (5) is obtained at the
event that maximizes αv(A), subject to the constraint that αIA ≤ X . Formally,

∫

F sing

Xdv = max

{
∑

i

αiv(Ai );
∑

i

αi IAi is F sing-allowable sub-decomposition of X

}

= max

{

αv(A); αIA ≤ X, A ⊆ N , α ≥ 0

}

= max

{

α · v(X ≥ α); α ≥ 0

}

.

The right-hand side is the scheme known as Shilkret integral of X w.r.t. v.
Another natural set of collections is the one consisting of a single member: an

algebra of sets. We say that D is an algebra of sets if it is closed under unions and
complement, that is, if A, B ∈ D implies that A ∪ B and N \ A are also in D. It

4 Coincidentally, the notation FCh, derived from the word chain, resonates with the notation
∫ Ch that

derives from Choquet.
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might occur that a decision maker is forced or would like to rely only on events in an
algebra D. This might happen, for instance, when the decision maker suspects that the
information embedded in the capacity about events out of the algebra is unreliable. In
this case, employing the integral

∫
{D} Xdv to evaluate the random variable X seems

to be a natural choice. In Zhang (2002), the unambiguous events are represented by
a λ-system. The main difference between an algebra and a λ-system is that the latter
is not required to be intersection-closed. Zhang (2002) and Nehring (1999) show a
connection between λ-systems and the Choquet integral. Nehring (1999) shows that
for some preferences of the DM, the set of unambiguous events is in fact an algebra.

Finally, consider the set of collections F that consists of {N } alone. Then,

∫

F
X dv = min X · v(N ).

4 Properties of the decomposition-integral

This section examines the family of decomposition-integrals with respect to four nat-
ural properties.

4.1 Positive homogeneity of degree one

The decomposition-integral is positive homogeneous for any set of collections F . This
means that for every λ > 0,

∫
F λXdv = λ

∫
F Xdv for every X, v and F .

4.2 The decomposition-integral and additive capacities

The integral w.r.t. a general capacity is meant to generalize the notion of expectation
in case the capacity is probability. Riemann, Choquet and the concave integrals indeed
coincide with the expectation whenever v is a probability, while Shilkret integral does
not. The objective of this chapter is to find conditions on the set of collections which
guarantee that the decomposition-integral coincides with the expectation in case the
capacity is a probability distribution. Denote by EP (X) the expectation of X w.r.t.
probability P .

Proposition 3 EP (X) = ∫
F Xd P for every r.v. X and every probability P, if and

only if every X has a D-decomposition with D ∈ F .

Proof Let P be probability with full support (i.e., P(i) > 0 for every i ∈ N ) and
suppose that EP (X) = ∫

F Xd P for every r.v. X . In order to attain the value EP (X), F-
allowable sub-decomposition of X needs to be a decomposition of X . Thus, every X
has D-decomposition with D ∈ F . As for the inverse direction, suppose that every X
has a D-decomposition, which is F-allowable. When P is additive, any decomposition
of X induces the same value, EP (X). Thus, EP (X) = ∫

F Xd P for every X . 	
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4.3 Monotonicity

The first observation regarding monotonicity refers to fixed sets of collections and
capacity. Fix v and F , and suppose that X ≤ Y . Then,

∫
F Xdv ≤ ∫

F Y dv.
The second observation refers to comparison between two capacities. Fix a set of

collections F . If for every D ∈ F and every A ∈ D, v (A) ≥ u (A), then for every
r.v. X,

∫
F Xdu ≤ ∫

F Xdv.
The third observation refers to the comparison between two sets of collections.

Any set of collections F induces a decomposition-integral. The question arises as
whether any two different sets of collections induce different integrals. The answer to
this question is negative. The following proposition characterizes the circumstances
in which the decomposition-integral w.r.t. F is always smaller than, or equal to, that
w.r.t. F ′. For this purpose, we need the following definition and lemma.

Definition 3 Fix a collection C ⊆ 2N of subsets of N . We say that C is an independent
collection if the variables IA, A ∈ C are linearly independent.

In other words, C is an independent collection if for every variable X , there are
no two different C-decompositions of X . The C = {(12), (1)} is an independent
collection, while C = {(12), (1), (2)} is not because I(1), I(2), and I(12) are linearly
dependent. This is demonstrated also by the fact that I(1) + I(2) and I(12) are two
different decompositions of the same variable, which employ indicators of events
from C .

Lemma 1 Fix v, F and X. Suppose that an optimal F-allowable sub-decomposition
of X is obtained by a D-sub-decomposition of X, where D ∈ F . Then, there is an
independent collection C ⊆ D and a C-sub-decomposition, which is an optimal F-
allowable sub-decomposition of X.

The proof is postponed to the “Appendix”.

Proposition 4 Suppose that F and F ′ are two sets of collections. Then,
∫
F · dv ≤∫

F ′ · dv for every v, if and only if for every D ∈ F and every independent collection
C ⊆ D, there is D′ ∈ F ′ such that C ⊆ D′.

Proof Suppose that for every D ∈ F and independent collection C ⊆ D, there is
D′ ∈ F ′ such that C ⊆ D′. Fix v and X . Let an optimal sub-decomposition of X w.r.t.
F be obtained at D. By Lemma 1, there is an independent collection C ⊆ D and an
optimal C-sub-decomposition of X . By assumption, there is D′ ∈ F ′ that contains C
as a subset. Thus, there is a D′-sub-decomposition of X that achieves at least the level
attained by the D-sub-decomposition of X . Thus,

∫
F X dv ≤ ∫

F ′ X dv and since X
is arbitrary,

∫
F · dv ≤ ∫

F ′ · dv.
Now assume that

∫
F · dv ≤ ∫

F ′ · dv for every v. Suppose, to the contrary of the
proposition, that there are collections C and D ∈ F (C is not necessarily in F) such
that C is an independent collection, C ⊆ D and no D′ ∈ F ′ contains C as a subset. We
construct v and X such that

∫
F ′ X dv <

∫
F X dv and thereby getting a contradiction.

Consider the smallest capacity such that v(A) = |A|
|N | for every A ∈ C . That is,
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v(B) = 0, unless A ⊆ B for some A ∈ C , in which case v(B) = |A|
|N | , where A is the

largest set in C such that A ⊆ B. Define X = ∑
A∈C IA. Thus,

∫
F X dv ≥ ∑

A∈C
|A|
|N | .

