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REPEATED GAMES WITH DIFFERENTIAL
TIME PREFERENCES1

BY EHUD LEHRER AND ADY PAUZNER2

When players have identical time preferences, the set of feasible repeated game
payoffs coincides with the convex hull of the underlying stage-game payoffs. Moreover, all
feasible and individually rational payoffs can be sustained by equilibria if the players are
sufficiently patient. Neither of these facts generalizes to the case of different time
preferences. First, players can mutually benefit from trading payoffs across time. Hence,
the set of feasible repeated game payoffs is typically larger than the convex hull of the
underlying stage-game payoffs. Second, it is not usually the case that every trade plan that
guarantees individually rational payoffs can be sustained by an equilibrium, no matter
how patient the players are. This paper provides a simple characterization of the sets of
Nash and of subgame perfect equilibrium payoffs in two-player repeated games.

KEYWORDS: Repeated games, folk theorem, different discount factors, intertemporal
trade.

1. INTRODUCTION

REPEATED GAMES IN WHICH ALL PLAYERS have identical time preferences have
been extensively studied. For such games, the set of feasible payoffs of the
repeated game coincides with that of the stage-game. Moreover, folk theorems
assert that, as players become very patient, the set of equilibrium payoffs of the
repeated game approaches the set of its feasible and individually rational
payoffs.3 In contrast, when players have different discount factors both state-
ments are typically false. First, the set of feasible payoffs of the repeated game is
generally larger than that of the stage-game.4 Second, even when players are
very patient, not all the feasible and individually rational payoffs of the repeated
game can be supported by equilibria.

The first fact arises from the possibility of ‘‘trading’’ payoffs over time. Trade
is made possible by differences in time preferences. An impatient player cares
more than a patient one about payoffs received in early stages, while a patient
player cares relatively more about later periods. Thus, both players may benefit
from playing actions that the impatient player prefers in early stages and actions

1 Ž .A number of less central proofs were moved, because of space limitations, from this paper to
Ž .Lehrer and Pauzner 1997 .

2 We wish to thank Jonny Shalev, Jeroen Swinkels, a co-editor and three anonymous referees for
helpful comments. We especially thank Itzhak Gilboa for his valuable help. An earlier version of the
paper was circulated as: ‘‘Breaking the Barriers of the Feasible Set: On Repeated Games with
Different Time Preferences.’’

3 Ž . Ž . Ž .See, for instance, Aumann and Shapley 1976 , Rubinstein 1979 , Aumann 1981 , Fudenberg
Ž . Ž .and Maskin 1986 , Abreu, Dutta, and Smith 1994 .

4 This observation has apparently been made by several authors. See, for instance, Osborne and
Ž .Rubinstein 1994, Exercise 139.1 .
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that the patient player prefers in later stages. The gains from this trade can push
the players’ overall utility outside the feasible set of the stage-game. Therefore,
the set of all feasible payoffs of the repeated game is typically larger than that of
the stage-game.

The second fact, that not every feasible payoff can be sustained by an
equilibrium, is due to individual rationality considerations. Intertemporal trade
requires trust. The patient player is willing to forego early payoffs only if she can
trust the impatient player to reciprocate later on. And this requires that the
impatient player’s individually rational payoff level be low enough that he can be
punished should he deviate. In other words, the benefits of intertemporal trade
can be reaped only if the impatient player is vulnerable enough to be trusted.

In some cases, most notably zero-sum games, no mutually beneficial trade
plan is enforceable. That is, all equilibrium payoffs belong to the feasible set of
the stage-game. In other cases, every feasible and individually rational repeated-
game payoff is sustainable in equilibrium. What characterizes the set of equilib-
rium payoffs? Which factors determine whether there are equilibrium payoffs
outside the stage-game’s feasible set? When are there feasible and individually
rational repeated-game payoffs that cannot be supported by equilibrium? These
are the issues we address. Specifically, our main result is a characterization of
the Nash and subgame perfect equilibrium payoffs in two-player games.

Discounting of future payoffs reflects the players’ tastes. Since people often
differ in their time preferences, it is natural to consider the case of different
discount factors. However, in cases where payoffs are monetary, one may argue
that differential time preferences do not matter. Is it not the case that players
can smooth out their payoffs at a common interest rate determined by the
market? Indeed, if they can, that interest rate is the relevant discount factor and
the classical folk theorems apply. But in many situations intertemporal markets
may not exist or may not be accessible to all agents. For example, consider the
interaction between an employee and her employer. The employer may be able
to borrow money at an interest rate lower than that accessible to the employee.
Whereas wage negotiations are often thought of as zero-sum, intertemporal
trade is one way in which workers and employers can devise Pareto-improving
contracts.

Differential time preferences have appeared in a number of applications.
Ž .Rubinstein 1982 discusses the alternating offers model of bargaining between

Ž .two players having different discount factors. Fudenberg and Levine 1989 ,
Ž . Ž .Aoyagi 1996 , and Celentani, Fudenberg, Levine, and Pesendorfer 1995 study

repeated games in which a relatively patient player establishes her reputation in
early stages of the game. While the bargaining and reputation models focus on
how differences in patience affect the balance of power between the players, we
focus instead on how this difference creates new cooperative possibilities, and
on how such possibilities can be exploited in equilibrium.

The remainder of the paper is organized as follows. In Section 2 we analyze a
few motivating examples. Section 3 contains the formal model and a characteri-
zation of the set of feasible payoffs of the repeated game. Section 4 is devoted to
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Žour main result: a characterization of the set of equilibrium Nash and subgame
.perfect payoffs in the two-player case. Section 5 concludes with a discussion of

related issues and directions for future research. In particular, we discuss some
difficulties in extending the results to games with incomplete information and to
the general case of more than two players.

2. ILLUSTRATIVE EXAMPLES

Ž .Consider the two-player zero-sum stage-game ‘‘matching pennies’’:

1, �1 �1, 1
.

