
Journal of Mathematical Economics 46 (2010) 393–399

Contents lists available at ScienceDirect

Journal of Mathematical Economics

journa l homepage: www.e lsev ier .com/ locate / jmateco

A note on the evaluation of information in zero-sum repeated games�

Ehud Lehrera,b, Dinah Rosenbergc,d,∗

a School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
b INSEAD, Bd. de Constance, 77305 Fontainebleau Cedex, France
c HEC department of economics and decision sciences, 1, rue de la libération Jouy en Josas, France
d Laboratoire d’Econométrie de l’Ecole Polytechnique, Paris, France

a r t i c l e i n f o

Article history:
Received 9 March 2006
Received in revised form 19 August 2007
Accepted 21 February 2010
Available online 12 March 2010

Keywords:
Repeated games
Zero-sum games
Value-of-information

a b s t r a c t

Two players play a zero-sum repeated game with incomplete information. Before the game
starts one player receives a private signal that depends on the realized state of nature. The
rules that govern the choice of the signal are determined by the information structure of the
game. Different information structures induce different values. The value-of-information
function of a game associates every information structure with the value it induces. We
characterize those functions that are value-of-information functions for some zero-sum
repeated game with incomplete information.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In Bayesian games with information structures players have a prior distribution of and receive a partial information on
the game actually played. This information affects the players’ posterior distribution and thereby the equilibrium payoffs of
the game.

An outside observer, who does not observe the prior distribution nor the players’ actions, collects data about the outcomes
associated with different information structures. The question arises as to which observations can refute the model of rational
players playing a Bayesian game. This issue was first addressed by Gilboa and Lehrer (1991) who dealt with a decision maker
who knows the cell of a partition containing the realized state (as in Aumann, 1976). We consider a similar question in
the framework of repeated zero-sum games with incomplete information that were introduced and studied by Aumann
and Maschler (1995). The first advantage of zero-sum games is that they have a unique equilibrium payoff, the value. The
second advantage is that in these games receiving more information can never be harmful. The latter property is particular
to zero-sum games, as shown first by Hirshleifer (1971) and later by Kamien et al. (1990) and Bassan et al. (1999). Gossner
and Mertens (2001) compared different information structures in zero-sum repeated games with incomplete information.

Prior to starting the game one player is informed of the cell of a partition that contains the realized state. Different
partitions induce different repeated games and typically result in different values. We called a value-of-information func-
tion the one that associates partitions with the corresponding values in the induced Bayesian games. We prove that any
monotonic function over partitions is a value-of-information function of some repeated game with incomplete information
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on one side. Hence, essentially no observed outcomes with respect to information can disprove the assertion that agents
are Bayesian rational. This result stands in sharp contrast to one-player decision problems where an additional condition
beyond monotonicity is needed.

A companion paper (Lehrer and Rosenberg, 2006) deals with value-of-information functions of one-shot zero-sum games.
While in one-shot games it is always optimal to use all available information, in repeated games a full use of the information
can be sub-optimal. One might therefore expect that receiving more information in repeated games is less beneficial than
in one-shot games and that the impact of information on the value in one-shot games and in repeated games is different. It
turns out that this intuition is misleading and the sets of the value-of-information functions for one-shot and repeated games
coincide. While the problems treated here and in Lehrer and Rosenberg (2006) are similar, the proofs in the two papers use
totally different techniques.

The proof uses a few properties of the value function of one-shot zero-sum Bayesian games in which players know only
the prior.1 As a by-product we characterize these functions in the case of two states and leave the general problem open.

This paper is organized as follows. The next section presents the model of information structures in repeated games with
one-sided information. Section 3 describes the main result. A sketch of the proof is given in Section 4, and the paper ends
with final comments and open problems.

2. The model

2.1. Information structures

We consider two-player games with incomplete information. A state k is randomly selected from a finite state space K
according to a common prior p. One-sided partitional information structure (or simply information structure) is represented
by a partition Q of the set K. Denote by Q(k) the cell of Q that contains k. When k is realized, player 1 gets to know Q(k) and
player 2 knows nothing about k beyond the prior p. Note that any game has finitely many partitional information structures.