Define P to be a uniform distribution—the probability that assigns each point in N a
weight of 1

|N | . Note that

EP (X) ≤
∫

F
Xdv. (6)

Suppose that the optimal sub-decomposition of X w.r.t. F ′ is obtained at D′. Denote
this sub-decomposition as

∑
B∈D′ βBIB . Thus,

∫

F ′
X dv =

∑

B∈D′
βBv(B). (7)

We can assume that each B ∈ D′ whose βB is strictly positive contains at least one
A ∈ C as a subset (since otherwise, v (B) = 0). Denote A(B) the largest event in C
that is a subset of B, B ∈ D′. We obtain,

∑

B∈D′
βBIA(B) ≤

∑

B∈D′
βBIB ≤ X, (8)

which implies together with the definition of v,

∑

B∈D′
βBv(B) =

∑

B∈D′
βBv(A(B)) = EP

(
∑

B∈D′
βBIA(B)

)

≤ EP (X). (9)

Due to Eqs. (6), (7) and (9), we obtain
∫

F ′
X dv ≤

∫

F
X dv. (10)

We show now that this inequality is strict.
There exist two cases. The first is when every A ∈ C has B ∈ D′ such that

A = A(B). Since C is not a subset of D′, there is A ∈ C such that A �∈ D′, implying
that A � B. This, in turn, implies that

∑
B∈D′ βBIA(B) �= ∑

B∈D′ βBIB . Thus,

∑

B∈D′
βBIA(B) �= X. (11)

Since P assigns to every point in N a positive probability, Eqs. (8) and (11) imply

EP

(
∑

B∈D′
βBIA(B)

)

< EP (X).
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Thus, Eqs. (6), (7) and (9) imply that the inequality (10) is strict, which is a contra-
diction.

The second case is where not every A ∈ C has B ∈ D′ such that A = A(B). It
means that not every A ∈ C appears in

∑
B∈D′ βBIA(B). Since C is an independent

collection, there are no two different C-decompositions of X . Recall that X was defined
as a decomposition that involves all A ∈ C . It implies that, ignoring zero coefficients,∑

B∈D′ βBIA(B) cannot be a different decomposition of X . Thus,
∑

B∈D′ βBIA(B) �=
X . As in the previous case, this implies that EP

(∑
B∈D′ βBIA(B)

)
< EP (X) which

in turn implies that the inequality (10) is strict, which is a contradiction. 	

4.4 Additivity

A well-known property of Choquet integral is comonotonic additivity. Two variables
X and Y are comonotone if for every i, j ∈ N , (X (i) − X ( j))(Y (i) − Y ( j)) ≥ 0. It
turns out that this property can be expressed in terms of sets of collections and optimal
decompositions. Consider the set of collections FCh (recall, it consists of all chains).
Then, X and Y are comonotone if and only if the optimal decompositions of X and Y
use the same D in FCh. Comonotonic additivity means that if X and Y use the same D
for their optimal decomposition, then

∫
FCh Xdv + ∫

FCh Y dv = ∫
FCh (X + Y ) dv. A

natural question arises as to whether this is a general property of the decomposition-
integral. That is, whether for any set of collections F , if X and Y use the same D ∈ F
for their optimal sub-decomposition, then

∫
F Xdv + ∫

F Y dv = ∫
F (X + Y ) dv.

The answer to this question proves to be negative. Indeed, consider the set of
collections F part (recall, the one consisting of all partitions of N ), and a capacity
v, defined on N = {1, 2} as follows: v (1) = v (2) = 1/3 and v (12) = 1. Define
X = (ε, 1) , Y = (1, ε), ε > 0. Assume that ε is small enough, so that the optimal
decomposition of both X and Y use D = {(1) , (2)}. In this case,

∫
F Xdv = ∫

F Y dv =
(1/3) (1 + ε). As for the sum X+Y , taking D′ = {(12)} yields

∫
F (X + Y ) dv = 1+ε,

which is strictly greater than
∫
F Xdv + ∫

F Y dv = (2/3) (1 + ε).
The following proposition refers to additivity in case two integrands use the same

D ∈ F for their optimal decomposition w.r.t. to F and a specific v.
Fix a set of collections F and a capacity v. We say that the variable Y is leaner

than the variable X if there exist (i) an optimal decomposition of Y :
∑

A∈C ′ βAIA

with βA > 0, A ∈ C ′; and (ii) an optimal decomposition of X : ∑
A∈C αAIA with

αA > 0, A ∈ C , such that C ′ ⊆ C . In words, Y is leaner than X , if there are optimal
decompositions in which X employs every indicator that Y employs.

Proposition 5 (Co-decomposition additivity) Fix a set of collections F such that every
X has an optimal decomposition (not sub-decomposition) w.r.t. F for every capacity.
Suppose that for every D, D′ ∈ F , whenever there are two different decompositions
of the same variable,

∑
A∈D δAIA = ∑

B∈D′ γBIB, there is D′′ ∈ F that contains all
the A’s with δA > 0 and all the B’s with γB > 0. Then, for every v and every two
variables X and Y where Y is leaner than X,

∫

F
Xdv +

∫

F
Y dv =

∫

F
(X + Y ) dv. (12)
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Note that the condition of the proposition is readily satisfied by FCh. The rea-
son is (see also the proof of Proposition 1) that every random variable essen-
tially (ignoring indicators whose coefficients are zero) has a unique FCh-allowable
decomposition. Proposition 5 implies the comonotonic additivity of Choquet inte-
gral. Indeed, considering FCh and two comonotonic variables X and Y . Thus,
both X and Y can be decomposed using indicators of events taken from the
same chain, D. For very ε > 0, the variable Zε = ∑

A∈D
ε
n IA is smaller

than or equal to ε, and moreover, X is leaner than Zε and Y is leaner than
X + Zε (because the coefficients of all A ∈ D are positive in the decomposi-
tions of Zε and of X + Zε). Proposition 5 implies that

∫
FCh Xdv + ∫

FCh Zεdv =∫
FCh (X + Zε) dv and

∫
FCh Y dv + ∫

FCh(X + Zε)dv = ∫
FCh (Y + X + Zε) dv.