�1, 1 1, �1

At each stage k, players choose mixed actions. The impatient player receives the
Ž . � � Ž . Ž .stage-payoff X k � �1, 1 and the patient one receives Y k ��X k . By

mixing evenly between the two actions, each player can guarantee her individu-
Ž .ally rational henceforth, IR level of 0. Assume that the players evaluate their

Žinfinite streams of stage-payoffs using discount factors 1�� �� �0 P and IP I
.stand for patient and impatient, respectively . The repeated-game payoffs are

then

Ž . k Ž .U � 1�� � X k ,ÝI I I

Ž . k Ž . Ž . k Ž .U � 1�� � Y k �� 1�� � X k .Ý ÝP P P P P

If the discount factors are identical, U �U �0. That is, the repeated game isI P
also zero-sum. Since both IR levels are 0, the only feasible and IR payoff pair is
Ž . Ž .U , U � 0, 0 . This is, therefore, the only repeated-game equilibrium payoff.I P

In the case where � �� , there exist feasible payoffs of the repeated gameI P
Ž .that are Pareto superior to 0, 0 . For example, the players may agree on

Ž Ž . Ž .. Ž .receiving the payoff pair X k , Y k � 1, �1 up to a certain period, and
Ž Ž . Ž .. Ž .X k , Y k � �1, 1 thereafter. In other words, the patient player lends
payoffs to the impatient one, and is refunded afterwards. As a result, both
receive a positive payoff. However, this plan is not an equilibrium of the
repeated game, because the impatient player will refuse to repay the debt. We

Ž .later show that 0, 0 is, indeed, the unique equilibrium payoff.
Consider now the following modification of the stage-game:

1, �1 �1, 1 �2, �2

�1, 1 1, �1 �2, �2

�2, �2 �2, �2 �2, �2

The additional ‘‘threat’’ actions reduce the IR levels from 0 to �2, but do not
Ž .affect the zero-sum Pareto-frontier. Now, if � is close enough to 1, theI

borrowing plan suggested above is enforceable: if the impatient player defaults
on his loan he may be punished, and his payoff may be driven down to his IR
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level. Thus, a strictly positive payoff for both players is sustainable at equilib-
rium.

In the first example the set of equilibrium payoffs of the repeated game
coincides with the set of feasible and individually rational payoffs of the
stage-game. In contrast, in the second example a payoff outside the feasible set
of the stage-game is supported by an equilibrium. In fact, all the feasible payoffs
of this repeated game can be supported by an equilibrium if both players are
patient enough. These examples illustrate a general phenomenon. For a fixed
Pareto frontier of the stage-game, when the IR levels are reduced, the
repeated-game equilibrium set is ‘‘pushed out.’’ That is, there may be new
equilibrium payoffs that Pareto-dominate formerly efficient equilibrium points.
More vulnerable players can trust each other more, and thereby achieve a
higher degree of cooperation.

An intermediate case, where the set of equilibrium payoffs contains points
Ž .outside the stage-game feasible set, while some repeated-game feasible payoffs

cannot be supported by equilibrium, is the repeated prisoners’ dilemma:

L R
U 2, 2 0, 3 .
D 3, 0 1, 1

Assume, for simplicity, that while both players are very patient on an absolute
scale, the ‘‘patient’’ player is much more patient than the ‘‘impatient’’ one.5

Ž .Consequently, the impatient player cares almost exclusively about a long initial
period, while the patient one cares primarily about the long run. By playing the

Ž .point 7�3, 4�3 at the early stages of the game and switching to the point
Ž . 64�3, 7�3 for the tail of the game, the players receive a total payoff close to
Ž .7�3, 7�3 , which is not feasible in the stage-game. This plan can be imple-
mented as an equilibrium: a deviation of the impatient player will provoke a
punishment to his IR level, 1, which is lower than his tail payoff, 4�3.

An alternative plan could have generated even higher payoffs. Playing the
Ž . Ž .point 3, 0 first and switching to 0, 3 later generates a total payoff close to

Ž .3, 3 . However, this plan cannot be supported by an equilibrium because the
impatient player cannot be forced to accept a tail payoff of 0, which is lower
than 1, his IR level.

3. THE REPEATED GAME AND ITS FEASIBLE SET

3.1. The Stage-Game

Ž . Ž .We consider a stage-game with two players, I impatient and P patient , and
finite pure action sets, A and A . A and A are the players mixed action setsI P I P

5See Section 5.1 for a formal definition.
6 Ž . ŽThe stage-payoffs pair 7�3, 4�3 is generated by mixing 2�3-1�3 between UL and DL i.e., the

.patient player plays L and the impatient mixes between U and D . Similarly, mixing between UL
Ž .and UR generates the payoffs pair 4�3, 7�3 .
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and A is the set of correlated actions, i.e., probability distributions over A �A .I P
Ž . Ž .The expected payoff functions are g , g : A��. Let V be the set of feasibleI P

stage-game payoffs,

� Ž Ž . Ž .. 4V� g a , g a : a�A .I P

Ž .I.e., V is the convex hull of the pure-action payoffs. Let ir and ir denote theI P
IR levels,

Ž . Ž .ir � min max g a , a , ir � min max g a , a .I I I P P P I P
a �A a �A a �A a �AP P I I I I P P

IR and IR denote the half planes of individually rational payoffs,I P

� Ž . 4 � Ž . 4IR � x , y : x� ir , IR � x , y : y� ir .I I P P

For a given ��0, IR� and IR� are the sets of ‘‘�-strong’’ individually rationalI P
payoffs,

� � Ž . 4 � � Ž . 4IR � x , y : x� ir �� , IR � x , y : y� ir �� .I I P P

Finally, let IR and IR� be the intersections of the corresponding sets across
players:

IR�IR 	IR , IR� �IR� 	IR� .I P I P

3.2. The Repeated Game

The stage-game is repeated infinitely. We assume perfect monitoring: each
player can condition her action at stage k on the past realized actions. We also
permit public randomization: in each stage the players observe the realization of
a continuous, exogenous random variable and can condition their action on its
outcome. Accordingly, the players can play any correlated action in A and

Ž . Ž Ž . Ž .. 7receive any expected stage-payoffs pair X k , Y k in V.
The players discount future payoffs according to discount factors 1�� ��P I

�0. These discount factors are the subjective present values of one payoff unit,
received after a delay of one time unit. Suppose that the interval between two
consecutive repetitions of the stage-game is � time units. Then, a unit of payoff

Ž . k � Ž k �.received at the k th stage is worth to the impatient patient player � �I P
units of payoff at the outset.8 Properly normalized, the present values of the
payoff streams are

� �
� � k � � � k �Ž . Ž . Ž . Ž .U � 1�� � X k , U � 1�� � Y k .Ý ÝI I I P P P

k�0 k�0

7The assumption that the players can use a public randomization device is almost without loss of
Ž .generality. Fudenberg and Maskin 1991 show explicitly that any correlated mixed action can be

approximated by alternating between pure actions with the appropriate frequency if the players are
very patient.