2.2. The repeated game

The n-stage game with one-sided information, denoted by �n(p,Q), is defined by an integer n, an information structure
Q, a probability p over K, a finite set of actions for each player i ∈ {1, 2}, Ai, and a payoff function g from K × A1 × A2 to the
reals. The payoff associated with (k, a1, a2) is denoted by gk(a1, a2).

The game is played as follows: At stage 0, nature chooses an element k of K with probability p, player 1 is then informed
of Q(k). The game is played in n stages. At stage m = 1, . . . , n, players 1 and 2 simultaneously choose actions according to
probability distributions that may depend on the history of previous actions and signals. If the realized state is k and the
pair of chosen actions is (am

1 , am
2 ) the payoff at stage m is gk(am

1 , am
2 ). The pair of chosen actions (and not the payoff) is then

announced to both players and the game proceeds to the next stage. The payoff in �n(p,Q) is the expected average of the
n-stage payoffs received during the game.

A behavior strategy of player 1 is a sequence �1 = (�1
1 , �2

1 , . . . , �m
1 , . . .), where �m

1 is a function from his information at stage

m,Q × (A1 × A2)m−1 to the set2�(A1) of probability distributions over his set of actions. A behavior strategy of player 2 is a
sequence �2 = (�1

2 , �2
2 , . . . , �m

2 , . . .), where �m
2 is a function from his information at stage m, (A1 × A2)m−1 to the set �(A2).

When applied to the game �n(p,Q), all �m
i

, m > n, are payoff irrelevant.
The probability distribution p, the partition Q and the pair of strategies �1, �2 induce a probability over the set of histories

of length n, Hn = K × (A1 × A2)n. The expectation with respect to this probability will be denoted byEp,Q
�1�2

or simply byEwhen
no confusion can arise. If the players use the strategies �1, �2, the associated payoff in the n-stage game is �Q

n (�1, �2, p) =
E

p,Q
�1�2

[1/n
∑n

m=1gk(am
1 , am

2 )]. This is the expected average payoff received along the n stages of the game.
The game �n(p,Q) is a finite game and therefore, by the minmax theorem, has a value denoted by vQn (p, (gk)k ∈ K ). The

following proposition whose proof is omitted states that this sequence converges.

Proposition 1. The sequence vQn (p, (gk)k ∈ K ) has a limit denoted by vQ(p, (gk)k ∈ K ).

The function vQ(p, (gk)k ∈ K ) will be referred to as the long-run value of the game. This is an approximation of the equi-
librium payoff in long games. A long duration of the games implies that player 1 might want to limit his use of available
information because it may give a relative informational advantage to player 2. Excessive use of information can increase
player 1’s payoffs in the short-run but might be harmful to him in the long run.

1 See Aumann and Maschler (1995) and Mertens and Zamir (1971).
2 Throughout this paper �(X) denotes the set of probability distributions over a set X.
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2.3. Value-of-information functions

We focus on the long-run value of the game viewed as a function of the information structure. In the one-sided information
case, let (gk)k ∈ K be a payoff function and let p be a distribution over K. When the information is given through Q the value
of the induced game is denoted vQ(p, (gk)k ∈ K ).

Definition 1. A function f defined over all partitions of K is the value-of-information of an incomplete information game with
one-sided information and partitional information structure if there exist (i) a distribution p over K and (ii) payoff functions
(gk)k ∈ K such that for any partition Q over K, f (Q) = vQ(p, (gk)k ∈ K ).

3. The result

Describing the properties that value-of-information functions must owe in repeated zero-sum games is the main theme
of this note. Since in zero-sum games it is always beneficial for a player to have more information, the following monotonicity
condition is clearly necessary for a value-of-information function.

