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On the Equilibrium Payoffs Set of Two Player 
Repeated Games with Imperfect Monitoring 

By E. Lehrer ~ 

Abstract: We show that any payoff, sustainable by a joint strategy of finitely repeated games, 
from which no player can deviate and gain by a non-detectable deviation, is a uniform equili- 
brium of the infinite repeated game. This provides a characterization of the uniform equili- 
brium payoffs in terms Of the finitely repeated games~ 

1 Introduction 

The study of  Nash equilibrium payoffs  of  undiscounted infinitely repeated games by 
means of  finitely repeated games has drawn a lot of  attention. The folk theorem [A] 
characterizes the set of  all upper Nash equilibrium payoffs  (NE) in terms of  the 
one-shot game. In some repeated games with imperfect monitor ing (see [L1], [L2]), 
the set of  all the equilibrium payoffs  has been characterized by means of  the stage 
game. However,  these results could be reached only by relying on the part icular  in- 
format ion  structure. A precise description, which uses only terms of  the one-shot 
game, of  NE in the most general case is still unknown. 

We provide herewith a subset of  NE in two player games and show that  it char- 
acterizes the set of  all the uniform equilibrium payoffs.  This subset is defined in 
terms of  all the finitely repeated games  and not  only in terms of  the one-shot 
game. 

We say that  a strategy in a finitely repeated game, a ' ,  is indistinguishable from 
if both  induce the same probabi l i ty  distr ibution on the other player 's  signals, no 

matter  what strategy the opponent  plays. A payof f  is sustainable if, first, it can be 
supported by a jo int  strategy (a,  r) in some finitely repeated game and, second, any 
indistinguishable strategy from a (resp. T), say, cr' (resp. r ' ) ,  cannot increase player 
l ' s  (resp. players 2's) payoff .  In other words, in case (or, r) is played, a player can 
profi t  by a deviation only if it changes the probabi l i ty  of  his opponent ' s  signals. 
Such a deviation is detectable if playing (~, r) is repeated many times. 

Roughly speaking, the paper  shows that  the set of  all uniform equilibrium 
payoffs  coincides with the set of  all the sustainable payoffs.  Al though the character- 
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ization is in terms of  the all finitely repeated games, it provides us with a better 
understanding of  the infinitely repeated games. In some particular cases, such as the 
standard-trivial case (where the information the player gets is either the pair of  ac- 
tions played or a null signal), it enables one to completely characterize NE and the 
uniform equilibrium payoffs in terms of  the one-shot game (see (L3]). 

2 The Model 

a The One-Shot Game 

The repeated game is an infinite repetition of  a one-shot game that consists of: 

(i) two finite sets of  actions, 21 and • 2 -  Denote E = E1 x E2; 
(ii) two payoff  functions h~, h2; hi: E--,IR. Denote h = ( h l ,  h2); 
(iii) two information functions e~, g2 defined on E. 

Without loss of  generality, we may assume that 0_<h~_< 1, i=  1, 2. 

b The Repeated Game 

(i) Pure strategies. Denote by Li the set of  all the possible signals of  player i 
(Li=the  range of  g~). A pure strategy of player i is a sequence 
f = ( f l , f 2  . . . .  ), where f t :L~- l~Ei .  L~ -1 is the cartesian product of  Li 
with itself t - 1  times and it consists of  all player i's possible histories of 
length t -  1. I f  f and g are two pure strategies of  player 1 and 2, respective- 
ly, then x~(f, g) will denote the payoff  of  player i at stage t i f f  and g are 
the strategies played. 

(ii) A mixed strategy is a probability distribution over the set of all the pure 
strategies of  the repeated game. Let ai be a mixed strategy of  player i. De- 
note by Eo,~2(x~ ) the expected payoff  of  player i at stage t where the ex- 
pectation is taken with respect to the measure induced by (a~, a2). 

c Nash Equilibria in the Repeated Game 

Let ai be a mixed strategy of player i. H *  (al, 0-2) is defined as the limit of  the means 
T 

of player i's expected payoff.  Precisely, H *  (al, 0"2)= l im(1/T)  ~. Eo . . . .  (x~) if the 
T t l 
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limit exists. We will say that (0"1, 0-2) is an upper Nash equilibrium if H *  (0"1, 0"2) is 
defined and if for any other pair of  mixed strategies (~-i, 6-2), 