8 Notice that as � approaches zero, � � approaches 1. For details, see Section 5.1.
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The stage-k continuation payoff is the present value of future payoffs, evaluated
at stage k:

� �
� � i � � � i �Ž . Ž . Ž . Ž . Ž . Ž .U k � 1�� � X k�i , U k � 1�� � Y k�i .Ý ÝI I I P P P

i�0 i�0

Ž .It is useful to consider the case where players receive integrable
Ž . Ž .continuous-time payoff streams X t and Y t . The evaluations of these streams

at time 0 are9

� �
0 t 0 tŽ . Ž . Ž . Ž .U � �log � � X t dt , U � �log � � Y t dt.H HI I I P P P

0 0

�Ž .Let F V be the feasible set of the repeated game with stage length �, and
0Ž . �Ž . 0Ž .let F V be its continuous time counterpart. I.e., F V and F V are the

� Ž � �. 0 Ž 0 0.ranges of U � U , U and U � U , U , respectively. When no confusion isI P I P
�Ž . 0Ž . � 0likely to arise, we will omit V and denote F V and F V by F and F .

Clearly, F � and F 0 are supersets of V. Finally, note that F � and F 0 are closed
and convex sets.

3.3. The Feasible Set

The examples in Section 2 show that F � may be a strict superset of V. We
now turn to characterize the boundary of F �. Since F � is convex, every point on
its boundary is a maximizer of a certain weighted sum of the players’ payoffs.
Therefore, one way to fully characterize F � is to consider all possible weight

Ž . Ž .pairs � , � including negative ones , and, for each pair, to identify all pointsI P
Ž .x, y that solve

Ž . Ž . �1 max � x�� y subject to x , y �F .I P

Ž . Ž .Let there be given, then, �� � , � . The explicit formulation of 1 isI P

Ž . � � Ž Ž . Ž ..2 max � U �� U subject to �k , X k , Y k �V .I I P P�� Ž . Ž .4X k , Y k k�0

We can decompose the problem of maximizing the discounted sum of stage-
Ž .payoffs 2 into separately maximizing, for each stage k, the weighted sum of the

players’ payoffs,10

Ž . Ž �. k � Ž . Ž �. k � Ž .3 max � 1�� � X k �� 1�� � Y kI I I P P P
Ž . Ž .X k , Y k

Ž Ž . Ž ..subject to X k , Y k �V .

9 These continuous time payoffs are obtained by taking the limit, as ��0, of the first order
element in the Taylor expansion of 1�� �. This yields �log � .

10 The boundary of F � can be characterized in other ways as well. For instance, one may
maximize U subject to U �u for every u. However, this maximization problem would not readilyP I
decompose across periods.



REPEATED GAMES 399

Ž . Ž Ž �. k � Ž �. k �. Ž .For any integer k, let h k � � 1�� � , � 1�� � . h k is a� I I I P P P �
2 Ž .vector in � , representing a direction in the plane. We can write 3 as the

linear program

Ž . Ž . 114 max h k �	 subject to 	�V .�
	

The feasible polygon V is the same for every k, while the ascent direction of
Ž .the objective function, h k , changes with k. The direction corresponding to�

Ž .k�0 is h 0 . Then, for each successive k, the objective function is multiplied�

Ž � �. Ž . Žcoordinate-wise by � , � . Thus, as k increases, h k tilts gradually clock-I P �

. Ž .wise or counterclockwise depending on � . Finally, for very large k, h k is�

Ž �. k � Ž �. k �almost vertical. This is so since the ratio � 1�� � �� 1�� � tendsP P P I I I
to infinity as k tends to infinity.

Ž .Consequently, the optimal solutions to 4 form a path of vertices that moves
along the frontier of V. This path starts at a certain vertex corresponding to the

Ž .direction h 0 , and ends at the vertex where the patient player achieves her�

Ž .highest or lowest payoff depending on the sign of � . Note that if � is smallP
Ž .enough, the change in h k between consecutive stages is small. In this case,�

Žthe optimal path goes through all the vertices between the first and last one. No
.vertex is ever skipped.

Ž .For generic values of � , the maximum of h k �	 over the polygon V is�

attained at one vertex for any k. However, for some values of � , there are
periods k at which the maximum is attained over a whole facet of V. By
choosing different points on this facet, payoff can be transferred between the
two players at a fixed ratio, without violating optimality. In this case, F � itself
contains an entire facet, perpendicular to the direction � .12

To gain some intuition into the geometric structure of F �, consider again the
game ‘‘matching pennies.’’ We construct the Pareto frontier of F � as follows.

Ž . Ž .The point on the Pareto frontier that corresponds to �� � , � � 0, 1I P
Ž . Ž . Ž Ž . Ž .. Ž .north is �1, 1 . It is generated by the constant path, X k , Y k � �1, 1

Ž .for every k. This is also the optimal path for directions � close enough to 0, 1 .
As � tilts eastward, a direction, say, � , is reached where there are two pure1

Ž .action paths that maximize the problem in 2 . The first consists of playing
Ž . Ž .constantly �1, 1 , and the second consists of playing 1, �1 in the first period

Ž .and �1, 1 thereafter. The direction � is perpendicular to the first facet of1
� Ž . Ž .F . This facet corresponds to playing any mixture of �1, 1 and 1, �1 in the

11A centered dot, �, denotes the inner product of two vectors.
12 Ž Ž . Ž � � .. Ž .More formally, for a given facet of V whose vertices are x, y and x , y , let � k be the

Ž . Ž . Ž . Ž .value of � such that h k is perpendicular to that facet. That is, h k � x, y �h k �� Žk . � Žk . � Žk .
Ž � � . Ž . Ž Ž . Ž ..x , y . When solving for the optimal path corresponding to � k , we may let x k , y k be

Ž . Ž � � . Ž . Ž � � .any convex combination of x, y and x , y . If we let U , U and U , U denote the pairsI P I P
Ž . Ž � � . � Ž �. k �Ž � .of discounted payoffs corresponding to x, y and x , y , then U �U � 1�� � x�xI I I I

� Ž �. k �Ž � . Ž .Ž � . Ž .Ž � . Ž .and U �U � 1�� � y�y . This shows that � k U �U �� k U �U �h k �P P P P I I I P P P � Žk .
Ž � � . Ž . Ž � � .x�x , y�y �0, and that the length of the line segment connecting U , U and U , UI P I P
decreases with k.
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Ž .first period, and playing �1, 1 in all subsequent periods. Again, slightly shifting
Ž Ž .� eastward from � does not alter the optimal path playing 1, �1 in the first1

Ž . .period and �1, 1 thereafter . These values of � correspond to the next vertex
of the Pareto frontier. As � shifts further, the next facet is reached, which is
perpendicular to the direction � . This facet is generated by the paths consisting2

Ž . Ž .of 1, �1 in the first stage, any split in the second stage, and �1, 1 ever after.
This facet is shorter than the first, since the weight of the second period in each
player’s discounted payoffs’ sum is smaller than that of the first. Continuing to
move clockwise along the Pareto frontier, we encounter an infinite sequence of

Ž . Ž .facets, corresponding to longer prefixes of 1, �1 and shorter tails of �1, 1 .
The facets become unboundedly small, and converge to the east-most point of

Ž .the Pareto frontier 1, �1 .
The feasible set of the continuous time case, F 0, is found in a similar way.