Definition 2. A function v from the set of partitions of a finite set K to the real numbers is said to be monotonic if for any
two partitions Q and Q′, the fact that Q refines Q′ (i.e., for any T ∈Q there is an T ′ ∈Q′ such that T ⊂ T ′) implies v(Q) ≥ v(Q′).

The following theorem states that this condition is also sufficient.

Theorem 1. Let V be a function from the set of partitions of K to the real numbers. The function V is a value-of-information
function of a repeated game with state space K, one-sided information, and partitional signaling if and only if it is monotonic.

The sketch of the proof of this theorem is given in Section 4 and a detailed proof is postponed to the Appendix A.
The main implication of this theorem is that even when one takes into account the strategic use of information the

Bayesian paradigm imposes no restriction on value-of-information functions beyond monotonicity. It implies, for instance,
that there is no restriction on the first derivative of the value, which could mean that the effect of a fixed addition of
information on the value may go down or up with the information that already exists.

Lehrer and Rosenberg (2006) proved that the same characterization holds for one-shot games. Therefore, repetition does
not affect the set of value-of-information functions, although it might affect the value of a particular game.

4. The proof

In this section, we provide a sketch of Theorem 1’s proof. An elaborate proof of this theorem is deferred to Appendix A.
The proof employs a few tools that will be described in the following subsections.

4.1. The one-shot game

The first tool we need is the value of the one-shot Bayesian game.
Suppose that p = (pk) ∈ �(K). The value of the one-shot Bayesian game with null information (i.e., no player obtains

additional information about the realized state beyond the prior p) is denoted u(p). Formally,

Notation 1. u(p) is the value of the game defined by the action sets A1, A2 and the payoff
∑

k ∈ K p(k)gk(a1, a2), when the
pair of actions (a1, a2) is played.

This function also plays a central role in the theory of repeated games with incomplete information (see Aumann and
Maschler, 1995).

Definition 3. A function u defined on �(K) is realizable if there are games Gk, k ∈ K , with the same action sets and payoff
functions gk, such that the value of Ḡ(p) = ∑

k ∈ K p(k)Gk is u(p) for every p in �(K), where Ḡ(p) is the game with the same
action sets and payoff function

∑
k ∈ K p(k)gk.

The proof of Theorem 1 relies on the fact that the set of realizable functions is large. Mertens and Zamir (1971)
proved that the set of realizable functions is dense in the set of continuous functions. This is not sufficient for our
purposes since we need a precise realization and not merely an approximation. The following proposition is what we
need and is specific to repeated games in which the long-run value is characterized by the value of the game with no
information.3

3 It is worth emphasizing that the proof of the main result hinges on Proposition 2 which bears no relation to the proof of a similar result for one-shot
games that builds on Gilboa and Lehrer (1991).
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Proposition 2.

(i) Given a finite number of pairs (x�, y�) ∈ �(K) × IR, � = 1, . . . , L, there is a realizable function u such that u(x�) = y�,
� = 1, . . . , L.

(ii) If C1 is finite, C2 is a union of closed polygons, C1 ∩ C2 = ∅ and c1 and c2 are two numbers such that c1 > c2, then there
is a realizable function u that satisfies u(x) ≤ c2 when x ∈ C2, u(x) = c1 when x ∈ C1, and u(x) ≤ c1 otherwise.

(iii) Let C1 and C2 be two disjoint closed semi-algebraic sets, and f1 and f2 two realizable functions. Then, there is a realizable
function u that satisfies u(x) = f1(x) when x ∈ C1, and u(x) = f2(x) when x ∈ C2.

4.2. The long-run value

Let f be a real-valued function defined on �(K) and cav(f ) the minimal concave function which is greater than or equal
to f. For a partition Q and B ∈Q let p(B) =

∑
k ∈ Bp(k). Denote by �p(·|B) the conditional probability over K , given B ⊂ K (i.e.,

�p(k|B) = p(k)/p(B), ∀k ∈ B).