T 

(i) H*(0-1, 0"2)->limsup(1/T) ~. Eo  . . . .  (x~), 
t = l  

T 

(ii) H*(0-~, 0-2)>_limsup(1/T) ~, Eo~,o~(xt). 

and 

Denote by UEP the set of  all the payoffs (H*(a l ,  0-2), H *  (0-1, 0"2)) ,  where 
(0"1, 0-2) is an upper Nash equilibrium. 

d Uniform Equilibrium 

0- = (0-1,  0"2) is a uniform equilibrium if H *  (0-) is defined and if for any e > 0 there is 
N s.t. a induces an e-Nash equilibrium in the n-fold repeated game for any n>N.  
UNIF denotes the set of  all the uniform equilibrium payoffs. For more extensive 
study of  uniform equilibrium, see [S]. 

e Banach Equilibrium 

Let L be a Banach limit. For a joint mixed strategy 

/ / H*L (0-) = L 1/ T ~, Eo ....  (x~, x~) .0- is an L-equilibrium if 
t = l  T 

0- = (0-1, 0-2) define 

/ T 1 H*L(g)>_L 1/T  ~, E~,o~(x~) 
t = l  T 

for all strategies ~ ,  of  player 1, and a similar inequality for player 2. 
Denote by BEPL the set of  all H*Z(a) ,  where 0- is an L-equilibrium. 
The problem of  characterizing UEP and BEPL is still open. We are able to iden- 

tify a set of  payoffs which is included in all of  these equilibrium payoffs sets. How- 
ever, UNIF is fully characterized here. 

Remark 1: It is clear that UNIF  is contained in UEP and in BEPL for every Banach 
limit L. 
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3 The Main Theorem 

E. Lehrer 

Some notat ions are needed in order to state our main result. 

a Extending the Domain of gi 

The informat ion functions gi where defined on E and ranged to L~. We can extend in 
a natural  way the domain of  fi to be the set of  all probabi l i ty  distributions on E, 
denoted by A (E), so as to at tain values in A (Li), the set of  all probabi l i ty  distribu- 
tions on Li. 

b Indistinguishable Actions 

Let p and p '  be two mixed actions of player 1. We say that p and p '  are indistinguish- 
able (denoted p - p ' )  if gz(P, q)=gz(P', q) for all mixed actions q of  player 2. The 
same relation is defined also for player 2. Sometimes we say that p is indistinguish- 
able from p ' .  

c More Informative Actions 

We define a part ia l  order > on the set of  mixed actions as follows. Let p and p '  be 
two mixed actions of  player 1. p and p '  are thought of as probabi l i ty  distr ibutions 
over E~. We say that p is more informative than p '  (denoted p>-p') if 

p {aEE, I gl(a, b) @gl(a, b')} ->p' { a c E ,  l e~(a, b)vLe,(a, b')} 

for every two pure actions, b and b' of player 2. 
In a similar way, the part ial  order > is defined on mixed actions of  player 2. 
The interpretat ion of  the previous definit ion is the following, p is more infor- 

mative than p '  if the probabi l i ty  of  distinguishing between two pure actions of  
player 2 is greater by playing p than by playing p ' .  



On the Equilibrium Payoffs Set of Two Player Repeated Games 

d The Finitely Repeated Game,  G~ 
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The n-fold repeated game G~ is defined by the sets of  strategies El' and E~, the 
average payof f  functions h~' and hg, and the informat ion functions ~]' and eg. 
We can treat  G,  as we formerly treated the one-shot game and define the rela- 
tions - and > on E~', i =  1, 2. us ing  these relations, we will define two subsets of  
A (E~') x A (Eg), the set of  all the pairs of  n-fold repeated game mixed strategies. 

e The Set D~ 

Let e > 0. Define 

1. hl (a,  r ) _  hl (a  , r) - e f o r a l l a ' - a  
D ~ =  ( a , r ) e A ( 2 ~ ) x A ( I 2 ~ )  2. h 2 ( a , r ) _ h 2 ( a , r ' )  ~ > ~ e f o r a l l r ' - r ) "  

In words, (a, r) a pair of  mixed strategies is an element of  D~ if a is an e-best 
response to r, among all a '  ~ a ,  and a similar condit ion for player 2. 