� .Given a direction � , we solve a continuum of problems; for any t� 0, � ,

Ž . 0 Ž . Ž Ž . Ž .. Ž Ž . Ž ..5 max h t � X t , Y t subject to X t , Y t �V ,�
Ž . Ž .X t , Y t

0 Ž . Ž Ž . t Ž . t .where h t � � �log � � , � �log � � . The time axis divides into a� I I I P P P
� . � . � . Ž .finite number of intervals 0, t , t , t , . . . , t , � such that the solution to 5 is1 1 2 z

constant over each interval; a path of adjacent vertices of V is followed. While
F � is a polygon with an infinite number of facets, F 0 has a smooth frontier.
This is illustrated in Figure 1: The innermost polygon is the feasible set of the
stage-game, V. The intermediate polygon is the feasible set of the repeated

FIGURE 1.
The feasible sets F � and F 0 in the ‘‘prisoner’s dilemma.’’
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� Ž .game, F the parameters are � �0.5, � �0.05 and ��1 . The outermostP I
boundary is that of F 0.13

�Ž .F � may be viewed as an operator that transforms any given convex polygon
�Ž .B to a set F B , of all feasible repeated-game payoffs where the set of stage

�Ž .payoffs is B. Proposition 1 states that F B converges uniformly, from inside,
0Ž .to F B as ��0. Moreover, it is increasing and uniformly continuous in B.

PROPOSITION 1: Let B be a con
ex polygon of feasible stage-payoffs.
Ž . �Ž . 0Ž .a For any ��0, F B �F B ; and
Ž . 0 0Ž .b for any ��0 there exists ��0 such that for any f �F B and any ���,

� �Ž . � 0 � �there exists f �F B satisfying f � f �� .
Moreo
er, gi
en ��0 and con
ex polygons B and B�,
Ž . � � �� �c for any ��0, there exists d�0 such that if max min b�b �d,b� B b � B

� � �� �� �then max min f� f �� , andf � F ŽB . f � F ŽB .
Ž . � �Ž �. �Ž .d if B �B, then F B �F B .

PROOF: See Appendix.

By Proposition 1, the feasible set of the limit, continuous-time ‘‘game,’’
0 0Ž . Ž .F �F V , is an upper bound, and when � is small a good approximation of
� �Ž . 0F �F V . In particular, the Pareto frontier of F delineates the boundary of

all possible cooperative outcomes. An explicit formula of this frontier is pre-
Žsented in Proposition 2. This formula can easily be modified to the three other

0 .parts of the boundary of F .

PROPOSITION 2: Let B be a con
ex polygon of feasible stage-payoffs and denote
Ž . Ž . Ž .the 
ertices on the Pareto frontier of B as x , y , x , y , . . . , x , y , with x � ���0 0 1 1 l l 0

Ž . 0Ž .�x and thus y � ��� �y . The Pareto frontier of F B is the graph of the1 0 l
Ž .function U U :P I

1 r�1
r rŽ . Ž . Ž .U �y � x �U S whene
er � �U �� m�0 ��� l�1 ,P m m I m m I m�1

where

Ž .log �IŽ . Ž .i r� �1 ,Ž .log �P

13 Typically, F � is strictly inside F 0. This is so because points on the boundary of both, F � and
F 0, are generated by optimal divisions of the time axis between playing different vertices of V. In
the case of F �, these divisions are constrained to integer multiples of �. Since this constraint is

0 � Ž � 0 .typically binding, F typically exceeds F even the vertices of F do not touch F . An exception
Ž .is the case where the Pareto frontier of V has only two vertices. In this case, all the vertices on the

Ž . � 0Pareto frontier of F are on F .
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r
l�1 r�1y �yi�1 iŽ . Ž .ii S � x �x ,Ým i i�1 ž /x �xi i�1i�m

r
1� ry �ym� 1 m 14Ž . Ž .iii � �x , and � �x �S , m�0 ��� l�1 .0 0 m�1 m m ž /x �xm m�1

Ž .PROOF: See Lehrer and Pauzner 1997 .

To illustrate Proposition 2, we compute the Pareto frontier of the feasible set
of the prisoners’ dilemma game presented in Section 1. The vertices of the

Ž . Ž . Ž . Ž . Ž . Ž .Pareto frontier of V are x , y � 3, 0 , x , y � 2, 2 , and x , y � 0, 3 .0 0 1 1 2 2
�.02 �.01 Ž .2Assume, for example, that � �e and � �e . Hence, r�2, S �2 � 1�2I P 1

�1�2, and S �22 �1�2�9�2. Thus,0

� '2� 1�2 � 2�U , 0
U 
15�8,' I I�U �P �'9�2 � 3�U , 15�8
U 
3.' I I

One implication of Proposition 2 is the following. For any fixed payoff of the
impatient player, U , the patient player’s payoff U , approaches her highestI P
possible one, y , as the patience ratio, r, increases.15 In the limit, the players canl
jointly attain their maximal payoffs, x and y . In the repeated prisoners0 l

Ž .dilemma, for instance, they can attain payoffs close to 3, 3 .

4. THE SETS OF EQUILIBRIUM PAYOFFS

In this section we characterize the sets of Nash and subgame-perfect equilib-
rium payoffs. These equilibrium sets are closed and convex.16 Hence, they can
be characterized using the technique developed in the previous section. To find
the points on the boundary of the equilibrium set corresponding to a given
direction � , we solve a maximization problem similar to that used in the
characterization of the feasible set. However, additional constraints must be
added. A play path can be sustained by an equilibrium only if, at any stage, each
player’s continuation payoff is individually rational. This condition is clearly

Žnecessary. We later show that it is also sufficient for both Nash and subgame
.perfect equilibrium if the time � between any two consecutive stages is small

enough.
The additional constraints imposed on all continuation payoffs might render

the maximization problem too complicated. However, all play paths that solve

14 � �Notice that � �x , i.e., the formula covers the entire range U � x , x .l l I l 0
15 Ž .As r goes to infinity, r� 1� r goes to 1 and 1�r goes to 0. For any fixed U , S tends toI m

Ž .y �y . Thus, U �y �1 � y �y �y .l m P m l m l
16Convexity follows from the assumption that the players can use a continuous correlating device.