Notation 2. For a partition Q denote by M(Q) the set of matrices M = (miB)i ≤ D
B ∈Q

with D lines (D can be any positive integer)

and |Q| columns such that for any i, B, miB ≥ 0, and for any B,
∑

i≤DmiB = p(B). For such a matrix we denote by mi the quantity∑
B ∈QmiB, and by pi(M) the probability distribution over K defined by

pi(M)(k) =

∑
B ∈Q

miB�p(k|B)

mi
.

The following proposition extends Aumann and Maschler (1995) that states that when player 1 is fully informed of k the
long-run value is cav(u)(p).

Proposition 3. The value of the game with one-sided information is

vQ(p, (gk)k ∈ K ) = max

{∑
i≤D

miu(pi(M))|M ∈M(Q)

}
. (1)

The concavification of u can also be defined as cav(u)(p) = max{
∑

i≤Dmiu(pi)|mi ≥ 0,
∑

imi = 1,
∑

imipi = p}. Proposition
3 states that the long-run value is the maximum over a smaller class of possible (mi, pi), i ≤ D. In other words, vQ(p, (gk)k ∈ K )
is a kind of a local concavification of the function u.

4.3. A sketch of the proof of Theorem 1

Let V be a monotonic function of partitions. Our goal is to construct a game for which the long-run value associated with
the partition Q is equal to V(Q). To this end we construct a realizable function u such that V(Q) = vQ(p, (gk)k ∈ K ) as defined
by Eq. (1).

Let p be the uniform probability (1/|K |, . . . , 1/|K |). Note that in order to prove that V is a value-of-information function
we need the existence of a probability p, which can therefore be chosen to be the uniform one. A probability distribution over
the state space is represented by a point in the simplex. A subset B of K is represented by the point in the simplex associated
with the conditional probability �(·|B). A partition is represented by a linear subspace, denoted by H(Q), spanned by �(·|B),
where B runs over all the cells of the partition. Note that H(Q) ⊂ H(Q′) if and only if Q′ refines Q. Note, moreover, that for
every partition Q, p ∈ H(Q) (see the figure below).

To satisfy Eq. (1) it is sufficient to find u that satisfies the following two conditions: (i) If Q′ refines Q, then u is less than
or equal to V(Q′) on H(Q); and (ii) for each partition Q there exist points p1, . . . , p|Q| in H(Q), such that u(p�) = V(Q) and p
can be written as a convex combination of p1, . . . , p|Q|. Such a realizable function exists by Proposition 2.

The following figure illustrates the case of K = {1, 2, 3}. The partition Q = {1, 2, 3} is represented by the 0-dimensional
space H({1, 2, 3}), which is the center of the triangle, denoted in the figure as {1, 2, 3}; the partitions of K into two sets are
represented by lines and H({{1}, {2}, {3}}) is the whole simplex. The points marked ∗ are on H({{1}, {2, 3}}) and the center of
the triangle is a convex combination of them.
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The detailed proof, provided in the appendix, shows that if V is monotonic, then there is a realizable function u such that
the value u attains at the center is less than or equal to V({{1}, {2, 3}}), while the values u attains at the points marked ∗ are
equal to it.

5. Comments and open problems

5.1. General information structures

The main theorem discusses partitional structures. It would be interesting to study value-of-information functions defined
over more general signaling structures.

5.2. Repeated games with lack of information on both sides

The model studied here can be extended to situations where player 1 is informed through a partition P and player
2 through a partition Q. Mertens and Zamir (1971) proved the existence of the long-run value of the game (denoted by
vP,Q(p, g)) in this case (defined as the limit of the values of n-stage games as n goes to infinity, or of �-discounted games as
� goes to 0). Characterizing the value-of-information functions in this case is an open problem.

5.3. The general null information case

Null information is the case where player 2 gets no information at all on the state. One can fully characterize the value
of games with null information and only two states. Indeed, along the same lines as the one provided in the appendix, one
can prove that when there are two states, if f is a real polynomial that does not vanish, then 1/f is realizable. This in turn
implies that a function is realizable if and only if it is piecewise rational.

