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We study the structure of the set of equilibrium payoffs in finite games, both for Nash and correlated
equilibria. In the two-player case, we obtain a full characterization: if U and P are subsets of R2, then
there exists a bimatrix game whose sets of Nash and correlated equilibrium payoffs are, respectively, U
and P, if and only if U is a finite union of rectangles, P is a polytope, and P contains U. The n-player case
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and the robustness of the result to perturbation of the payoff matrices are also studied. We show that
arbitrarily close games may have arbitrarily different sets of equilibrium payoffs. All existence proofs are
constructive.
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. Introduction

This paper studies equilibrium payoffs of finite games, both
ash and correlated equilibria. It addresses the following ques-

ions: what are the possible Nash and correlated equilibrium
ayoffs of a finite game? Given the set of Nash equilibrium payoffs
f a game, what can we infer about its set of correlated equilibrium
ayoffs (and vice-versa)? And finally, for which subsets U and P of
n is there a game whose sets of Nash and correlated equilibrium
ayoffs are, respectively, U and P?

For bimatrix games, we fully answer these questions. First, a
ubset of R2 is the set of Nash equilibrium payoffs of a bimatrix
ame if and only if it is a finite union of rectangles.1 Second, any
olytope inR2 is the set of correlated equilibrium payoffs of a bima-
rix game (the converse is known). Third, for any finite union of
ectangles U and any polytope P ⊂ R2 containing U, there exists a
imatrix game whose sets of Nash and correlated equilibrium pay-
ffs are, respectively, U and P. This implies that for any bimatrix

ame G and any polytope P containing the Nash equilibrium payoffs
f G, there exists a game G′ with the same set of Nash equilibrium
ayoffs as G, and P as set of correlated equilibrium payoffs (even
hough P need not contain the correlated equilibrium payoffs of G).

∗ Corresponding author.
E-mail addresses: lehrer@post.tau.ac.il (E. Lehrer), eilons@post.tau.ac.il

E. Solan), viossat@ceremade.dauphine.fr (Y. Viossat).
1 To our knowledge, the “only if” direction was never formally stated before, but

t follows from standard results; the “if” direction is new.
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For n-player games, we obtain partial results. It is still true
hat any polytope in Rn is the set of Nash equilibrium payoffs of
n n-player game. Furthermore, for any n-player game G and any
olytope P ⊂ Rn containing the correlated equilibrium payoffs of G,
here exists a game with the same set of Nash equilibrium payoffs
s G, and P as set of correlated equilibrium payoffs. The structure
f the set of Nash equilibrium payoffs of n-player games is still
nknown.

The games that we use to prove these results are highly non-
eneric, and we therefore study the robustness of the results to
erturbations of the payoff matrices. Since almost all games have
finite set of Nash equilibria, the best one can hope to show is

hat, for any finite set U ⊂ Rn and any polytope P ⊂ Rn containing
, there exists an open set of n-player games whose set of Nash
nd correlated equilibrium payoffs are arbitrarily close to U and P,
espectively. This is indeed what we show.

Finally, we show that arbitrarily close games may have arbitrar-
ly different equilibrium payoffs. That is, for any n-player games

and G′, there are arbitrarily close games � and �′ such that �
nd �′ have the same Nash and correlated equilibrium payoffs as,
espectively, G and G′.

The remainder of this article is organized as follows. Section 2
ntroduces notation and definitions. In section 3 , the main results

re stated, and proved for bimatrix games. Section 4 studies the
obustness of the results to perturbations of the payoff matrices.
ection 5 shows that arbitrarily close games may have arbitrar-
ly different sets of equilibrium payoffs. Appendix A deals with
-player games.

dx.doi.org/10.1016/j.jmateco.2010.10.007
http://www.sciencedirect.com/science/journal/03044068
http://www.elsevier.com/locate/jmateco
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. Notation and definitions

Let G be an n-player game in strategic form with Sk being the
ure strategy set of player k. Let S := × 1≤k≤nSk and S−k := × j /= kSj.
layer k’s payoff function is uk : S → R. As usual, if s ∈ S, we may
rite s = (sk, s−k). A correlated equilibrium of G (Aumann, 1974, 1987)

s a probability distribution � on the set S of pure strategy pro-
les such that, for every player k ∈ {1, .., n} and every pure strategy

k ∈ Sk:

tk ∈ Sk,
∑

s−k ∈ S−k

�(sk, s−k)[uk(sk, s−k) − uk(tk, s−k)] ≥ 0. (1)

The set of correlated equilibria of G is a polytope, which contains
he Nash equilibria. An extreme correlated equilibrium is an extreme
oint of this polytope.