Closedness relies on the fact that the correlating device can be replaced by one that generates only a
Ž .finite number of signals. For the proofs, see Lehrer and Pauzner 1997 .
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the maximization problem share one property, which greatly simplifies our task:
along an optimal path, each player’s stream of payoffs is monotone. For

Ž Ž .example, along a Pareto-optimal path i.e., a path corresponding to �� � , �I P
.�0 , the stage-payoffs of the patient player are increasing, while those of the

impatient player are decreasing. Consequently, the large set of constraints
reduces to much simpler restrictions.

Along a Pareto-optimal path, the impatient player should never receive a
stage-payoff below his IR level. This is so because his stage-payoffs are decreas-
ing, and therefore, if one stage-payoff is below his IR level, so are all subsequent
payoffs and, as a result, also the corresponding continuation payoff. This means
that only stage-payoffs in V	IR can be used along a Pareto-optimal path.I

�Ž .Thus, the equilibrium set cannot exceed the Pareto frontier of F V	IR .I
As for the patient player, all the constraints on her continuation payoffs

reduce to one: that her overall repeated-game payoff be individually rational.
Since her stage-payoffs are increasing along a Pareto-optimal path, her continu-
ation payoffs are also increasing. Thus, if the initial one, U�, is individuallyP
rational, so are all the other continuation payoffs. Geometrically, this means

�Ž .that the Pareto frontier of F V	IR , intersected with IR , forms the ParetoI P
frontier of the equilibrium payoffs set.

Figure 2 illustrates the construction of the Pareto frontier of the equilibrium
set, for � close to 0, in three steps. By Proposition 1, when � is small enough,
F � can be replaced by its approximation, F 0.

Ž .FIGURE 2.
Constructing the Pareto frontier of the equilibrium set Nash or SP .
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The Pareto frontier of the equilibrium set corresponds to the directions
Ž . Ž . Ž�� � , � �0 northeast . There are three other cases: � �0, � �0 south-I P I P
. Ž . Ž .east , � �0, � �0 northwest , and � �0, � �0 southwest . In all cases, theI P I P

payoff streams to each player are monotone. However, whether they are
increasing or decreasing depends on the case. Consequently, the IR constraints
have to be treated differently in each case. We first characterize the Pareto

Ž .frontier of the equilibrium payoff sets Theorem 1 . This is the most interesting
part of the frontier from an economic point of view. Next, we explain the
difference between this construction and those pertaining to the three other

Ž .cases. We conclude with a full characterization Theorem 2 . We start with some
notation.

Given discount factors 1�� �� �0 and the time � between any twoP I
consecutive repetitions of the stage-game, denote:

E�: The set of Nash equilibrium payoffs of the repeated game.
SPE�: The set of subgame-perfect equilibrium payoffs of the repeated game.

�Ž .Recall that F B is the operator producing the set of feasible payoffs in the
repeated game when B is a polygon of available stage-payoffs. Finally, for two
sets in � 2, B and B�, we say that B
B� if for every b�B there exists b� �B�

such that b� weakly Pareto-dominates b or equals b.

THEOREM 1: For any ��0, there exists ��0, such that for any ���,

� � Ž � . � � � Ž .IR 	F V	IR 
SPE 
E 
IR 	F V	IR .P I P I

Theorem 1 says that the Pareto frontier of the equilibrium set E�, as well
as its subgame-perfect counterpart SPE�, are bounded between the Pareto
frontiers of two sets that are close to each other. By Proposition 1, an approxi-
mation to the Pareto frontier is obtained: as � becomes close to 0, the Pareto
frontier of the equilibrium set uniformly approaches, from inside, that of IR 	P

0Ž . 17F V	IR . In particular, Theorem 1 implies that if some point on the ParetoI
frontier of V is outside IR , then the repeated game’s equilibrium set, E�, doesI
not converge to the set of feasible and individually rational payoffs of the
repeated game, F �	IR.18 That is, not any feasible and individually rational
payoff of the repeated game can be sustained by an equilibrium. This is
impossible when both players have the same time preferences.

17 � �Ž � .Notice that the lower bound, IR 	F V	IR , may be empty for every ��0. In this case,P I
�Ž .the upper bound IR 	F V	IR must consist of points on the IR level of one of the player. ForP I

�Ž .4instance, in zero-sum games, the upper bound is the singleton set ir , ir . Since the equilibriumI P
set is not empty, it contains exactly that point.

18 Ž .To see why, recall that any Pareto-optimal point in any direction � is generated by a path that
Ž .ends at the vertex that gives the patient player her highest stage payoff see p. 399 . Eliminating this

vertex strictly reduces the optimum in any direction. If some point on the Pareto frontier of V is
outside IR , the highest vertex is eliminated when V is intersected with IR . Therefore, the ParetoI I

�Ž . �Ž .frontier of F V	IR is strictly dominated by that of F V .I
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PROOF OF THEOREM 1: The key to the left-side inequality is Lemma 1, which
states that the players’ payoffs along an optimal path are monotone.

LEMMA 1: Let B be a con
ex and compact set in � 2 and assume that
�Ž Ž . Ž ..4 �X k , Y k maximizes:k�0

�
� k � � k �Ž . Ž . Ž . Ž . Ž Ž . Ž ..� 1�� � X k �� 1�� � Y k s.t . �k , X k , Y k �B.Ý I I I P P P

k�0

Ž . Ž . Ž . Ž .Then, � Y k is weakly increasing and � X k is weakly decreasing.P I

PROOF: See Appendix.

� �Ž � .Let f be a Pareto-optimal point in IR 	F V	IR . The path generating fP I
solves a maximization problem as in Lemma 1, with � �0, � �0, andI P
B�V	IR�. By the lemma, the patient player’s payoffs are increasing along theI
path. Thus, for any stage k, each player’s continuation payoff is strongly

�Ž . �Ž .individually rational: U k � ir �� and U k � ir �� .I I P P
For � small enough, this path can be easily extended to a Nash equilibrium

Ž .for example, punishing deviations using trigger strategies . The extension to a
subgame perfect equilibrium is essentially the same as in the case of identical
discount factors; this is proved in Lemma 2.

LEMMA 2: For any ��0, there exists ��0 such that any payoff path, along
which all continuation payoffs are in IR�, can be extended to a subgame perfect
equilibrium when ���.