In the case of more than two states we could prove that every polynomial is realizable, and that, for every continuous and
piecewise rational function q and every ε > 0, there is a realizable function u that coincides with q over a set that occupies
(in the sense of Lesbegue measure) 1 − ε of �(K). We conjecture that every continuous and piecewise rational function over
�(K), as in the two-state case, is realizable.

Appendix A.

The proof of Proposition 2 is broken into three parts, one for each item.
Proof of Proposition 2 (i)

Lemma A.1. If u and v are realizable, then so is min(u, v).

If the game G1, . . . , G|K | realizes u and G′
1, . . . , G′

|K | realizes v then the following two stage game realizes min(u, v): = player
2 first chooses action L or R, player 1 sees the choice and then the game is G1, . . . , G|K | if the choice was L and G′

1, . . . , G′
|K | if

it was R.

Lemma A.2. If u is realizable, then so is u2.

Proof. If u is realizable by the game G1, . . . , G|K |, then the game whose i-th matrix game is

(
Gi 0
2Gi − 1 Gi

)
realizes u2. �

Lemma A.3. Any polynomial is realizable.

Proof. Mertens and Zamir (1971) showed that if u and v are realizable then so is u + v. By Lemma A.2, (u + v)2 is also
realizable as are u2 and v2. Therefore, uv = 1

2

(
(u + v)2 − u2 − v2

)
is also realizable.
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Moreover, any constant function is realizable. The game G1, . . . , G|K | all of whose matrices are identically 0, except for
the i-th one which is identically 1, realizes the polynomial fi(p) = pi. Any polynomial is therefore realizable by iteratively
adding and multiplying constants and the polynomials fi. �

Proposition 2 (i) follows from the fact that for every (x�, y�) ∈ �(K) × IR, � = 1, . . . , L, there is a polynomial u such that
u(x�) = y�, � = 1, . . . , L.

Proof of Proposition 2 (ii)

Lemma A.4. Let C be a closed semi-algebraic set. Then there is a realizable function u that satisfies u(x) ≤ 0 when x ∈ C, and
u(x) > 0, otherwise.

Proof. Let D be a set of the form

{x ∈Rk; f1(x) = f2(x) = . . . = f�(x) = 0, r1(x) ≥ 0, r2(x) ≥ 0, . . . , rm(x) ≥ 0},

where f1, . . . , f�, r1, . . . , rm are polynomials. By Proposition 3, f1, . . . , f�, r1, . . . , rm are realizable and by Mertens and Zamir
(1971), uD = min{f1, . . . , f�, −f1, . . . , −f�, r1, . . . , rm} is realizable. Clearly, uD(x) ≥ 0 when x ∈ C and uD(x) < 0, otherwise.
Since any closed semi-algebraic set is a finite union of such D’s (see, Bochnak et al., 1988, p. 46), the desired u is u =
− max {uD}D, which is also realizable. �

A union of closed polygons is a closed semi-algebraic set. By Lemma A.4, there is a realizable function u which is less
than or equal to 0 on C2 and greater than 0 otherwise. Let c be the minimum of u over the set C1. By multiplying u with the
constant c1 − c2/c and adding c2 one obtains a realizable function u′ that satisfies u′(x) ≤ c2 when x ∈ C2 and u′(x) ≥ c1 when
x ∈ C1. Taking the minimum of u′ and c1 would yield the realizable function needed for Proposition 2 (ii).

Proof of Proposition 2 (iii) By Lemma A.4, for i = 1, 2, there is u′
i

which is at least 0 on Ci and less than 0 otherwise.
Consider ui = max{min{u′

i
+ 1, 1}, 0}. ui is realizable, bounded between 0 and 1, and equal to 1 on Ci, and less than 1 otherwise.

For any integer �i, u�i
i

is also realizable. It is bounded between 0 and 1, and is equal to 1 on Ci and less than 1 otherwise. By
adding a large positive number, say M, we may assume that the functions f1 and f2 are positive. There are sufficiently large
�i’s such that fj > fiu

�i
i

, i /= j, on Cj . Thus, max{f1u�1
1 , f2u�2

2 } is realizable and (subtracting M, if necessary) satisfies Proposition
2 (iii).