Thus,
∫
FCh Y dv + ∫

FCh Xdv + ∫
FCh Zεdv = ∫

FCh (Y + X + Zε) dv. As ε shrinks
to 0 we obtain,

∫
FCh Y dv + ∫

FCh Xdv = ∫
FCh (Y + X) dv, which is comonotonic

additivity.
Proposition 5 implies also that whenever F consists of only one D, like Fcav, its

decomposition-integral respects the additivity property stated in Eq. (12). Therefore,
if X and Y are leaner than each other (i.e., the same indicators possess positive coef-
ficients in their optimal decompositions), then Eq. (12) holds true. In particular, the
concave integral is linear over those variables that use the same indicators in their
optimal decompositions.

The additivity of Choquet integral, as expressed in Eq. (12), does not depend
on the underlying capacity. Two random variables are comonotone regardless of
the capacity v, and for such variables, Eq. (12) would always be true. On the
other hand, whether or not Eq. (12) applies to the concave integral, does depend
on v. The reason for this difference between the integrals is that in Choquet inte-
gral, the optimal decomposition does not depend on v (it always uses the same
chain for every v), while it does depend on v when it comes to the concave
integral.

Proof of Proposition 5 Fix v and suppose that X = ∑
A∈C αAIA with αA > 0, A ∈

C is an F-allowable optimal decomposition of X and
∑

A∈C βAIA with βA ≥
0, A ∈ C is an optimal decomposition of Y . In particular, Y is leaner than X . We
show Eq. (12).

Let
∑

B∈D′ γBIB be an optimal decomposition of X + Y . If this decomposition
equals

∑
A∈C (αA + βA)IA, then Eq. (12) is true. Otherwise,

∑
A∈C (αA + βA)IA and∑

B∈D′ γBIB are two different decompositions of X + Y . This implies that
∫
F Xdv +∫

F Y dv ≤ ∫
F (X + Y ) dv. By assumption, there is D′′ that contains all the A’s with

αA + βA > 0 and all the B’s with γB > 0. Thus, X, Y and X + Y all have D′′
optimal decompositions (i.e., optimal decompositions of X, Y and X + Y that use
only members in D′′).

Suppose, to the contrary of the proposition, that
∫
F Xdv+∫

F Y dv<
∫
F (X + Y ) dv.

Recall that in the optimal decomposition of X ,
∑

A∈C αAIA, all the coefficients αA

are strictly positive. Thus, for ε > 0 sufficiently small,
∑

A∈C αAIA − ε
∑

A∈C (αA +
βA)IA + ε

∑
B∈D′ γBIB is a D′′-decomposition of X (that is, all the coefficients are

non-negative). Thus,
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∫

F
Xdv ≥

∑

A∈C

αAv(A) − ε
∑

A∈C

(αA + βA)v(A) + ε
∑

B∈D′
γBv(B)

>

∫

F
Xdv − ε

∫

F
Xdv − ε

∫

F
Y dv + ε

⎛

⎝
∫

F
Xdv +

∫

F
Y dv

⎞

⎠ =
∫

F
Xdv.

Since this is a contradiction, Eq. (12) is proven. 	

Definition 4 Two sets of collections F and F ′ are equivalent if they induce the same
integral. That is, for every v,

∫
F ·dv = ∫

F ′ ·dv.

5 Three essential properties

In this section, we state and prove three theorems that deal with essential proper-
ties: concavity, monotonicity w.r.t. stochastic dominance and translation-covariance.
We characterize the sets of collections corresponding to decomposition-integrals that
maintain each of these properties. Among the known integrals we discussed, Cho-
quet integral maintains monotonicity w.r.t. stochastic dominance and translation-
covariance, but does not maintain concavity. The concave integral, on the other hand,
maintains concavity, but does not maintain monotonicity w.r.t. stochastic dominance
and translation-covariance. As one can see, there is a trade-off between the different
properties, meaning that if we want the integral to maintain concavity, we have to give
up monotonicity w.r.t. stochastic dominance, for instance, and vice versa. This con-
clusion may help a decision maker to use an adequate integration method depending
on the problem under consideration.

Since the concave integral respects concavity, under this integral, the output of two
combined groups of workers is typically greater than the sum of their outputs when
working separately. Choquet integral, on the other hand, typically fails to exhibit
synergetic effects of this type. This difference between the two integrals is one of
the reasons why the concave integral is more suitable for measuring productivity of
groups of workers than the Choquet integral. However, in cases where monotonicity
w.r.t. stochastic dominance is indispensable, another method, such as Choquet integral,
would be more suitable than the concave integral.

5.1 Concavity

Concavity is an essential property of an integral when it comes to decision making
under uncertainty [see Schmeidler’s ambiguity aversion (1989)]. We say that

∫
F · dv

is concave if for every two variables X and Y , and γ ∈ [0, 1], the following inequality
holds true,

∫

F
(γ X + (1 − γ )Y ) dv ≥ γ

∫

F
Xdv + (1 − γ )

∫

F
Y dv.

In this section, we characterize the sets of collections F that
∫
F · dv is concave.
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5.1.1 Decomposition-integrals that are concave

Theorem 1 The decomposition-integral
∫
F · dv is concave for every v, if and only if

there exists a set of collections F ′ containing only one collection such that
∫
F · dv =∫

F ′ · dv.

Obviously, the concave integral maintains the condition of this theorem, since the
set of collections inducing it is a singleton—it includes only the power set of N . The
following lemma also refers to a set that consists of only one collection.

Lemma 2 A set of collections F is equivalent to a singleton set of collections F ′ if
and only if for every independent collection5 C ⊆ ∪F there exists D ∈ F such that
C ⊆ D.

The proof is postponed to the “Appendix”.

Proof of Theorem 1 Suppose there exists a set of collections F ′ containing only one
D′ (D′ ⊆ 2N ) such that

∫
F · dv = ∫

F ′ · dv. Fix two variables X and Y and
γ ∈ [0, 1]. Consider F ′ and denote the optimal sub-decompositions of X and Y
by,

∑
A∈D′ αAIA and

∑
A∈D′ βAIA, respectively. The combination γ

∑
A∈D′ αAIA +

(1 − γ )
∑

A∈D′ βAIA is a sub-decomposition of γ X + (1 − γ )Y , and its value is
γ

∫
F ′ Xdv + (1 − γ )

∫
F ′ Y dv. Thus,

∫
F ′(γ X + (1 − γ )Y )dv is greater than, or equal

to, this value. Since,
∫
F · dv = ∫

F ′ · dv, we obtain that
∫
F · dv is concave.