Let uk(�) :=∑ s∈S�(s)uk(s) denote the average payoff of player
in the correlated equilibrium �. We denote by CEP(G) the set of

orrelated equilibrium payoffs of G. That is, the set of n-tuples (u1(�),
. ., un(�)) where � is a correlated equilibrium of G. This is a poly-
ope in Rn. Similarly, NEP(G) denotes the set of Nash equilibrium
ayoffs of G. We sometimes write NE and CE for “Nash equilibrium”
nd “correlated equilibrium”, respectively. If A is a subset ofRn then
onv(A) denotes its convex hull. If B is a finite set, then |B | denotes

ts number of elements.
Throughout, when we write that a set is in Rn, we mean that it

s a subset of Rn, and when we say “game” we mean “finite game”.

. Main results

The main focus of this paper is the structure of CEP(G) and
EP(G). It is clear that for any game NEP(G) ⊆ CEP(G). The follow-

ng proposition states that any polytope P is the set of correlated
quilibrium payoffs for some G. Furthermore, G may be chosen so
hat P is the convex hull of the set of NE payoffs, NEP(G).

roposition 1. For any polytope P in Rn there exists an n-player
ame G such that CEP(G) = Conv(NEP(G)) = P.

roof. We prove the result for bimatrix games (see the Appendix
for the n-player case). Let P be a polytope in R2 and (x1, y1), . . .,

xm, ym) be its extreme points. Assume that for every i ∈ {1, 2, ..,
}, xi and yi are strictly positive. This is without loss of generality,

ecause adding a constant to all payoffs of a game does not change
ts Nash equilibria nor its correlated equilibria. Consider the m × m
ame with payoff matrix (aij, bij)1≤i,j≤m

such that, for every i in {1,
, . . ., m}, aii = ami = xi, bii = bim = yi, and all other payoffs are zero. For
= 4 this gives:

x1, y1 0, 0 0, 0 0, y1

0, 0 x2, y2 0, 0 0, y2

0, 0 0, 0 x3, y3 0, y3

x1, 0 x2, 0 x3, 0 x4, y4

⎞
⎟⎟⎟⎠ . (2)

Clearly, any diagonal cell corresponds to a pure Nash equilib-
ium. Furthermore, the last row (column) is a weakly dominant
trategy for the row (column) player, and it gives a strictly higher
ayoff than choosing row (column) i /= m whenever the column
row) player does not choose column (row) i. It follows that in every

orrelated equilibrium, the probability of every off-diagonal cell is
ero, hence there are no Nash equilibria or extreme correlated equi-
ibria other than the diagonal cells. Therefore, the set of correlated
quilibrium payoffs is equal to P. Note that the convex hull of the
et of Nash equilibrium payoffs is also equal to P. �

a
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emark. The game (2) is similar to the game used in (Viossat,
008) to show that the set of games with at most k Nash equilibria

s not open.

To state our next result, we first need a definition. A subset ofR2

s a rectangle if it is of the form [a, b] × [c, d], for some real numbers
, b, c, d, with a ≤ b, c ≤ d.

roposition 2.

a) In any bimatrix game, the set of Nash equilibrium payoffs is a finite
union of rectangles.

b) for any nonempty finite union of rectangles U, there exists a bima-
trix game whose set of Nash equilibrium payoffs is U and whose
set of correlated equilibrium payoffs is Conv(U).

c) for any bimatrix gameG , there exists a bimatrix game G′ such that
NEP(G′) = NEP(G) and CEP(G′) = Conv(NEP(G)).

roof. Proof of (a): Consider a bimatrix game with S1 and S2 being
he pure strategy sets. For any S′

1 ⊂ S1, S′
2 ⊂ S2 and any k in {1, 2},

enote by NEP(S′
1, S′

2) (resp. NEPk(S′
1, S′

2)) the set of payoffs (resp.
layer k’s payoffs) associated with Nash equilibria whose support

s S′
1 × S′

2 and denote by NEP(S′
1, S′

2) its closure. Since the set of best
esponses of player k to any fixed strategy profile of the other play-
rs is convex, and since the Nash equilibria of bimatrix games with
he same support are exchangeable,2 it follows that NEPk(S′