Ž .PROOF: See Lehrer and Pauzner 1997 .

By Lemma 2, f�SPE�. This proves the left-side inequality in the theorem.
The middle inequality is trivial, since SPE� �E�. To show the right-side
inequality, we have to take an equilibrium point f�E� and construct a point in

�Ž .IR 	F V	IR that Pareto dominates it. Recall that, along an equilibriumP I
path, all continuation payoffs are individually rational. For the patient player,
this is a stronger constraint than that pertaining to paths supporting points in

�Ž .IR 	F V	IR , since the latter only requires that her stage-0 continuationP I
payoff be individually rational. However, for the impatient player, the con-
straints associated with an equilibrium path are weaker than the requirement

Ž .that all stage-payoffs be impatient player individually rational. Lemma 3 helps
us overcome this obstacle.

�Ž Ž . Ž ..4 � � �Ž . �Ž .LEMMA 3: Assume that X k , Y k �V maximizes � U 0 �� U 0k�0 I I P P
�Ž . �Ž . Ž .subject to: �k, U k � ir , U k � ir . Suppose that � �0. Then �k, X k � ir .I I P P I I
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PROOF: See Appendix.

� ˆNow, let f be a Pareto-optimal point in E . There exists a point f that
ˆ ˆ �Ž . �Ž Ž . Ž ..4Pareto-dominates or is equal to f , such that the path X k , Y k k�0
Ž .generating it solves a maximization problem as in Lemma 3, with � , � �0.I P

ˆ ˆ �Ž . Ž .By the lemma, �k, X k � ir . Thus, f�IR 	F V	IR . This concludes theI P I
proof of Theorem 1. Q.E.D.

We now apply Theorem 1, together with the formula given in Proposition 2, to
find the Pareto frontier of the equilibrium set in the prisoner’s dilemma,

Ž .presented earlier. The vertices on the Pareto frontier of V	IR are: x , y �I 0 0
Ž . Ž . Ž . Ž . Ž . Ž .3, 0 , x , y � 2, 2 , and x , y � 1, 2.5 . Let r�2 as in Section 3 . The1 1 2 2

0Ž .Pareto frontiers of the equilibrium sets approach that of IR 	F V	IR ,P I
which is the graph of the function:

� '2� 1�4 2�U , 1
U 
17�16,' I I�U �P �'17�4 3�U , 17�16
U 
3.' I I

Figure 3 illustrates the Pareto-frontiers of the feasible set and of the limit
equilibrium set in the prisoner’s dilemma, for three different patience ratios.

We now extend Theorem 1 to the other three directions. Recall that, along a
Ž .Pareto-optimal path corresponding to � , � �0, the payoffs of the patientI P

player increase, whereas those of the impatient player decrease. This property
was key to the characterization of the Pareto frontier. Similar regularities
characterize the paths of payoffs that generate points on the other three
frontiers, as summarized in Table I.

19 There may be 0, 1, or 2 such players. If the number is 0, nothing is done at this step.

Ž .FIGURE 3.
Feasible sets and equilibrium sets Nash or SP in the ‘‘prisoner’s dilemma.’’
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TABLE I

Direction � � Impatient Player’s Payoff Patient Player’s PayoffI P

NE � � decreasing increasing
NW � � increasing increasing
SE � � decreasing decreasing
SW � � increasing decreasing

The construction of the frontier for the other directions is generalized in the
following way. First, we intersect V with the IR half-planes of the players whose
payoffs are decreasing along optimal paths in the given direction.19 This is done
because, for such players, if one stage-payoff is not individually rational, neither

0Ž .is the continuation payoff at that stage. Next, we apply the operator F � to
construct the feasible frontier for the repeated game. Finally, we intersect the
resulting set with the IR half-planes of the players whose payoffs are increasing.
This can be done because, for such players, if the initial present value is
individually rational, so are all continuation payoffs.

�Ž . �Ž .Let F B denote the frontier of F B corresponding to the direction D.D
� Ž . � Ž .I.e., F B is the Pareto-frontier, F B is the northwest frontier, etc. TheNE N W

above argument implies that the frontiers of the equilibrium sets converge,
0 Ž . Ž .as ��0, to the following curves: IR 	F V	IR Pareto frontier ,P NE I

0 Ž . Ž . 0 Ž . Ž .IR	F V northwest frontier , F V	IR southeast frontier , and IR 	N W S E I
0 Ž . Ž . 20F V	IR southwest frontier .SW P
We denote the limit equilibrium sets, i.e., the sets of payoffs that can be

sustained as equilibrium outcomes when the time between stages is short
enough, by E�� E� and SPE�� SPE�. Intuitively, these sets are the�� 0 �� 0
convex hulls of their four frontiers. More precisely, Theorem 2 states that the
interiors of E and SPE coincide, and equal the interior of W, which is the
convex hull of three sets: the northeast frontier, the northwest frontier, and the
Ž . 0Ž . 21convex set F V	IR which includes the other two frontiers. The proof of
Theorem 2 is tedious and has no further insight beyond that of Theorem 1. It is
therefore omitted.

Ž .THEOREM 2: Interior W �SPE�E�W, where

Ž 0 Ž . 0 Ž . 0 Ž ..W�con
ex hull F V	IR , IR 	F V	IR , IR	F V .P NE I N W

Ž .PROOF: See Lehrer and Pauzner 1997 .

20 The southwest frontier of the equilibrium set is simply that of V	IR. The reason is that the
southwest frontier of V is never in the interior of IR. This is because V must have at least one point
Ž . Ž .weakly Pareto-dominated by ir , ir . Such a point is obtained, for instance, when both players areI P
minimaxing each other.

21 0 Ž . 0Ž .To see why IR 	F V	IR �F V	IR , refer to footnote 20.I SW P
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5. CONCLUDING REMARKS

5.1. Con
ergence of Discount Factors to 1

In order to establish a folk theorem, one needs to have discount factors close
to 1. There are many converging paths of the two dimensional vector of discount

Ž .factors to the vector 1, 1 . Which path is the appropriate one?
Our interest is in players with differential time preferences. Therefore, we

need to retain the difference between the players while the discount factors
converge to 1. To do so, we consider specific players, with fixed time preferences,
and shorten the time between any two consecutive stages. The discount factors
� , representing the present value of payoff delayed by 1 time unit, are fixedj
throughout. The stage discount factors, i.e., the factors that represent the
difference in the valuation of payoff received at two consecutive stages, are � �.j
When � approaches 0, both stage discount factors converge to 1.