As for the inverse direction, assume that
∫
F · dv is concave and, in a way of con-

tradiction, that for every F ′ that includes only one D, from Lemma 2, there is an
independent collection C ⊆ ∪F , with no D ∈ F , such that C ⊆ D. This ensures the
existence of two disjoint subsets of C , say C1 and C2, each contained in a different
collection in F (i.e., Ci ⊆ Di ∈ F , i = 1, 2) and that no other D ∈ F contains both.
Since C is an independent collection, so are C1, C2 and C1 ∪ C2.

We construct two variables X, Y , and a capacity v, and find 0 < γ < 1 such
that

∫
F γ Xdv + ∫

F (1 − γ )Y dv >
∫
F (γ X + (1 − γ )Y )dv. Define X = ∑

A∈C1
IA

and Y = ∑
A∈C2

IA. Consider the smallest capacity such that v(A) = |A|
|N | for every

A ∈ C1 ∪ C2. That is, v(B) = 0 unless A ⊆ B for some A ∈ C1 ∪ C2, in which case
v(B) = |A|

|N | , where A is the largest set in C1∪C2, such that A ⊆ B. From the definition

of v, we have obtained that
∫
F Xdv ≥ ∑

A∈C1
v(A) and

∫
F Y dv ≥ ∑

A∈C2
v(A).

Fix 0 < γ < 1 and suppose that the optimal sub-decomposition of γ X +(1 − γ ) Y
is

∑
E∈D βE IE . Thus,

∫
F (γ X + (1 − γ ) Y )dv = ∑

E∈D βEv (E), where D ∈ F . We
can assume that each E ∈ D, whose βE is strictly positive, contains at least one
A ∈ C1 ∪ C2 as a subset (since otherwise, v (E) = 0). Denote A(E) the largest set in
C1 ∪ C2 that is a subset of E, E ∈ D. Thus,

∑
E∈D βEv(E) = ∑

E∈D βEv(A(E)).
There exist two cases. The first is when every A ∈ C1 ∪ C2 has E ∈ D such that
A = A(E). Since D does not contain C1 ∪C2, there is at least one E with βE > 0 such
that A(E) � E . Thus,

∑
E∈D βE IA(E) is not a decomposition of γ X + (1 − γ ) Y but

rather a sub-decomposition of it, implying that

5 ∪F is a set that contains all D ∈ F . That is, ∪F = {A | A ∈ D ∈ F}.
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∫

F
(γ Xdv + (1 − γ ) Y )dv =

∑

E∈D

βEv (A (E))

< γ
∑

A∈C1

v(A) + (1 − γ )
∑

A∈C2

v(A) ≤ γ

∫

F
Xdv + (1 − γ )

∫

F
Y dv,

which contradicts concavity. The second case is where not every A ∈ C1 ∪ C2
has E ∈ D such that A = A(E). Since C1 ∪ C2 is an independent collection,
there are no two C1 ∪ C2-decompositions of X . This means that

∑
E∈D βE IA(E)

is not a decomposition of γ X + (1 − γ ) Y . As in the previous case, this implies
that

∫
F (γ Xdv + (1 − γ ) Y )dv < γ

∫
F Xdv + (1 − γ )

∫
F Y dv, which contradicts

concavity. 	


5.1.2 An alternative characterization of the concave integral

Another contribution of the decomposition approach is that it provides a new char-
acterization to the concave integrals. The following characterization is a corollary of
Theorem 1. The first condition states that for every event A, there is a D ∈ F such
that A ∈ D, while the second simply requires concavity.

Corollary 1 A decomposition-integral
∫
F · dv satisfies (i)

∫
F IAdv ≥ v(A) for every

event A and capacity v; and (ii)
∫
F · dv is concave, if and only if

∫
F · dv = ∫ cav · dv.

5.2 Monotonicity w.r.t. stochastic dominance

In this section, we characterize F for which
∫
F · dv is monotonic w.r.t. stochastic

dominance.

Definition 5 (i) Let v be a capacity and X, Y be two variables over N . We say that
X stochastically dominates Y w.r.t. v (denoted X 
v Y ), if for every number t ∈
R, v (X ≥ t) ≥ v (Y ≥ t).
(ii) In case X 
v Y and Y 
v X , we say that X and Y are stochastically equivalent
and denote it X ∼v Y .
(iii) We say that

∫
F · dv is monotonic w.r.t. first-order stochastic dominance (or simply,

monotonic w.r.t. stochastic dominance) if X 
v Y implies
∫
F Xdv ≥ ∫

F Y dv.

The following definition is important only for the proof and bears no conceptual
significance.

Definition 6 We say that two chains of size k are similar if there is a size-preserving
one-to-one map between them. Formally, the chains D and G are similar if there is
one-to-one map φ : D → G, such that for every A ∈ D, |φ(A)| = |A|.

The following example demonstrates Definitions 5 and 6 and an idea that appears
in the proof of Theorem 2.
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Example 3 Let N = {1, 2, 3, 4} and D = {(1234), (124)}. Consider X =∑
T ∈D IT = (2, 2, 1, 2). We complete D to a chain of size 4: D′ = {(1), (12), (124),

(1234)}. Define G ′ = {(3), (34), (234), (1234)}. Notice that G ′ is the complementary
chain of D′ in the sense that for every A ∈ D′ which is not N , the event N \ A belongs
to G ′.

Let G be the sub-chain of G ′ that is similar to D. Thus, G = {(234) , (1234)}.
Consider Y = ∑

B∈G IB = (1, 2, 2, 2). In order to define v, we start with the events
in D′ or in G ′. For every A ∈ D′ ∪ G ′, define v (A) = |A|

4 . This definition makes
X and Y stochastically equivalent (X ∼

v Y ). On every B �∈ D′ ∪ G ′, define v to
be the minimum possible, while maintaining monotonicity w.r.t. inclusion. That is,
v(B) = max{v(A); A ∈ D′ ∪ G ′ and A ⊆ B}.