1, S′
2) is

n interval and that

EP(S′
1, S′

2) = NEP1(S′
1, S′

2) × NEP2(S′
1, S′

2).

herefore NEP(S′
1, S′

2) is either empty or a rectangle. Moreover,

EP =
⋃

S′
1
⊂S1,S′

2
⊂S2

NEP(S′
1, S′

2) =
⋃

S′
1
⊂S1,S′

2
⊂S2

NEP(S′
1, S′

2),

here the second equality holds because NEP is closed. Thus, NEP
s a finite union of rectangles.

Note that (a) also follows, with the same argument, from any
esult showing that the set of Nash equilibria of a bimatrix game
s a finite union of products C1 × C2 of convex subsets C1 of �(S1)
nd C2 of �(S2) such that equilibria in C1 × C2 are exchangeable.
n particular, (a) follows from the fact that the set of Nash equilib-
ia of a bimatrix game is a finite union of maximal Nash subsets
see Millham, 1974; Winkels, 1979; Jansen, 1981, and for recent
eferences, see von Stengel, 2002, and Avis et al., 2010, Proposition
).3

Proof of (b): Let m ∈N and for 1 ≤ i ≤ m, let ai, bi, ci, di be real
umbers. Let U =

⋃
1≤i≤m[ai, bi] × [ci, di]. Assuming w.l.o.g. that the

umbers ai, bi, ci, di are all positive, we build below a bimatrix game
ith U as set of Nash equilibrium payoffs and Conv(U) as set of

orrelated equilibrium payoffs. Consider first the game with payoff
atrices:

Ai, Bi) =
(

ai, ci bi, ci

ai, di bi, di

)
.

n this game, a player does not influence its own payoffs and the
et of Nash equilibrium payoffs is [ai, bi] × [ci, di]. Let

Ai, 0) =
(

ai, 0 bi, 0
ai, 0 bi, 0

)
, (0, Bi) =

(
0, ci 0, ci

0, di 0, di

)
,

2 We say that the two NE (p, q) and (p′ , q′) are exchangeable, if (p, q′) and (p′ , q)
re also NE.
3 We find our proof above more elementary than the one using the last statement.
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nd consider the game built by blocks:

(A1, B1) 0 .. 0 (0, B1)

0 (A2, B2) .. 0 (0, B2)

.. .. .. .. ..

0 0 .. (Am−1, Bm−1) (0, Bm−1)

(A1, 0) (A2, 0) .. (Am−1, 0) (Am, Bm)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

here an isolated 0 represents a 2 × 2 block of payoffs (0, 0). This
ame has the same structure as (2), where the payoffs xi and yi
ave been replaced by the blocks Ai and Bi, respectively. Any mixed
trategy profile with support in one of the blocks (Ai, Bi) is a Nash
quilibrium. Furthermore, it is easy to prove along the lines of the
roof of Proposition 1 that there are no other Nash equilibria and
hat the set of correlated equilibria is the convex hull of the set of
ash equilibria. It follows first, that the set of NE payoffs of (3) is
qual to U, which shows that any finite union of rectangles is the
et of NE payoffs of a bimatrix game; and second, that the set of CE
ayoffs of (3) is equal to Conv(U).

Proof of (c): Apply (b) with U = NEP(G), which is a finite union
f rectangles by (a). Note that G′ is not a transformation of G, but a
ransformation of a game having the same Nash equilibrium pay-
ffs as G. �

emma 3. Let (x1, x2, . . . , xn) ∈Rn. For any n-player game G, there
xists a n-player game with the same set of Nash equilibrium payoffs
s G and whose set of correlated equilibrium payoffs is the convex hull
f (x1, x2, . . ., xn) and of the set of correlated equilibrium payoffs of G.

roof. We prove the result in the two-player case. For the n-
layer case, Appendix A . Let G be a two-player m1 × m2 game and
x, y) ∈R2. Assume w.l.o.g. that x and y are strictly greater than 1 and
hat all the payoffs in G are positive. Consider the (3 + m1) × (3 + m2)
ame

(4)

here [x, 0] (resp. [0, y]) denotes a block of payoffs (x, 0) (resp.
0, y)) of appropriate size (same notation for player 2). The top-
eft block is similar to Moulin and Vial’s (1978) example of a game

ith a correlated equilibrium payoff that Pareto dominates all Nash
quilibrium payoffs. Let � denote the correlated strategy putting
robability 1/6 on every off-diagonal square of the top-left block,
nd probability 0 on every other square of the whole payoff matrix.
learly, � is a correlated equilibrium of �, with payoff (x, y), and
very correlated equilibrium of G induces a correlated equilibrium
f �. We claim that any correlated equilibrium of � is a convex
ombination of � and of a correlated equilibrium of G.