Remark  2: From continuity and compactness we deduce that if (a,  r)ED~ and if 
I[g'~(a, r ) - f ~ ' ( a ,  r')ll ~ < ~  for every pure strategy a of  player 1, then h'~'(a, r ' )  
_<h]'(a, r ) + e + 6 ( r / ,  n), where 6(1/, n) goes to zero as r/--.0 for every fixed n. 

f The Set C ~ 

The set C~ is defined in a similar way to D~ requiring an addit ional  a ' > - a  and 
r '  > r. In other words,  (a,  r) is in C~' if a is an e-best response versus r among all a '  
that are indistinguishable f rom a and at the same time more informative than a ,  and 
a similar condit ion for player 2. Clearly, r ~ , c  t ~n 

Remark  3: Define N~ = {(a, r) l (a, r) is a e-Nash equilibrium of  Gn}. 

Clearly, N~c_D~. Moreover,  UNIFC_ ['] cg [.J hn(ND where cg denotes the 
e > 0  n =  1 

closure operator .  Therefore,  UNIF  c ~ cg U h"(D'~) F] IR, where IR is the set of  
e > 0  n = l  

individually rat ional  payoffs .  The inverse inclusion is a part  of  the main theorem's  

contents. 
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g UNIF is Characterized in Terms of All the Go 

E. Lehrer 

It is well-known that in some zero-sum repeated games the sets of  Nash equilibrium 
payoffs in G~ (the value) tend to the set of  the Nash equilibrium payoffs in the 
infinite repeated game. For instance, this happens in repeated games with incom- 
plete information, lack of  information on one side and in stochastic games. This is 
no longer true in non zero-sum games. 

In the present case, we will describe UNIF  in general repeated games with im- 
perfect monitoring using the sets D~, which correspond to the finitely repeated 
games. Namely, in terms of  e-best response, among equivalent strategies (as opposed 
to using the term "best response among all the mixed strategies" as in Nash equili- 
brium). 

A game is with non-completely trivial information if each of  the players has two 
distinguishable actions. Our goal in this paper is to prove the following theorem. 

The Main Theorem: In repeated games with imperfect monitoring and with non- 
completely trivial information: 

UNIF = 
co 

[7 cg U h"(D~)[-]IR:  A cg U h'(C'~)r~IR. 
e > O  n = l  e > O  n = l  

Conjecture." ~] cg U h'(CT) ~] IR covers all UEP, namely, UEP = [7 cg U h"(D~) f] IR 
= f q c e U h " ( C D N  IR. Thus, U E P = U N I F .  In words, the set of  upper equili- 
brium payoffs coincides with the set of  uniform payoffs. 

4 Some Properties of D~ and C~ 

(i) If  e < e '  t h e n n n c r )  ~ 
(ii) For every n and khn(D~)c_h~k(Dff) because if (cr, r )eD~ then the k repe- 

titions of  (or, r) is a pair in Dff .  And for a similar reason: 
(iii) nh ~ D n k k c ~ + e  n + ~  ( ~)+kh (D~)_(n+k)h  (D~ ). 

The properties (ii) and (iii) hold for C~ as well. 

(iv) cg U h"(D~) is a convex set. It is sufficient to show that conv U hn(D~) 
n = l  rt 

ccg  U h~(D~) �9 This result is implied by property (iii) and the following 
n 

claim. 

Claim: Let {Fn} be a sequence of  sets in a norm space. Assume that for every 
k, n e N  nF,+kF~C_(n+k)Fn+k, then conv UFnc_cg UF,.  
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? 

Proof." Let c~econv U F , .  So a is a convex combinat ion c~ = ~. 7;o~,,, where ~) i~- - -0 ,  

i = 1  

~. Yi = 1 and o~ e F ~ .  By induction we deduce from the assumption of the claim that for 

any convex and rational combination (r/~/),e=l (i.e., ri, q e N ,  and ~. ri=q) one 
g i = 1  

gets ~. rin_iniF, C_~Fq, where n-i= I] ni, n = II ni and ~=n ~.ri. Therefore,  
i = 1  j r  

any rat ional  convex combinat ion of  elements from U Fn is included in U Fn. In 
n n 

order to complete the p roof  of  the claim take for every e > 0 a rat ional  convex com- 
binat ion which satisfies Ir/q-), i l  < e / g  for every 1 _<i<_g. So, 

l i e  (rJq)c%-Z yic%[I = I[Z ( r /q -y3~ , l l  <_e Z II ~,11 ~--~ 0. 