Now suppose that the set of collections F includes only D (i.e., F = {D}). Then,
the optimal sub-decomposition of X is in fact a decomposition: X = ∑

T ∈D IT .
Thus,

∫
F Xdv = ∑

T ∈D v (T ) = 3/4 + 1 = 7
4 . On the other hand, the optimal sub-

decomposition of Y is IN . Therefore,
∫
F Y dv = v(N ) = 1. We obtain that although

X ∼
v Y,

∫
F Xdv >

∫
F Y dv and hence,

∫
F · dv is not monotonic w.r.t. first-order

stochastic dominance.
Notice that F consists only of chains. Theorem 2 states that in order for

∫
F ·dv to

be monotonic w.r.t. first-order stochastic dominance, F must include only chains, and
furthermore, must include all chains that have the maximal size. Thus, the reason for
the lack of monotonicity w.r.t. first-order stochastic dominance in this example is that
F does not include all chains whose size is the same as that of D.

5.2.1 The decomposition-integrals that are monotonic w.r.t. stochastic dominance

Theorem 2 The decomposition-integral
∫
F · dv is monotonic w.r.t. stochastic domi-

nance, if and only if there exists k (k ∈ N) such that F is a set of chains not longer
than k and contains all chains of size k.

Proof We show first that if there exists k (k ∈ N) such that F is a set of chains not
longer than k and contains all chains of size k, then F is monotonic w.r.t. stochastic
dominance. Suppose that X 
v Y , and let

∑

i=1 αi ICi be an optimal F-allowable

sub-decomposition of Y , where C1 ⊆ C2 ⊆ · · · ⊆ C
 and 
 ≤ k. In particular,∑

i=1 αiv(Ci ) = ∫

F Y dv.
We now construct an F-allowable sub-decomposition of X . Define Bi = { j ∈

N ; X ( j) ≥ ∑i
m=1 αm} for every i = 1, . . . , 
. Clearly,

∑

i=1 αi IBi is a sub-

decomposition of X . Moreover, B1 ⊆ B2 ⊆ · · · ⊆ B
 is a chain whose length is
at most k. In particular, it is a sub-chain of a chain whose length is precisely k. Since
F contains all chains of length k,

∑

i=1 αi IBi is an F-allowable sub-decomposition of

X . Thus,
∫
F Xdv ≥ ∑


i=1 αiv(Bi ). However, by assumption, X 
v Y which implies
in particular that for every i = 1, . . . , 
, v(Bi ) ≥ v(Ci ). We therefore obtain that∫
F Xdv ≥ ∑


i=1 αiv(Bi ) ≥ ∑

i=1 αiv(Ci ) = ∫

F Y dv, as desired.
In order to prove the inverse direction, we first show that F consists only of chains.

Assume to the contrary that F includes at least one D0 that is not a chain. We construct
two variables X, Y , and a capacity v, such that X ∼v Y , but

∫
F Xdv >

∫
F Y dv.

Since D0 is not a chain, there are at least two events A, B that are not nested. There
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are two possible cases. First, A ∩ B = ∅. Define X = IN and Y = IA. Consider the
smallest capacity such that v (A) = v (B) = v (N ) = 1. Obviously, X ∼v Y , but∫
F Xdv = v (A) + v (B) = 2 and

∫
F Y dv = v (A) = 1.

The second case is where A ∩ B �= ∅. Define X = IA + IB and Y = IN . With the
v before, X ∼v Y , but

∫
F Xdv = v (A) + v (B) = 2 and

∫
F Y dv = v (N ) = 1.

Suppose that the longest chain (i.e., one that includes the maximal number of events)
in F is of size k. Next, we prove that F must include all chains of size k. Assume the
opposite. We start with similar chains of this size. Assume that D and G are similar
chains of size k, D ∈ F while G /∈ F . Define X = ∑

A∈D IA and Y = ∑
C∈G IC ,

and v as the uniform additive probability. We obtain X ∼v Y and therefore Ev(Y ) =
Ev(X). Since we proved that the set of collections F consists of chains only, the optimal
sub-decomposition of Y is a chain. Ignoring zero coefficients, the variable Y (see the
proof of Proposition 1) has exactly one chain decomposition. However, the chain G
that was used in this decomposition is not in F . Thus, Y has only an optimal sub-
decomposition, which is not a decomposition. Suppose that this sub-decomposition
is

∑
B∈G ′ βBIB , where G ′ ∈ F . Thus,

∑
B∈G ′ βBIB ≤ Y and

∑
B∈G ′ βBIB �= Y .

Since v is the uniform distribution,
∫
F Y dv = ∑

B∈G ′ βBv(B) < Ep(Y ) = Ep(X) =∫
F Xdv. Therefore,

∫
F Xdv >

∫
F Y dv, which contradicts monotonicity w.r.t. first-

order stochastic dominance. We therefore conclude that similar chains of size k are
either all in F , or all out of F .

We now show that all chains of size k are in F . Suppose that D = {A1, . . . , Ak} ∈
F , where A1 ⊆ · · · ⊆ Ak (i.e., D a chain of size k). We complete D to a chain of
size n (in an arbitrary way), say D1 = {B1, . . . , Bn}, where B1 ⊂ B2 ⊂ · · · ⊂ Bn .
Thus, D1 is a chain of size n that contains D. Define G1 to be the chain that includes
En = N and E j = N � Bn− j , j = 1, . . . , n −1. In a sense, G1 is the complementary
chain of D1.

Let G = {C1, . . . , Ck}, where C1 ⊆ · · · ⊆ Ck , be a sub-chain of G1 of size k,
such that G /∈ F . As before, define X = ∑

Ai ∈D IAi and Y = ∑
Ci ∈G ICi . Consider

the smallest capacity such that v (Ai ) = v (Ci ) = k−i+1
n for every 1 ≤ i ≤ k. By

construction, every Ai ∈ D and Ci ∈ G are not nested unless Ai = N or Ci = N .
Thus, the definition of v does not violate monotonicity w.r.t. inclusion and is therefore
well defined. Furthermore, X ∼v Y . An important feature of v is that for every i
(letting C0 be an arbitrary set larger than N ) and T � Ci−1, v(T ) ≤ v(Ci ) = k−i+1

n .
Since (a) G /∈ F , (b) there is no chain in F longer than k that contains G and

(c) there is only one chain decomposition of Y (ignoring zero coefficients), the inte-
gral of Y is attained by a sub-decomposition (not decomposition), say

∑

m=1 αmITm ,

where T1 ⊆ T2 ⊆ · · · ⊆ T
 and 
 ≤ k. This implies that Tm and Ci are nested for
every m = 1, . . . , 
 and i = 1, . . . , k. Since

∑

m=1 αmITm ≤ ∑k

i=1 ICi , for every
i = 1, . . . , k,

∑

m; Ci ⊆Tm

αm ≤ i. (13)

Moreover, as
∑


m=1 αmITm is a sub-decomposition and not a decomposition of Y , for
at least one i , the inequality (13) is strict. Thus,
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∫

F
Y dv =


∑

m=1

αmv (Tm) =
k∑

i=1


∑

m;Ci ⊆Tm�Ci−1

αmv (Tm)

≤
k∑

i=1

⎛

⎝

∑

m;Ci ⊆Tm�Ci−1

αm

⎞

⎠ v (Ci ) <

k∑

i=1

k − i + 1

n
=

∫

F
Xdv.