To see this, let � be a correlated equilibrium of �. Clearly,
12 ≥ �13, otherwise player 1 would have an incentive to deviate

rom his first to his last strategy (recall that all payoffs in G are
ositive). Repeating this reasoning with other strategies and with
layer 2 leads to the chain of inequalities

12 ≥ �13 ≥ �23 ≥ �21 ≥ �31 ≥ �32 ≥ �12.
ince the first and last terms are equal, this is a chain of equalities,
ence � puts equal weight on all off-diagonal squares of the top-

eft block. It is then easy to see that � puts probability zero on
he diagonal of the top-left block as well as on the top-right and

a

u
s
p

al Economics 47 (2011) 48–53

ottom-left blocks. This implies that � is a convex combination of
and of a correlated equilibrium of G, proving the claim.

It follows that (i) any CE payoff of � is a convex combination of
he payoff of � and of a correlated equilibrium payoff of G; and (ii)

and G have the same set of Nash equilibria, hence the same NE
ayoffs. This concludes the proof. �

roposition 4. For any n-player game G and for any polytope P ⊂ Rn

ontaining CEP(G), there exists a game G′ such that NEP(G′) = NEP(G)
nd CEP(G′) = P. If n = 2 the set P can be any polytope that contains
EP(G).

roof. Let P be a polytope containing CEP(G), with q extreme
oints. Applying iteratively Lemma 3 (q times), we obtain a game
ith the same NE payoffs as G and whose set of CE payoffs is the

onvex hull of P and CEP(G), hence is equal to P.
If n = 2, then by Proposition 2 there exists a game G′ with

EP(G′) = NEP(G) and CEP(G′) = Conv(NEP(G)). Applying the first
art of Proposition 4 to G′ gives the result. �

Propositions 2 and 4 imply the following: for any subsets U
nd P of R2, there exists a bimatrix game G such that U = NEP(G)
nd P = CEP(G) if and only if U is a finite union of rectangles, P is a
olytope, and P contains U.

emark. In Proposition 4, the proof of the stronger results for
imatrix games is indirect, in that the game G′ is not built by trans-
orming G, but by transforming a game that has the same Nash
quilibrium payoffs as G. This requires a good understanding of the
tructure of the set of Nash equilibrium payoffs of bimatrix games.
uch an understanding is lacking for n-player games, hence our
eaker results.

. Robustness

The games used above are highly non-generic. For instance, a
mall perturbation of the payoffs of (2) is enough to eliminate all its
ash and correlated equilibria but one. This raises the issue of the

obustness of our results. Ideally, to show that, for instance, Propo-
ition 4 is robust, one would like to show that for any nonempty
nite union of rectangles U and for any polytope P in R2 containing
, there exists an open set of games whose set of Nash equilibrium
ayoffs is “close” to U and whose set of correlated equilibrium pay-
ffs is “close” to P. This is hopeless however, since almost all games
ave a finite set of Nash equilibria. Thus, the best one can hope to
rove is the same result when U is a finite set. This is the object of
his section.

We first need some definitions. Let ε > 0. For any x in Rn, let
|x|| = max 1≤i≤n | xi |. Let A and A′ be subsets of Rn. Recall that A and
′ are ε-close in the Hausdorff distance sense if

x ∈ A, ∃x′ ∈ A′, ‖x − x′‖ < ε, (5)

nd

x′ ∈ A′, ∃x ∈ A, ‖x − x′‖ < ε. (6)

Let G be a finite game with payoff function uk for player k and let
> 0. The open ball of center G and radius ˛, denoted by B(G, ˛), is

he set of all games G′ with the same sets of players and strategies
s in G and such that |u′

k
(s) − uk(s)| < ˛ for every player k and every

ure strategy profile s, where u′
k

is the payoff function of player k
n G′. A set of games � is open if for every game G in �, � contains

n open ball of center G and positive radius.