Proof of Proposition 3. We first define an auxiliary game with one-sided information with Q being the set of states,
player 1 is fully informed of the state, the sets of the players’ actions remain unchanged, and the payoff associated with
a pair of actions a1, a2 and state B is ḡB(a1, a2) =

∑
k ∈ K �p(k|B)gk(a1, a2). The probability of the state B is p(B). Denote this

probability over Q by r. By Aumann and Maschler (1995) the long-run value of this game is cav(ū)(r), where ū is the value
of the auxiliary game played once with player 1’s information being trivial.

For any q in �(Q), let pq ∈ �(K) satisfy pq(k) =
∑

B ∈Qq(B)�p(k|B). Note that ū(q) = u(pq).
Hence,

cav(ū)(r) = max

⎧⎪⎪⎨
⎪⎪⎩

∑
i

miū(qi)|
mi ≥ 0,

∑
i

mi = 1

qi ∈ �(Q),
∑

i

miqi = r

⎫⎪⎪⎬
⎪⎪⎭ .

For any qi in �(Q), denote miB = miqi(B) and define the matrix M = (miB). Since,
∑

i,BmiB =
∑

imi = 1 and
∑

imiB = r(B), we

conclude that M ∈M(Q). Moreover, ū(qi) = u(pi(M)) and cav(ū)(r) ≤ max
{∑

i≤Dmiu(pi(M))|M ∈M(Q)
}

.
On the other hand, for any M ∈M(Q),

∑
imiu(pi(M)) =

∑
imiū(qi), with qi(B) = miB/mi. Therefore, u(pi(M)) = ū(qi) imply-

ing
∑

i≤Dmiu(pi(M)) ≤ cav(ū)(r). The last two inequalities yield the desired result.

A detailed proof of Theorem 1.
Let V be a monotonic function over partitions. Let p be (1/|K |, . . . , 1/|K |). Order all partitions of K: P1, . . . ,P�, so that if

j < i then V(Pj) ≤ V(Pi), which implies that Pj does not refine Pi.

Notation 3. Let P be a partition. Denote by H(P) the space in R|K | spanned by {1lT ; T ∈P}, where 1lT denotes the indicator
vector of the set T.

Note that the partition P refines P′ if and only if H(P′) is a subspace of H(P). This implies that if i > j, then4

dim
[
H(Pj) ∩ H(Pi)

]
< dimH(Pi).

We prove that for any i ≤ � the following property, denoted by Ei, holds: there is a realizable function u such that for
any j ≤ i and every p ∈ H(Pj), u(p) ≤ V(Pj). Furthermore, for any j ≤ i there is a Dj × |Pj| matrix5Mj ∈M(Pj) such that for any
r ≤ Dj , u(pr(Mj)) = V(Pj).

4 dim(H) denotes the dimension of H.
5 Recall Notation 2. Pj in M(Pj) stands for the information structure that corresponds to the partition Pj .
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We proceed by induction over i. Let i = 1. The partition P1 is the trivial partition and u can be taken to be the constant
function V(P1). Now assume that Ei−1 holds and denote by ui−1 the corresponding realizable function.

Step 1: Definition of a class of matrices.
Let D = |Pi| and consider the square matrix M1 with D columns, all of whose off-diagonal entries are zero. The diagonal

entry corresponding to T ∈Pi is p(T). Note that for every row r of M1, pr(M1) /= p. Let M2 be a matrix of the same dimension
whose entries in the column corresponding to the cell T ∈Pi are all equal to p(T)/D. Obviously, M1, M2 ∈M(Pi). Define
M = ˛M1 + (1 − ˛)M2. If ˛ is positive and sufficiently small, then M ∈M(Pi) and for every row r of M, pr(M) /= p. Furthermore,
all entries of M are strictly positive.