The last inequality is due to (13) which holds with strict inequality for at least one
index i . This contradicts monotonicity w.r.t. first-order stochastic dominance. Thus,
G must be in F . We conclude that any sub-chain of G1 whose size is k belongs
to F .

Note that any chain of size k is similar to a sub-chain of G1. Since we proved that
all similar chains of the same size are either all in or all out of F , we conclude that all
chains of size k are in F , which completes the proof. 	


5.2.2 A new characterization of Choquet integral

Using the notion of decomposition-integral, Theorem 2 provides a new characteriza-
tion of Choquet integral, one that does not use comonotonic additivity. Alongside with
the requirement that every variable X has a decomposition, which implies that k = n
in Theorem 2, (or alternatively, by Proposition 3, that EP (X) = ∫

F Xd P for every
variable X and P additive), we get the following corollary.

Corollary 2 A decomposition-integral
∫
F · dv satisfies (i)

∫
F · d P = EP (·) for every

probability P; and (ii) it is monotonic w.r.t. stochastic dominance for every v, if and
only if

∫
F · dv = ∫ Ch · dv.

5.3 Translation-covariance

This section provides a characterization of those sets of collections F that induce
a decomposition-integral, which is translation-covariant for every v: for every c >

0,
∫
F (X + c)dv = ∫

F Xdv + c, when v (N ) = 1. The following illustrates an
example where the integral is not translation-covariant.

Example 4 Let N = {1, 2, 3}. Consider F defined as follows. F = {{(12), (23),

(123)}}. Define X = (2, 4, 1) and c = 1, v (N ) = 1, v (12) = v (23) = 2/3. Then∫
F Xdv = 2 · (2/3) + 1 · (2/3) = 2 while

∫
F (X + 1)dv = 3 · (2/3) + 2 · (2/3) =

10
3 > 2 + 1.

5.3.1 The decomposition-integrals that respect translation-covariance

The following theorem characterizes the sets of collections that always induce an
integral which is translation-covariant, regardless of v.
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Theorem 3 The integral
∫
F · dv is translation-covariant for every v, if and only if

the set of collections F is (i) composed of chains; and (ii) any D ∈ F is contained in
D′ ∈ F such that N ∈ D′.

Proof Fix v such that v(N ) = 1. Suppose that the set of collections F is (i) composed
of chains; and (ii) any D ∈ F is contained in D′ ∈ F such that N ∈ D′. Fix X . Due to
assumption (ii), one can assume that the optimal sub-decomposition of X is obtained
in D′ ∈ F that contains N . Thus, if

∑
E∈D′ αE IE is an optimal F-allowable sub-

decomposition of X , then
∑

E∈D′ αE IE + cIN is an F-allowable sub-decomposition
of X + c, and therefore,

∫
F (X + c)dv ≥ ∫

F Xdv + c for every c > 0.
We show now the inverse inequality. Let

∑

E∈D, E�N

αE IE + αN IN (14)

be an F-allowable optimal sub-decomposition of X + c. We show by induction on
the number of positive coefficients in Eq. (14) that

∑
E∈D, E�N αEv(E) + cv(N ) ≤∫

F Xdv + c. Suppose first that the number of positive coefficients in Eq. (14) is 1.
Then, αE IE is the sub-decomposition of X + c for E ∈ D ∈ F . We can assume that
αE ≥ c, because otherwise we could replace αE by c and have cIE as an optimal
sub-decomposition of X + c. By assumption, there is D′ ∈ F such that E, N ∈ D′.
Thus, (αE −c)IE +cIN is an F-allowable sub-decomposition of X +c, implying that
(αE − c)IE is an F-allowable sub-decomposition of X . Therefore, (αE − c)v(E) ≤∫
F Xdv. Consequently, αEv(E) ≤ ∫

F Xdv + cv(E) ≤ ∫
F Xdv + c.

Assume now that whenever the number of positive coefficients in Eq. (14) is less
than or equal to k, for every c > 0,

∑
E∈D, E�N αEv(E) + cv(N ) ≤ ∫

F Xdv + c.
Based on this assumption, we show the same assertion for k + 1 positive coefficients.

Let an F-allowable optimal sub-decomposition of X + c, as in Eq. (14), have
k + 1 positive coefficients. We divide the argument into three cases. Case (i):
αN ≥ c. In this case

∑
E∈D, E�N αE IE + (αN − c)IN is an F-allowable sub-

decomposition of X , implying that
∑

E∈D, E�N αEv(E)+ (αN − c)v(N ) ≤ ∫
F Xdv.

Thus,
∑

E∈D, E�N αEv(E) + αN v(N ) ≤ ∫
F Xdv + c, as desired.

Case (ii): c > αN > 0. Here,
∑

E∈D, E�N αE IE is an F-allowable sub-
decomposition of X + (c −αN ). We use now the induction hypothesis. Since there are
k positive coefficients in

∑
E∈D, E�N αE IE , we conclude that

∑
E∈D, E�N αEv(E) ≤∫

F Xdv + (c − αN ), implying that
∑

E∈D, E�N αEv(E) + αN v(N ) ≤ ∫
F Xdv + c.

Case (iii): αN = 0. Since D used in Eq. (14) is a chain, there is a largest E whose
coefficient αE is positive. Denote this event by E ′. Thus, either

∑
E∈D, E�E ′ αE IE +

αE ′IN (when αE ′ < c) or
∑

E∈D, E�E ′ αE IE + (αE ′ − c)IE ′ + cIN (when αE ′ ≥ c) is
an F-allowable sub-decomposition of X + c. In either case, we find ourselves in one
of the cases discussed above and therefore obtain that

∫
F · dv is translation-covariant.