Because the NE correspondence and the CE correspondence are
pper-semi-continuous, it follows that for every game G, and every
equence (Gn)n ∈N of games that converges to G, the limit sets of NE
ayoffs and CE payoffs of Gn as n goes to infinity are respectively
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ubsets of the sets of NE payoffs and CE payoffs of G. The following
roposition strengthens this observation.

roposition 5. Let U be a finite set in Rn. Let P ⊂ Rn be a polytope
ontaining U. For every ε > 0, there exists a nonempty open set of n-
layer games whose set of Nash equilibrium payoffs is ε-close to U and
hose set of correlated equilibrium payoffs is ε-close to P.

roof. We prove the result for bimatrix games. The proof for
-player games is similar (Appendix A). Let U = {(x1, y1), . . .,
xm, ym)}, let P ⊂ R2 be a polytope containing U, with vertices
x′

1, y′
1),. . .,(x′

q, y′
q). Assume w.l.o.g. that, for all i in {1, .., q}, xi and

i are positive, and x′
i

and y′
i

strictly greater than 1. For ˛ ≥ 0 let
˛ denote the m × m game with payoff matrix (aij, bij)1≤i,j≤m

such
hat: for every i in {1, 2, . . ., m}, aii = xi and bii = yi; for every i in {1,
, . . ., m − 1}, ami = xi − ˛ and bim = yi − ˛; and all other payoffs are
ero. For m = 4 this gives:

˛ =

⎛
⎜⎜⎜⎝

x1, y1 0, 0 0, 0 0, y1 − ˛

0, 0 x2, y2 0, 0 0, y2 − ˛

0, 0 0, 0 x3, y3 0, y3 − ˛

x1 − ˛, 0 x2 − ˛, 0 x3 − ˛, 0 x4, y4

⎞
⎟⎟⎟⎠ . (7)

hus, G0 is the game used in the proof of Proposition 1 and
EP(G0) = U. For every (x, y) in R2, let C(x, y) denote the game cor-

esponding to the top-left block of the game given in (4).

(x, y) =

⎛
⎝ 0, 0 x + 1, y − 1 x − 1, y + 1

x − 1, y + 1 0, 0 x + 1, y − 1

x + 1, y − 1 x − 1, y + 1 0, 0

⎞
⎠ . (8)

inally, let �˛ denote the following game:

here [x′
i
− ˛, 0] (resp. [0, y′

i
− ˛]) means a block of payoffs (x′

i
−

, 0) (resp. (0, y′
i
− ˛)) of appropriate size. �0 is a slight modification

f the game obtained from G0 by iterative applications (q times) of
he method of Lemma 3. Along the lines of the proof of Lemma 3,
t is easy to show that the Nash equilibria of �0 correspond to the
ash equilibria of G0 and that its extreme correlated equilibria are:

i) its Nash equilibria, and (ii) the probability distributions with
upport in one of the blocks C(x′

i
, y′

i
) and putting probability 1/6 on

very off-diagonal square of this block. It follows that NEP(�0) = U
nd CEP(�0) = P.

Moreover, for any ˛ > 0 small enough and any game � in B(�˛,
/2), every Nash equilibrium of �0 is a Nash equilibrium of �;

herefore,

(a0, b0) ∈ NEP(�0), ∃(a, b) ∈ NEP(�), ‖(a, b) − (a0, b0)‖ < 3˛/2 (9)

a closer look shows that we may replace 3˛/2 by ˛/2 in the RHS,
ut this is not needed). Finally, let ε > 0. By upper semi-continuity
f the Nash equilibrium correspondence, for ˛ > 0 small enough, for
ny game � in B(�0, 3˛/2),

(a, b) ∈ NEP(�), ∃(a , b ) ∈ NEP(� ), ‖(a , b ) − (a, b)‖ < ε. (10)
0 0 0 0 0

It follows from (9) and (10) that, for any ˛ > 0 small enough and
ny game � in B(�˛, ˛/2), NEP(�) and NEP(�0) are ε-close. The same
rgument (up to replacement of Nash equilibrium by correlated
quilibrium everywhere) shows that for every ˛ small enough and

o

al Economics 47 (2011) 48–53 51

or every game � in B(�˛, ˛/2), CEP(�) and CEP(�0) are ε-close.
ecalling that NEP(�0) = U and CEP(�0) = P, this completes the proof.