Since each of the rational combinations ~. (ri/q)c#,~ is in U Fn, ~. y ic%ecg U Fn. / /  
n // 

(v) [-] cg U hn (DT) is a closed and convex set as an intersection of  closed and 

convex sets. 

5 The Proof  of the Main Theorem 

We will divide the proof  into two proposi t ions.  The first one states that  the infinite 
intersection defined by the sets C~ is not bigger than the one defined by the smaller 
sets DT. The second proposi t ion provides a formula  to the set of  all the uniform 
payoffs.  

Proposition 1: 

eo 

[~ cg U hn(D~) = {7 cf U h~(CT) 
a > O  n =  1 e > O  n =  1 

provided that  the game is with non-completely trivial informat ion.  

In fact, we have to show only that  ~ cg U hn(D~) D- N cf U h"(C'~), because 
the inverse direction is obvious. ~ n ~ n 

Proposition 2: Under the condit ions of  Proposi t ion  1: 

co 

U N I F =  [~ cg U h~(D~)D IR .  
a > O  n = l  
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In view of Remark 3 we have to show that UNIF includes ~] cg U h n(D~) ~] IR. 
~>0 /7 1 

Proof of  Proposition 1 (using an idea of  S. Sorin [S]): The idea of  the proof  is to use 
(a, r) ~ C~ in the construction of  another pair of  strategies, (or', r ' ) ,  in a much longer 
game, say, Gr. The pair ( a ' ,  r ' )  has two properties: (i) its payoff  is close to the 
payoff  of  (or, r) and (ii) (or', v') is included in D ~ .  Denote by k n the number of  
pure strategies in G~. 

For an arbitrary integer t define (or', v') as follows. The players will play t time 
according to a perturbation of  (~r, ~) (at the tn first stages). Then, at the coming 
[fgzt] + 1 stages player 2 will choose randomly one of  the t repetitions and report the 
choice to player 1. Then, at the following [gg2k ~] + 1 player 1 will report on his 
signal that he had got at the repetition chosen by player 2. Afterwards the players 
exchange roles. First player 1 picks randomly a repetition (or a number from 1 to t) 
transmits it to player 2 and then player 2 reports on his signal at the repetition that 
was chosen by player 1. 

~ l ' ~ r ( t , n )  Denote r(t, n)=  tn+2[egzk ~] +2[fgz t ]  +4.  We will prove that (or', r')=~-3~ , 
provided that t is sufficiently large. 

How to choose a random stage and to report it. Since the information is not com- 
pletely trivial there are a, c~, c2~Ea and bl, b2, d~Y,2 s.t. 

el(a, bl)~gl(a, b2) and e2(Cl, d ) ~ e 2 ( c 2 ,  d ) .  

Player 2 picks randomly a number from { 1 . . . .  , t} and simultaneously reports it to 
player 1 by the following procedure. Player 1 will play a (regardless of  the history) 
and player 2 will play with probability 1/2 each one of  the actions bl and b2. If  this 
procedure is repeated [gg2t] + 1 times, player 1 ends up with a random string of 
length [~gzt] + 1 consisting of  two symbols (21(a, bl) and gl (a, b2)). These strings en- 
code the numbers 1 . . . . .  t. So, getting one of  these strings, player 1 is informed 
about a number between 1 and t which is interpreted as the repetition on which he 
has to report later. 

How to report the signals. The set of  player l ' s  signals is finite and it contains less 
than k n characters. Thus, by answering on less than ggzk n + 1 "Yes-No" questions 
player 1 can report on his signal to player 2. (Player 2 will play d in order to receive 
the answers and player 1 will play cl for "Yes" and c2 for "No".) 

Denote by or(d) (resp. r(6)) a strategy of  player 1 (resp. player 2) that assigns 
probability 1 - ~  to cr and a positive probability to each one of  his pure strategies in 
Gn. Notice that from continuity arguments one can deduce that for every r/> 0 there 
is d > 0  s.t. if (or, T)~C~ then (a(0), r(fi))~C~,. Let c~ be the one corresponding to 
the e under consideration. 

The strategies (or', v'). The strategies are consisting of  five phases. At the first one 
(tn stages) the players play according to (or(0), T(O)). At the second phase ([egzt] + 1 
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stages) player 2 chooses a number t '  f rom {1 . . . . .  t} and reports it. At the third 
phase  ([eg2 kn] + 1) - a reporting phase - player 1 reports to player 2 about the signal 
he had got at the repetition t '  that was chosen at the second phase. At the fourth 
phase player 1 chooses a number from { 1 . . . . .  t} and at the last phase, again a 
reporting phase, player 2 reports on his signal. 