As for the inverse direction, assume that
∫
F · dv is translation-covariant for every

v. We show first that every D ∈ F must be a chain. Else, there is D which contains
two non-nested events, say A and B. Let v be the smallest capacity such that v(A) =
v(B) = 2/3 and v(N ) = 1. We divide the proof into two cases. The first case is
when A ∩ B = ∅. By the definition of v, IA + IB is an optimal sub-decomposition of
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X = IN . Thus,
∫
F X dv = 4/3. But then,

∫
F (X + 1) dv = ∫

F 2X dv = 2
∫
F X dv,

which implies that
∫
F (X + 1) dv >

∫
F X dv + 1, a contradiction.

It remains to show that in the second case, where A∩ B �= ∅, there is also a violation
of translation-covariance. Consider the variable X defined by (similar to Example 4),

X (s) =
⎧
⎨

⎩

2, if s ∈ A\B
4, if s ∈ A ∩ B
1, if s ∈ B\A

The sum 2IA+IB is an optimal sub-decomposition of X and therefore
∫
F X dv = 2.

However, 3IA + 2IB is a decomposition of X + 1 and therefore,
∫
F (X + 1) dv ≥

5(2/3) >
∫
F X dv + 1. Thus,

∫
F · dv is not translation-covariant. We therefore con-

clude that F is composed of chains. We now show that any D ∈ F is contained in
D′ ∈ F such that N ∈ D′. Suppose, in a way of contradiction, that there exists D ∈ F
and no D′ ∈ F includes N and contains D (as a subset). Define X = ∑

T ∈D IT and
v as the uniform additive probability. Thus,

∫
F X dv = Ev(X). The variable X + 1

has exactly one chain decomposition—the one that uses D ∪{N }. By our assumption,
G = D ∪ {N } /∈ F , thus, X+1 has only an optimal sub-decomposition, which is not a
decomposition:

∑
B∈G ′ βBIB ≤ X +1 that satisfies

∑
B∈G ′ βBIB �= X +1. Since v is

the uniform distribution,
∫
F (X +1)dv = ∑

B∈G ′ βBv(B) < Ev(X +1) = Ev(X)+1,
contradicting translation-covariance. 	


5.3.2 Choquet integral as a decomposition-integral that satisfies
translation-covariance

Together with Proposition 3, Theorem 3 provides another characterization of Choquet
integral.

Corollary 3 A decomposition-integral
∫
F · dv satisfies (i)

∫
F · d P = EP (·) for every

probability P and (ii) it is translation-covariant for every v, if and only if F = FCh.

6 A final comment: the dual approach

In this paper, we introduced the notion of decomposition-integral that depends on a set
of collections in a specific way. Recall Definition 2 in which the evaluation of a non-
negative random variable X is determined by the maximal approximation of X from
below. That is, the decomposition-integral of X is equal to the value of the optimal
F-allowable sub-decomposition of X . It turns out that this approach unifies many
well-established and widely accepted integral schemes. One could think, however, on
a dual approach to decomposition-integrals. Instead of approximating a variable X
from below, it is as plausible to approximate X from above. Furthermore, instead of
evaluating X as the value of its optimal sub-decomposition, one could, as plausibly,
evaluate X as the value of its closest super-decomposition. This would be the minimum
over all super-decompositions of X .

Formally, define the dual decomposition-integral as follows.
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Definition 7 The dual decomposition-integral w.r.t. F is defined as,

∫ ∗

F
Xdv = min

{
∑

A∈D

αAv(A); D ∈ F and
∑

A∈D

αAIA ≥ X, where αA ≥ 0, A∈ D

}

.

Both the decomposition-integral and its dual were considered in the context of
partially specified probabilities in Lehrer and Teper (2011). It turns out, however, that
Šipoš integral (1979) predated Lehrer and Teper (2011) in using both approaches.

Issues related to the dual decomposition-integral are left for future research.

7 The literature

7.1 Choquet and the concave integrals in the literature

Schmeidler (1986, 1989) was the first to make the connection between Choquet integral
and decisions under uncertainty. Schmeidler provides an axiomatization for Choquet
expected utility maximization. Among the follow-ups on Schmeidler’s work, one
can find Gilboa (1987) who axiomatized Choquet expected utility maximization in
Savage (1954) framework, Wakker (1989) and Nakamura (1990) who examine a finite
states space. Wakker (1990) characterizes optimistic and pessimistic risk attitudes in
Schmeidler’s model using the Choquet integral.

Dow and Werlang (1994) and Lo (1996) use Choquet expected utility maximiza-
tion in multi-agent models. They extend the notion of Nash equilibrium to cases where
the beliefs of players about others’ strategies are represented by capacities. The Cho-
quet integral is also used for pricing insurance contracts and financial assets (see
Chateauneuf et al. 1996; Waegenaere and Walker 2001; Wang et al. 1997 and others).
Waegenaere et al. (2003) show that the Choquet pricing is consistent with a general
equilibrium.

Choquet integral is also used in multi-criteria decision making and game theory (see
Grabisch and Labreuche 2010 for a summary on this subject). Marichal (2000) uses the
Choquet integral as a tool to aggregate interacting criteria. Chiang (1999) uses Choquet
integral in network implementation for decision analysis. Grabisch and Labreuche
(2005a,b) introduced the notion of bicapacity, which is consonant with prospect theory
of Kahneman and Tversky (1979). Bicapacities reflect different attitudes of decision
makers toward gains and losses. Lehrer (2012) uses the concave integral in a model of
decision making and in games with partially specified probabilities. Lehrer and Teper
(2011) use the concave integral in a context of decision makers’ growing awareness.
Araujo et al. (2012) used the concave integral for defining a pricing rule of bets.

Faigle and Grabisch (2011) defined an integral based on one collection of sets
whose union is N . Let D be a collection such that ∪D = N . Define the singleton
F = {D}. The integral defined by Faigle and Grabisch is

∫
F Xdv. This integral bears

similarities with both the concave and the Choquet integrals. Like the concave integral,
the set of collections used by Faigle and Grabisch is a singleton, and by Theorem 1,
it is concave.
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7.2 Faigle and Grabisch integral

A closely related concept to ours is that of Faigle and Grabisch (2011). They defined
an integral based on one collection of sets whose union is N . Let D be a collection
such that ∪D = N . Define the singleton F = {D}. The integral defined by Faigle
and Grabisch is

∫
F Xdv. This integral bears similarities with both the concave and the

Choquet integrals. Like the concave integral, the set of collections used is a singleton.
Faigle and Grabisch actually define

∫
F Xdv as a solution of a maximization problem

in the style of Eq. (5) only for belief functions. They then extend the definition to a
general capacity using the fact that any capacity is a difference between two belief
functions. The resulting integral, like the Choquet integral, is concave if and only if
the underlying capacity is supermodular.