Note that, in the above proof, for every ˛ > 0 small enough, for
very game � in B(�˛, ˛/2):

(i) any Nash equilibrium of �0 is a strict Nash equilibrium
ii) any extreme correlated equilibrium of �0 is a strict correlated

equilibrium of � (a correlated equilibrium � is strict if for every
pure strategy si with positive marginal probability under �, the
inequalities in (1) are strict.)

Furthermore, taking convex hulls and because the set of strict
orrelated equilibria of a game is convex, (ii) implies that any cor-
elated equilibrium of �0 is a strict correlated equilibrium of �. It
ollows that for every finite set U in Rn, every polytope P contain-
ng U and every ε > 0, there exists an open set of games � such that:
rst, both the set of Nash equilibrium payoffs and the set of strict
ash equilibrium payoffs of � are ε-close to U; second, both the

et of correlated equilibrium payoffs and the set of strict correlated
quilibrium payoffs of � are ε-close to P.

Non pure equilibria For any (x, y) ∈R2, let MP(x, y) denote the
ame obtained by adding (x, y) to all the payoffs of Matching Pen-
ies:

P(x, y) =
(

x + 1, x − 1 x − 1, y + 1
x − 1, y + 1 x + 1, y − 1

)
his game has a unique Nash equilibrium (and also a unique cor-
elated equilibrium), and this equilibrium’s payoff is (x, y).

Using a similar construction as in the proof of Proposition 5, it
ay be shown that for any ε > 0, any polytope P inR2 and any finite

et U ⊂ P, there is an open set of bimatrix games such that for any
ame G in this set, NEP(G) and CEP(G) are, respectively, ε-close to
and P, and furthermore, none of the Nash equilibria of G is pure.

t suffices to replace the payoffs (xi, yi) by the 2 × 2 game MP(xi, yi)
nd the payoffs (xi − ˛, 0) and (0, yi − ˛) by blocks of such payoffs.
or instance, for U = {(x1, y1), (x2, y2)}, the equivalent of the game
˛ would be:

here [x1 − ˛, 0] and [0, y1 − ˛] denote 2 × 2 blocks of payoffs
x1 − ˛, 0) and (0, y1 − ˛), respectively.

An open question When ˛ > 0 is small, in the game G˛ that was
efined in the proof of Proposition 5, each (xi, yi)1≤i≤m is a pure NE
ayoff, and there are mixed NE payoffs that are close to (xi, yi)i /= m.
his is linked to the fact that in the game G0, the index of the equi-
ibria with payoffs (xi, yi)i /= m is zero. An interesting question4 is

hether one can find necessary and sufficient conditions on the
et U that would ensure the existence of a game G such that, the
et of NE payoffs of any perturbation of G is close to the set of NE
ayoffs of G, and, moreover, the number of NE payoffs of any per-
urbation of G coincides with the number of NE payoffs of G. Note
hat a necessary condition is that the number of equilibria be odd.

. Arbitrarily close games with arbitrarily far equilibrium
For ε > 0, two games G and G′ are ε-close if G′ belongs to the
pen ball of center G and radius ε, as defined in Section 4 . This

4 We thank an anonymous referee for raising this issue.
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ection shows that arbitrarily close games may have arbitrarily
ar sets of equilibrium payoffs. For any game G, let EP(G) = (NEP(G),
EP(G)).

roposition 6. Let G and G′ be two n-player games.

(a) For any ε > 0, there exist n-player games � and �′ that are ε-close,
and such that EP(�) = EP(G) and EP(�′) = EP(G′).

b) If NEP(G) ⊂ NEP(G′) and CEP(G) ⊂ CEP(G′), then there exists a
sequence of n-player games (�k)k ∈N that converges to a game
�, and such that EP(�k) = EP(G) for all k in N and EP(�) =
EP(G′).

roof. We first prove the result for bimatrix games. Let Sk and uk
resp. S′

k
and u′

k
) denote player k’s strategy set and payoff function

n G (resp. G′). Let u = (u1, u2) and u′ = (u′
1, u′

2) denote the joint pay-
ff functions in G and G′. Up to duplicating rows or columns in G
r G′, which does not affect equilibrium payoffs, we may assume
hat G and G′ have the same size: |S1| = |S′

1| and |S2| = |S′
2|. We

lso assume w.l.o.g. that all the payoffs in G and G′ are strictly
ositive.