This approach is formally equivalent to taking a path of discount factors that
converges to 1 while keeping the patience ratio, r� log � �log � , constant. ThisI P
ratio measures the relative patience of the players: the impatient player values
one dollar received after one time unit as much as the patient player values one
dollar received after r time units. When the two players are very patient and
have a patience ratio r, the feasible set of the repeated game is close to the set
F 0 corresponding to that r.

5.2. The Stage Length and the Pareto Frontier

Consider a game in which the highest payoff of the patient in V is not in IR .I
Recall that, along a path generating a Pareto-optimal equilibrium payoff, the
stage-payoffs of the impatient player are decreasing, whereas those of the
patient player are increasing. Most importantly, at the tail of the path optimality
dictates that the patient player receive her highest possible payoff, subject to the
Ž .binding constraint that the payoff to the impatient player be at least � above
his IR level.

The minimal increment � is needed in order to make deviations nonprofitable
for the impatient player. It depends on the stage length �, since � determines
how much the player can gain from a one-stage deviation. Hence, � always
imposes an active constraint on equilibrium payoffs; as � shrinks, more stage-
payoffs can be used and, as a result, the whole Pareto frontier of the equilibrium

Ž .set Nash or SP is pushed further out. Such a tension between efficiency and
incentive compatibility does not exist in the case of identical discount factors,
where, once � is below some threshold, the only equilibrium payoffs that are
added when � is reduced further are those close to the IR levels. The reason is
that, when players have identical discount factors, a given Pareto-optimal
equilibrium payoff can be generated by playing that point at every stage. That is,
there is no need to use payoffs that are close to the IR level.
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5.3. Games with Incomplete Information

Our analysis is confined to games with complete information, where both
players know the stage-game played. The case of incomplete information is
significantly different. The following example shows that even when the stage-
game is zero-sum, the repeated game may have equilibria in which the sum of
payoffs is not zero.

Nature chooses, with equal probabilities, one of the following games:

1, �1 0, 0 0, 0 0, 0
.

0, 0 0, 0 0, 0 1, �1

The stage-game chosen is repeatedly played by two players, patient and
impatient, with discount factors close to 1 and 0, respectively. The impatient
player is informed about the game chosen, while the patient player knows only
the probabilities. The following strategies form an equilibrium. At the first stage,
the impatient player plays top or bottom according to the game played, and the
patient player mixes between left and right with equal probabilities. The players
receive expected stage-payoffs of .5 and �.5. At this point the impatient player’s
information is revealed, and the patient player secures a continuation payoff of
0. Since the discount factors are nearly 0 and 1, this equilibrium generates
repeated-game payoffs close to .5 and 0, the sum of which is not zero.

The reason why this phenomenon may occur is that when a player acts upon
her information, this information is partially revealed and the remaining game is
no longer the same as the original one. For more details, see Lehrer and Yariv
Ž .1995 .

5.4. n-Player Games

Section 4 provides a characterization of the equilibrium payoffs set only for
two-player games. Our analysis relies on the fact that, for any given ��� 2, the

Žpath generating an extreme point follows a simple one-dimensional curve e.g.,
.the Pareto frontier of V . Along the path, the players’ payoff streams are

monotone. In contrast, when there are more than two players, the sequence of
Ž n.extreme points of V corresponding to an �-optimal path ��� does not

have any monotonicity property. Consider, for example, a three-player game
Ž . Ž .with only two possible pure payoff combinations: a� 1, �1, 1 and b�

Ž . Ž .�1, 1, �1 players are ordered by their degree of patience . Some Pareto-opti-
mal paths consist of playing ‘‘a’’ during an initial period, switching to ‘‘b’’ for an
intermediate time, and coordinating again on ‘‘a’’ for the rest of the game. This
generates payoff streams that are not monotone. Therefore, our method fails in
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the n-player case. We leave open the problem of characterizing the equilibrium
payoffs in the general case.22
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APPENDIX : PROOFS

Ž . Žk�1.� t Ž �. k �PROOF OF PROPOSITION 1: Part a: Since �log � H � dt� 1�� � , every payoff ink �
�Ž . Ž . Ž Ž . Ž ..F B can be achieved in 4 by setting X t , Y t to be constant over intervals of the form

˜ ˜ ˜ ˜� Ž . . ŽŽ Ž . Ž .. ŽŽ Ž . Ž ..k�, k�1 � : Let X 1 , Y 1 , X 2 , Y 2 , . . . be the discrete path that generates some point in
� � ˜ ˜Ž . ŽŽ Ž . Ž .. ŽŽ Ž . Ž .. Ž .F B when evaluated by U . The path: X t , Y t � X k , Y k whenever k�
 t� k�1 �,

sustains the same point when evaluated by U 0.
�Ž . 0Ž .Part b: Since F B is convex it is sufficient to show that the frontier of F B can be uniformly

�Ž . 0Ž .approximated by points in F B . Thus, let f be a payoff vector on the frontier of F B . As
ŽŽ Ž . Ž ..explained in Section 3.2, there is a path X t , Y t , which is constant over the time intervals

� . � . � . Ž0, t , t , t , . . . , t , � , that generates f. l is, at most, the number of vertices on the corresponding1 1 2 l
.frontier of V.

˜ ˜ŽŽ Ž . Ž .. ŽŽ Ž . Ž .. Ž .For a given � define the discrete path X k , Y k � X k� , Y k� . As in part a , we extend
ˆ ˆŽ Ž . Ž ..the discrete path into a continuous-time path, X t , Y t , by setting it constant over intervals of the

˜ ˜ � ˆ ˆ 0� Ž . . ŽŽ Ž . Ž .. Ž Ž . Ž ..form k�, k�1 � . As before, X k , Y k , evaluated by U and X t , Y t , evaluated by U ,
yield the same payoff.

ˆŽ . Ž . � Ž . .The paths X � and X � differ from each other on at most l intervals k�, k�1 � , because
Ž . Ž �. k �there are l times when X � changes its value. Player j assigns a weight of 1�� � to eachj j

interval. Therefore, the difference between player j’s payoffs from the two paths is bounded by
Ž �. Ž .Ml 1�� where M is the maximal difference between stage payoffs . This bound tends to 0 as �j

0Ž . �Ž .goes to 0. Thus, any point on the frontier of F B can be approximated by points in F B when �
is sufficiently small.