8 Appendix

Proof of Proposition 1 We show first that the transition from Eq. (3) to Eq. (4) is true.
Let X be a variable and let Y = ∑k

i=1 αi IAi have the following properties: (a) it is
FCh-allowable sub-decomposition of X (satisfying A1 ⊆ · · · ⊆ Ak) that achieves
the maximum of the RHS of Eq. (3); (b) αi > 0 for every i = 1, . . . , k. We can
assume that there is no other sub-decomposition that satisfies (a) and (b) and (weakly)
dominates Y . That is, for every variable Z �= Y that satisfies (a) and (b), there is 
 ∈ N
such that Y (
) > Z(
). We show that Y is actually a decomposition of X .

Assume, on the contrary, that there is j ∈ N such that Y ( j) < X ( j). If j ∈ Ai

for every i = 1, . . . , k, then the set {A1, . . . , Ak, { j}} is a chain and Y ′ = Y +
(X ( j) − Y ( j))I{ j} satisfies (a) and (b). Moreover, Y ′ �= Y and Y ′(
) ≥ Y (
) for
every 
 ∈ N , which contradicts the choice of Y . We may therefore assume that
there is an index i such that j �∈ Ai . Let i0 be the smallest index that j �∈ Ai0 . The set{

A1, . . . , Ai0 ∪ { j}, Ai0 , Ai0+1, . . . , Ak
}

is a chain. Furthermore, Y ′ = ∑
i �=i0

αi IAi +
βIAi0 ∪{ j} + (αi0 − β)IAi0

, where β = min[X ( j) − Y ( j), αi0 ], satisfies (a) and (b).
Since Y ′ �= Y and Y ′(
) ≥ Y (
) for every 
 ∈ N , we obtain a contradiction to the
choice of Y . We thus conclude that Y is a decomposition of X (i.e., X = Y ).

It remains to show that, ignoring indicators whose coefficients are zero, X has only
one decomposition. That is, {A1, . . . , Ak} = {A1(X), . . . , An(X)}. By definition,
Ai (X) = { j ∈ N ; X ( j) ≥ Xσ(i)}. Thus, it is enough to show that if m, 
 ∈ N satisfy
X (m) = X (
), then m ∈ Ai ⇔ 
 ∈ Ai . Let m, 
 ∈ N satisfy X (m) = X (
). If
there is i0 such that 
 ∈ Ai0 and m �∈ Ai0 , then due to property (b) and the fact that
X = Y, X (m) = Y (m) < Y (
) = X (
), in contradiction with the choice of m and 
.

	

Proof of Lemma 1 Suppose that there exists an optimal sub-decomposition of X w.r.t.
F is obtained by a D-sub-decomposition (D ∈ F),

∑
A∈D αAIA. Define the set

DX = {A ∈ D | αA > 0}. We may choose a sub-decomposition such that |DX | is
minimal. If DX is an independent collection, the proof is complete. Otherwise, the
variables IA, A ∈ DX are linearly dependent. Meaning that there is a linear combi-
nation

∑
A∈DX

δAIA = 0 where at least one δA �= 0. Without loss of generality, we
may assume that

∑
A∈DX

δAv(A) ≤ 0. Otherwise we could consider
∑

A∈DX
(−δA)IA
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instead. Since all IA are non-negative, the fact that at least one δA �= 0 implies that there
is at least one δA > 0. Let ε = minA∈DX ,δA>0

αA
δA

. Since all the coefficients αA − εδA

are greater than or equal to 0,
∑

A∈D αAIA − ε
∑

A∈DX
δAIA = ∑

)A ∈ D(αA −
εδA)IA is a sub-decomposition of X . As for optimality of this sub-decomposition,∑

A∈D(αA − εδA)v(A) = ∑
A∈D αAv(A) − ε

∑
A∈DX

δAv(A) ≥ ∑
A∈D αAv(A).

Therefore, this is an optimal sub-decomposition. Moreover, for at least one A ∈ DX ,
the coefficient αA − εδA = 0, implying that

∑
A∈D(αA − ε · δA)IA is an optimal

sub-decomposition of X that involves a smaller number of indicators than does DX ,
contradicting the choice of DX . It implies that DX is indeed an independent collection.

	

Proof of Lemma 2 Suppose that for every independent collection C ⊆ ∪F , there
exists D ∈ F such that C ⊆ D. Define the following set consisting of one collection:
F ′ = {∪F}. By assumption, for every D′ ∈ F ′ and every independent collection
C ⊆ D′ (i.e., for every independent C ⊆ ∪F), there is D ∈ F such that C ⊆ D.
Thus, from Proposition 4,

∫
F ′ · dv ≤ ∫

F · dv. On the other hand, from the definition
of F ′, for every D ∈ F and every independent collection C ⊆ D, there is D′ ∈ F ′
such that C ⊆ D′. Thus, again, due to Proposition 4,

∫
F · dv ≤ ∫

F ′ · dv, which leads
us to conclude that

∫
F · dv = ∫

F ′ · dv.
As for the inverse direction, suppose

∫
F ′ · dv = ∫

F · dv, and F ′ = {D′} (i.e., F ′ is
a singleton). We show that ∪F ⊆ D′. Assume to the contrary that ∪F �⊆ D′. Then,
there exists D1 ∈ F such that D1 � D′. By assumption,

∫
F ′ · dv ≥ ∫

F · dv, and from
Proposition 4, we infer that for every independent collection C ⊆ D1, there is D ∈ F ′
such that C ⊆ D. Any event in D1 is an independent collection; thus, D′ must include
any event in D1 and thus must contain D1 itself (i.e., D1 ⊆ D′).

Finally, consider an independent C ⊆ ∪F . By the previous argument C ⊆ D′.
Since

∫
F ′ · dv ≤ ∫

F · dv, we obtain from Proposition 4 that there exists D ∈ F such
that C ⊆ D, which completes the proof. 	
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