Proof of (a): Let ε be a real number, which may be negative.
et �ε denote the game with payoff function vk and strategy set
1, . . ., | Sk | , | Sk | + 1, . . ., 2 | Sk | } for player k such that, letting v =
v1, v2): for every 1 ≤ i ≤ | S1 | and 1 ≤ j ≤ | S2 |, first, v(i, j) = u′(i, j)
nd v(i + |S1|, j + |S2|) = u(i, j), second, v(i + |S1|, j) = (u′

1(i, j) + ε, 0)
nd v(i, j + |S2|) = (u1(i, j) − ε, 0). The graphical description of this
ame appears below.

(11)

n (11), the notation (G′
1 + ε, 0) means a game of the same size as

′, and in which the payoffs of player 1 are as in G′, plus ε, and those
f player 2 are zero.

By iterative elimination of strictly dominated strategies, we
et that for every ε > 0, EP(�ε) = EP(G), and for every ε < 0,
P(�ε) = EP(G′). The result follows.

In the 3-player case, we may again assume that G and G′ have the
ame size, and the generalization of �ε is the 2 | S1 | × 2 | S2 | × | S3 |
ame such that for every 1 ≤ i ≤ | S1 |, 1 ≤ j ≤ | S2 | and 1 ≤ l ≤ | S3 |,
(i, j, l) = u′(i, j, l), v(i + |S1|, j + |S2|, l) = u(i, j, l), v(i + |S1|, j, l) =
u′

1(i, j) + ε, 0, 0) and v(i, j + |S2|, l) = (u1(i, j) − ε, 0, 0). The n-
layer case is similar.

Proof of (b): For ε ≥ 0, let �̃ε denote the 2 | S1 | × 2 | S2 | game
epicted below.

(12)

he payoffs are as in (11) with the following exception: letting
˜k denote player k’s payoff function and ṽ = (ṽ1, ṽ2), for every

≤ i ≤ | S1 | and 1 ≤ j ≤ | S2 |, ṽ(i, j + |S2|) = (0, u′
2(i, j)).

It follows from iterative elimination of strictly dominated strate-
ies that, for every ε > 0, EP(�̃ε) = EP(G); but, by a reasoning similar

o the proof of Proposition 1, NEP(�̃0) = NEP(G) ∪ NEP(G′) and
EP(�̃0) = Conv(CEP(G), CEP(G′)). In particular, if NEP(G) ⊂ NEP(G′)
nd CEP(G) ⊂ CEP(G′), then �̃0 and G′ have the same equilibrium
ayoffs. The result follows. The generalization to the n-player case

s as for point (a). �
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Together with Propositions 2 and 4 , Proposition 6 implies the
ollowing: for any polytopes P and P′ in R2, for any finite union
f rectangles U ⊂ P and U′ ⊂ P′, and for any ε > 0, there are ε-close
ames � and �′ such that EP(�) = (U, P) and EP(�′) = (U′, P′).
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ppendix A. Proofs of Lemma 3 and Propositions 1 and 5 in
he n-player case

roof of Lemma 3. Let G be a three-player game and let
x, y, z) ∈R3. Assume w.l.o.g. that x and y are strictly greater than
, and that the payoffs in G are positive. Let C(x, y, z) denote the
× 3 × 1 game (player 3 is a dummy) where player 1 chooses a

ow, player 2 chooses a column, the payoffs of players 1 and 2 are
s in (8), and the payoff of player 3 is always z.

(x, y, z) =
(

0, 0, z x + 1, y − 1, z x − 1, y + 1, z
x − 1, y + 1, z 0, 0, z x + 1, y − 1, z
x + 1, y − 1, z x − 1, y + 1, z 0, 0, z

)
. (13)

et � be the following three-player game. The pure strategy set of
ach player k is S′

k
� Sk (disjoint union), where Sk and S′

k
are respec-

ively the pure strategy set of player k in G and in C(x, y, z). If for
very k, player k chooses a strategy in Sk (resp. S′

k
), then the pay-

ffs are as in G (resp. as in C(x, y, z)). If there exist players i and l
uch that k chooses a strategy in Sk and l a strategy in S′

l
, then the

ayoff of player 1 (resp. 2, 3) is x (resp. y, z) if he chooses a strat-
gy in S1 (resp. S2, S3) and 0 otherwise. The game is thus of size
3 + | S1 |)× (3 + | S2 |)× (1 + | S3 | ).