Define H(Pi)
0 = {v; v =

∑
εT �p(·|T),

∑
T ∈Pi

εT = 0}. For every v ∈ H(Pi)
0 let arT = mrεT 〈pr(M) − p, v〉, r ≤ D, T ∈Pi. Con-

sider the matrix Mv whose (r, T)-th entry is mrT + arT . If the εT ’s that define v are small enough, then the entries of Mv are
positive.

We show now that Mv is inM(Pi). This is so since
∑

rmrT + arT = p(T) +
∑

rmrεT 〈pr(M) − p, v〉 = p(T) + εT 〈
∑

rmrpr(M) −
p, v〉 = p(T). The last equality is due to the fact that

∑
rmrpr(M) = p.

Step 2: There is v ∈ H(Pi)
0such that for any row r, pr(Mv) /∈ ∪j<iH(Pj).

Note that
∑

T ∈Pi
arT = ∑

T ∈Pi
mrεT 〈pr(M) − p, v〉 = mr〈pr(M) − p, v〉∑T ∈Pi

εT = 0. Therefore, pr(Mv) = pr(M) + 〈pr(M) −
p, v〉

∑
T εT �p(·|T) = pr(M) + 〈pr(M) − p, v〉v. Assume by contradiction that the claim is false. Then there is a neighborhood of

H(Pi)
0 around the origin, denoted W, such that for every v ∈ W there is j < i and a row r such that pr(Mv) = pr(M) + 〈pr(M) −

p, v〉v ∈ H(Pj). Define the set Frj to be the set containing v ∈ W̄ such that pr(M) + 〈pr(M) − p, v〉v ∈ H(Pj), where W̄ is the closure

(the relative one in H(Pi)
0) of W. Frj is a closed set for every r and j.

By assumption, the union of the closed sets Frj contains W̄ . As a complete space, W̄ is of category II. Thus, at least one of
the Frj ’s contains an open set. Therefore, there are j and r so that pr(M) + 〈pr(M) − p, v〉v ∈ H(Pj) for v′ s in an open (in W̄) set.

Note that for every v ∈ W , pr(M) + 〈pr(M) − p, v〉v ∈ H(Pi) ∩ �(K). Furthermore, since pr(M) − p /= 0, the map v 
→ pr(M) +
〈pr(M) − p, v〉v is an open map. Thus, H(Pj) ∩ �(K) contains an open set of H(Pi) ∩ �(K). Since both are intersections of linear
spaces whose spanning vectors are in �(K) with �(K) itself, it implies that H(Pj) ∩ �(K) contains H(Pi) ∩ �(K). However,
when j < i, dim

[
H(Pj) ∩ H(Pi)

]
< dimH(Pi). This implies that H(Pi) ∩ �(K) is not included in H(Pj) ∩ �(K). We therefore

conclude that there exists a matrix, denoted Mi, in M(Pi) that satisfies pr(Mi) /∈ ∪j<iH(Pj) for every row r of Mi.
Step 3: Conclusion of the proof.
By Proposition 2 (ii), there is a realizable function f that satisfies the following:

• For every row r of Mi, f attains its maximum, V(Pi), on pr(Mi); and
• f is smaller than or equal to min1≤j≤i−1V(Pj) on ∪1≤j≤i−1H(Pj) ∩ �(K).

By taking the maximum of f and the function ui−1 we get a realizable function ui that satisfies:

(a) For any j ≤ i, ui is smaller than or equal to V(Pj) on H(Pj) ∩ �(K); and
(b) for any j ≤ i, there is a Dj × l matrix Mj ∈M(Pj) such that for any 1 ≤ r ≤ Dj , u(pr(Mj)) = V(Pj).

Property El is therefore proven by induction. Let (gk)k ∈ K be the payoff functions that realize ul . (a) Implies that
vPiO(p, (gk)k ∈ K ) ≤ V(Pi) for every i ≤ l. Proposition 3 and (b) imply that vPiO(p, (gk)k ∈ K ) = V(Pj), which completes the proof.
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