We now show that the approximation is uniform. Suppose to the contrary that there is some
0Ž . �nŽ .��0, a sequence � �0 and a sequence f �F B such that for every n and f�F B , then n

0Ž . Ždistance between f and f is greater than � . Due to compactness of F B we may assume takingn
.a converging subsequence if needed that f converges to, say, f . We have shown that when � isn 0 n

�nŽ .sufficiently small, there exists a point f in F B whose distance to f is less than ��2. As f0 n
converges to f , the distance between f and f is less than � when n is large. This is a0 n
contradiction.

�Ž Ž . Ž .4 � Ž . �Ž .Part c: Let d���2 and let X k , Y k be the path that generates X, Y � f� f B .k� 0

22 Ž .In Lehrer and Pauzner 1996 , some partial results concerning the n-player case are obtained.
Briefly, it is shown that there always exist equilibrium payoffs that Pareto-dominate payoffs on the

Ž . Ž .Pareto frontier of V, unless i there is a mutual minmax action profile and ii the corresponding
payoff is on the Pareto frontier of V. Moreover, in the case where all the Pareto optimal points in V
are strongly individually rational, any Pareto optimal point in F � is an equilibrium payoff when � is
small enough.
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� �Ž �Ž . �Ž .4� �Since B is close to B, there is a path X k , Y k of payoffs in B such that for all k,k� 0
� �Ž . Ž . � � �Ž . Ž . �X k �X k �d and Y k �Y k �d. Since the repeated-game payoff to a player from a path

Ž � � .of stage-payoffs is a weighted average of the stage-payoffs, the repeated-game payoffs X , Y
� � � � � � Ž � � .generated by the new path satisfy X �X �d and Y �Y �d. This means the point X , Y �

� �Ž � . � � �f � f B satisfies f � f �2 d�� .
Part d: Trivial. Q.E.D.

�Ž . 0Ž .REMARK: Notice that although the sets F B converge to the larger set F B as ��0, this
convergence is not necessarily monotone: for fixed � �� , unless � is an integer fraction of1 2 1

�2Ž . �1Ž .� , F B is not always a subset of F B .2

PROOF OF LEMMA 1: Assume that k �k and consider the following modification of the path:2 1

ˆ ˆŽ Ž . Ž .. Ž Ž . Ž ..X k , Y k � X k , Y k for k	k , k1 2

ˆ ˆŽ Ž . Ž .. Ž Ž . Ž ..X k , Y k � X k , Y k ,2 2 1 1

ˆ ˆ Žk 2�k 1.� Žk 2�k 1.�Ž Ž . Ž .. Ž .Ž Ž . Ž .. Ž Ž . Ž ..X k , Y k � 1�� X k , Y k �� X k , Y k ,1 1 I 1 1 I 2 2

The impatient player’s valuation of the path is unchanged, while the patient’s one changes by
k �Ž Žk 2�k 1.� Žk 2�k 1.�.Ž Ž . Ž ..d�� � �� Y k �Y k . If the path is already a solution to the maximizationP P I 1 2

problem, the proposed modification must not increase the optimal value. In particular, � d has toP
k �Ž Žk 2�k 1.� Žk 2�k 1.�. Ž Ž . Ž ..be nonpositive. Since � � �� �0, we must have � Y k �Y k 
0.P P I P 1 2

Ž Ž . Ž ..A slightly different modification of the path yields � X k �X k �0. Q.E.D.I 1 2

ˆ ˆŽ .PROOF OF LEMMA 3: Assume to the contrary that there exists k such that X k � ir . Let k beI 0
ˆ � ˆ � ˆŽ . Ž . Ž Ž . Ž .the first k �k such that X k �1 �X k such k must exist since U k � ir , and U k is a0 0 0 0 I I I

ˆ ˆ ˆ �Ž . Ž . . Ž . Ž . Ž .weighted average of X k , X k�1 . . . . Since X k � ir , also X k � ir . However, since U kI 0 I I 0
�Ž . Ž �Ž . Ž �. Ž .� ir , we must have U k �1 � ir recall that U k is the weighted average 1�� X k �I I 0 I I 0 I 0

� �Ž .. �Ž .� U k �1 . Choose ��0 such that U k �1 � ir �� M, where M is the maximal differenceI I 0 I 0 I
between the impatient player’s payoff in V.

Consider now the following modification of the path,

ˆ ˆŽ Ž . Ž .. Ž Ž . Ž ..X k , Y k � X k , Y k for k	k , k �1,0 0

ˆ ˆŽ Ž . Ž .. Ž .Ž Ž . Ž .. Ž Ž . Ž ..X k �1 , Y k �1 � 1�� X k �1 , Y k �1 �� X k , Y k ,0 0 0 0 0 0

ˆ ˆŽ Ž . Ž .. Ž .Ž Ž . Ž ..X k , Y k � 1�� X k , Y k0 0 0 0

�Ž �.Ž Ž . Ž .. �Ž Ž . Ž ..��� 1�� X k , Y k �� X k �1 , Y k �1 .P 0 0 P 0 0

�Ž . �Ž . k 0 �Ž � �. Ž Ž .In the new path, U 0 is unchanged, while U 0 is increased by d��� � �� X k �1P I I P I 0
Ž .. Ž . Ž .�X k . Since X k �1 �X k we have d�0, and thus � d�0. To show that this contradicts0 0 0 I

the assumption that the original path is �-optimal, we only need to show that all continuation
ˆ ˆ ��Ž Ž . Ž ..4payoffs along the path X k , Y k are individually rational.k� 0

The impatient player’s constraints are satisfied since for k�k �2 his payoffs are unchanged, for0
�Ž . �Ž . Žk
k U k are increased, and U k �1 is at least ir because it has been reduced by no more0 I I 0 I
.than ��M . As for the patient player, her tail payoffs at stages k	k �1 are unchanged. Verifying0

�Ž . Ž . Ž .that U k �1 � ir is trivial in the case where Y k �1 
Y k . To prove that this is also theP 0 P 0 0
Ž . Ž . �Ž .case when Y k �1 �Y k , we show that U k �1 of the original path is strictly greater than0 0 P 0

�Ž . �Ž .ir , and choose small enough � to guarantee that both U k �1 and U k �1 remainP P 0 I 0
individually rational after the modification.
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�Ž . �Ž . Ž .Assume to the contrary that U k �1 � ir . Since U k �2 � ir , we have Y k �1 
 irP 0 P P 0 P 0 P
Ž �Ž . . Ž . Ž .recall that U k �1 is a weighted average of the two . Since Y k �1 �Y k we obtainP 0 0 0
Ž . �Ž . �Ž .Y k � ir , which implies that U k � ir . This violates the constraints and therefore U k �10 P P 0 P P 0

� ir . Q.E.D.P
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