According to the construction of  ( a ' ,  r ' )  there is a positive probability for any 
repetition to be chosen (and therefore to be the repetition on which the player will 
have to report). Thus any other strategy of  a player (at the first tn stages) will lead 
to change in the distribution of  the opponent 's  signals at the reporting phases. To 
make it clear let us concentrate on player 1. One of  the two (one for each player) 

n,-~,-) is that there is a strategy 6-which retains possibilities that (a ' ,  r ' )  is not in ~,3~ 
the distribution of  player 2's signals (i.e., 6 - - a ' )  and increases player l ' s  payoffs by 
more than 3 e. 

We think of  the first phase as t repetitions of  Gn. In playing (a ' ,  r ' )  each player 
ignores his memory after each repetition. Since player 2 disregards his memory,  the 
strategy 6- of  player 1 has a similar strategy, say, d (similar in the sense that both 
induce the same probability on the set of  histories of  length n in each one of  the 
repetitions) and that in playing according to 6 player 1 ignores his memory after 
every repetition. Thus, if 6-is indistinguishable from a ' ,  6 is also indistinguishable 
from a ' .  Since t is large enough it means that there is t ' ,  1 <_t'<_t, s.t. the strategy 
at., the one induced by 6 at the t ' - th  repetition, increases the payoff  at the t ' - th  
repetition (of G~) by at least 2e. However, ( a (O) , r (0 ) ) eC~  and therefore 
a t .~  a(0).  In other words, there is a repetition t ' e  { 1 . . . . .  t} in which player 1, by 
playing a,., (rather than a(c~)), either (i) alters the distribution of  player 2's signals in 
the t ' - th  repetition or (ii) loses with a positive probability a possibility to collect 
information. 

The first case, (i), immediately implies that 6~ca ' and therefore 6 - §  If, 
however, (ii) is the case, then according to (a ' ,  r ' )  there is a positive probability that 
player 1 will have to report (at the third phase) on his signal at the t ' - th  repetition. 
Hence, by playing at., player 1 changes the distribution of  player 2's signals at the 
third stage, and therefore 6 §  Thus, 6 - ~ a ' .  Both cases exclude the possibility 
that by playing a strategy indistinguishable from a ' ,  player 1 can gain on average by 
at least 2e at the first phase. 

Notice that (a ' ,  r ' )  do not describe best responses at the last 
2 [eg2 t] + 2 [gg2k"] + 4 stages. However, by playing another strategy, indistinguish- 
able from his prescribed strategy, a player can gain at most 2[eg2t]+2[egzk~]+4 
times the maximal payoff.  When this number is divided by r(t, n) it is smaller 
than e, whenever t is sufficiently large. We conclude that ( a ' ,  ~ ,~n~t ,~)  J='-'3e , and 
that if c~>O small enough, then I[hn(a, ~)-h~"'~)(o -', r ')]l <e .  Thus, U hn(C'J) 

n 

is contained in the e-neighborhood of  U u~r162 t ,  \ L - 3 e  j = U h ~ ( D ~ ) .  Hence, 
n n 

cg U h"(C'~)c_ [7 cg U h"(D'~). Q.E.D. 
8 n 8 n 

Proof of  Proposition 2: We will show that any payoff (Yl, 7 2 )  in [~ cg U hn(D~) ['] IR 
n 

can be sustained by an equilibrium (f, g). Since (7~, 72) is in the closure of 
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U hn(D'J) for every e > 0 ,  we can find a sequence (a t, fit) which converges to ()/1,)22) 
n 

and (a i, fli)eh"'(D'~'/i). Let (a t, r t) be a pair in D'[/i satisfying h" ' (a  t, r/) = (a t, fl~). 
The strategies (f, g) will be defined along the following lines. We will divide the 

set of  stages N,  into blocks B ~, B 2 . . . .  and each of  these blocks is divided into sub- 
blocks of  increasing lengths, say B~, B~ . . . . .  B~ i. 