The graphical description of the game appears in (14), when
3 = {s3, t3}, i.e. player 3 has two pure strategies in G. The top rows
resp. left columns, left matrix) correspond to pure strategies in
′
1 (resp. in S′

2, in S′
3), while the bottom rows (resp. right columns,

iddle and right matrices) correspond to pure strategies in S1 (resp.
n S2, in S3).

(14)

n (14), G(s3) (resp. G(t3)) denotes the payoffs of G when player 3
hooses s3 (resp. t3). The bracket [x, 0, 0] denotes a | S1 |×3 block of
ayoffs (x, 0, 0). The notation [0, y, 0], [0, 0, z], [0, y, z], [x, y, 0] and
x, 0, z] should be interpreted analogously.

The same proof as in the two-player case shows that � has the
ame set of NE payoffs as G and that its set of CE payoffs is the
onvex hull of (x, y, z) and of the set of CE payoffs of G.

In the n-player case, the generalization of C(x, y, z) simply con-
ists in adding more dummy players with constant payoff. The
eneralization of � should be clear from the verbal description of
he three-player case. �
roofs of Propositions 1 and 5. Proposition 1 can be proved by
xing a polytope P and applying Proposition 4 to a game with con-
tant payoffs included in P. This is also true for bimatrix games.
owever, it is more instructive to provide a direct proof. Let U = {(xi,

i, zi), 1 ≤ i ≤ m} and let P be the convex hull of {(x′
i
, y′

i
, z′

i
), 1 ≤ i ≤ q}.
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ssume w.l.o.g. that xi, yi, zi and z′
i
are positive, and x′

i
and y′

i
strictly

reater than 1, for all i. Let G˛ denote the m × m × 1 game obtained
rom the game described above Eq. (7) by adding a dummy player
ith payoffs z1, . . ., zm on the diagonal, and 0 elsewhere. For m = 4

his gives:

˛ =

⎛
⎜⎜⎜⎝

x1, y1, z1 0, 0, 0 0, 0, 0 0, y1 − ˛, 0

0, 0, 0 x2, y2, z2 0, 0, 0 0, y2 − ˛, 0

0, 0, 0 0, 0, 0 x3, y3, z3 0, y3 − ˛, 0

x1 − ˛, 0, 0 x2 − ˛, 0, 0 x3 − ˛, 0, 0 x4, y4, z4

⎞
⎟⎟⎟⎠ .

The same argument as in the two-player case shows that the
ash equilibria of G0 are equal to its extreme correlated equilibria
nd correspond to the diagonal squares. It follows that NEP(G0) = U
nd that CEP(G0) is the convex hull of U. This proves Proposition 1 in
he three-player case (for the n-player case, just add more dummy
layers).

Now recall (13) and let G′ denote the following 3q × 3q × 1 game
ith block diagonal payoff matrix

′ =

⎛
⎝ C(x′

1, y′
1, z′

1) 0
. . .

0 C(x′
q, y′

q, z′
q)

⎞
⎠ .

et x, y, z be positive real numbers. Let �˛ denote the following

3q + m) × (3q + m) × 2 game:

V

W

al Economics 47 (2011) 48–53 53

This should be read as follows: if player 1 chooses row i > 3q
nd player 2 chooses column j ≤ 3q with 3p + 1 ≤ j ≤ 3p + 3, then the
ayoffs are (x′

p − ˛, 0, 0) if player 3 chooses the left matrix and (x,
, z) if player 3 chooses the matrix on the right.

Fix ε > 0 and assume that P contains U. The same arguments as
n the two-player case show that, for every ˛ small enough, and
or every game � in B(G˛, ˛/2), NEP(�) is ε-close to U and CEP(�) is
-close to P. The n-player case is similar. This proves Proposition 5.
ote that, instead of C(x, y, z), �, G˛, �˛, and their n-player versions,

t is possible to use games in which the roles of the players are
ymmetric (no dummies), but this is less parsimonious. �
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