At the block B t a lot of  repetition of  a perturbation of  (a t, r t) will be played, 
and after each sub-block the players make statistical tests (based on the relative fre- 
quence of  the signals) to check whether or not their opponent has deviated at that 
sub-block. In case where no deviation has been found the game proceeds to the next 
sub-block, in which the players play repeatedly perturbations of  (a i, r i) as was de- 
scribed above. In the other case, where an alleged deviation has occurred, a punish- 
ment will take place for a long time: up to the end of  the block. Then, at the new 
block the game proceeds as if the players forgot the history, by playing repetitions of 
the perturbed (a ~+ 1, ~.i+ I), and so on. 

A few points should be made clear before defining precisely the strategies. 
(i) If  (a t, T ~) is repeated many times, the empirical distribution of  any signal s 

(of the game Gni) should be, with high probability, close to its probability according 
to (a t, rt). I f  not, the player who gets that signal arrives at the conclusion that his 
opponent has deviated and therefore he should punish him. However, there is a po- 
sitive probability for the punisher to arrive at the wrong conclusion, and thus to 
punish the other player while the latter did not deviate at all. For this reason any 
punishment cannot take place forever. It should be a temporary punishment (till the 
end of  the block) after which the player will return to the master plan. 

(it) Since both players check after deviations, it might occur that for instance, 
player 1 punishes player 2, who might interpret the punishment as a deviation and 
thus to punish player 1 who himself can interpret the punishment to the punishment 
as a deviation and so on ad infinitum. To avoid this possibility, the players ignore 
their memory at the beginning of  each block and the game proceeds as if it is a new 
game. 

(iii) The payoff  (Yl, Yz) is also in IR, and therefore a player can punish his op- 
ponent and push his payoff  down to the individually rational level. 

In order to define (f, g), let 
{e ~} be a sequence of  small positive numbers to be determined later; 
U be the number of  pair of  pure strategies in the game Gnu; 
k} be the number of  player j ' s  pure strategies in the game G,,. 

S t = niki / (ei)  1o 

Ui ~ S  i + l  

# B ~  =sit(el)  v+~5, v=  1 . . . . .  ut. 

The mas te rp lan  o f f ,  the strategy of  player 1 (a similar description for g) is to 
play at B~ the following mixed strategy of  Gni: with probability 1-Uj.e t play a t, 
and with probability e i play each one of  the k} pure strategies. This perturbation of  
a t will be denoted by at(et), and the similar perturbation of  r t will be denoted by 
rt(et). 
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The pun&hment  plan of f is the following. For each signal s~LT' of the game 
G~,, and for each pure strategy a of player 1 (in Gw) denote by O~ (a, s) the num- 
ber of times the signal s was observed at B~, while player 1 was playing a. Thus, 
the empirical distribution of s (when player 1 plays a) is the number O~(a, s) div- 
ided by the number of times that a was actually played, say N~ (a). 

Player 1 will punish player 2 after the sub-block B~ if 

I Oi(a ,  s ) /Ni (a)  - E l ( a ,  s) I > (e i) (1) 

for some a and s, where Ei(a ,  s) is the probability of the signal s when player 1 plays 
a (and player 2 plays re(#)). Notice that E~(a, s) does not depend on v, because the 
same pair; (a~(ei), zi(ei)) is repeated in all B~ (v = 1 . . . . .  ui). Player 1 punishes only 
till the end of the block B i. After the punishment terminates the players return to 
play according to the master plan. 

We have to show now that H* (f, g) = (Yl, Y2) and that there is not any profit- 
able deviation. These will be proved at the following two lemmas. 

Lemma 1: H* (f, g) = (y~, Y2).  

Proof." Recall that x~ (f, g) is denoting the payoff for player j at stage t. We will 
T 

show that ( I /T )  ~ x~(f, g) tends to yj a.s. By the bounded convergence theorem 
t = l  T 

this implies that l im(1/T) ~ E(xJ(f ,  g))=yj, j =  1, 2. 
T t = l  

We will prove first that with probability 1 there is an integer I s.t. if i>_I then 
the average of x~(f, g) over Bgv is close to yj up to 2kie i for every 1 <_v<_ug. 

The pair (ai(e~), r/(#)) (recall, the perturbation of (a/, r~)) is repeated #B~v/# 
times in B~, provided that both players follow the master plan. From the definitions 
of B / and s i one gets, 

# Biv/ni> si/(ei) v+ 15(ni ) 

= niki/(e i )25  + v ( l / i )  = ki/(gi)25 + ~. (2) 

Thus, (ai(ei), r/(ei)) is repeated at least k i / ( , s i )  25+v times in B/. By Chebyshev 
inequality the probability that the relative frequency of any pair, (a, r), of pure 
strategies of Gnl to be far from its probability by more than e i, is by (2) less than 
(#)23+V/ki. Thus, the probability of the event, say A, that a/ / the pairs of pure stra- 
tegies of Gn/will have empirical distribution within # of their probability is bounded 
from below by 

1 - k i ( g i ) 2 3  + v / k i  > 1 - ( / ~ i ) 2 3  + v (3) 

(recall, provided that the master plan is played). 
However, there is a positive probability to the event, say, A ', that the players 

will not play according to the master plan. Our task now is to estimate this proba- 
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bility, namely, to estimate prob (A % Suppose that in B~ the players play according 
to the master plan. Let us first convince ourselves that the probability that player 1 
will find a deviation in B~ i.e., that (1) holds for some pure strategy ~ and a signal' 
s is bounded by 

k~/(e'/2) 2 ( # B~/n') + k~ Uz/(e') 2 (a'/2) ( # B~/n').  (4) 

Recall that each pure strategy (r is played (according to cri(e~)) at least with probabi- 
lity e s. By Chebyshev inequality, each ~r is played in B~-at least (ei/2)(#B~/n ~) times 
with probability of at least 1 -1 / ( e72 )Z(#B~/n% Given that a is played at least 
(e i/2)( # B~/n ~) times, the probability for a particular signal s to satisfy (1) alongside 
with a is bounded by 1/(e~)Z(e~/2)(#B~/ni). Thus, the probability of  finding some 
signal that satisfies (1) is less than k~/(e~) 2 ( e l / 2 )  ( # B~/n % Therefore, the probabil- 
ity that (1) holds true for a particular a and some s (now taking into account also the 
possibility that the relative frequency of  a is less than (e~/2)(#B~/n~)) is less than 
1/(ei /2)2(#B~/n ~) +k~/(e~)z(e~/2)(#B~/n~). In order to get the probability of  (1) for 
any cr and s one should multiply it by k~ and get (4). 

For getting an upper bound to the probability that the punishment plan is being 
played at B~ we should sum up (4) over all 9- (1 _< 9-< v) and add a similar number for 
player 2. The outcome is 16(e~) 2 by the following calculation. The summation of  (4) 
over v IS: 

v 
~.-~[k~/(e'/2) 2 ( # BS~/n) + k~ Uz/(e~) 2 (e'/2) ( # B~/n ~)] 

V=I 
v v 

<_ [(4U)/(e~) 3] ~. ni/  # B~ = 4U ~ n~(e~) ~+ 12/si ~_ 8 ( e i )  2 .  

~=1  V=I 
(5) 

(For two players we get 16(ei)2.) In other words, prob(A ')_> 1-16(~i)  2. 
Now we can combine (3) and (5) and determine that the probability that there 

will be a pair of  pure strategies (a, r) with an empirical distribution which is far by 
more than e~ from its probability, is less than (e~)z3+v+ 16(ei) 2. In other words, 

prob (A) <_ ( ~ i ) 2 3 +  v q_ 16(Ci)2. (6) 

Given the event A the average of  xJ(f, g) over B~ is far from yj by only 2Ue ~ (one 
Ue ~ for the perturbation and one for the distance between the empirical distribution 
and the real probability). In other words, 

p r o b ( { l l / # B ~  )~ x J ( f , g ) - y j l < 2 U e q l A ) = l .  
t~Bi~ 

If  e~<_ 1/i the summation of  (6) over all i and 1 <_v<_u ~ is finite and we conclude, by 
Borel-Cantelli lemma, that with probability 1 there is an I s.t. if i>_I then the aver- 
age of  x}(f ,  g) over teB~ for all 1 _< v_< u ~ is close to Y1 up to 2Ue i. 

Since the length of  B~ compared to all its predecessors tends to zero as i goes to 
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infinity we conclude that if kZ#--.O the average of xt(f ,  g) over all t 's tends to yj. 
This concludes the proof of Lemma 1. Q.E.D. 

Remark 4: The proof of the previous lemma actually shows more than desired. It 
shows that the average payoffs converge almost surely to (?h, Y2). 

Lemma 2: (f, g) is a uniform equilibrium. 

Proof." Suppose that instead of playing g player 2 plays ~. (A similar argument goes 
through for any f )  

(i) We will estimate first the probability for player 2 to gain by more than (see 
Remark 2 for the definition of ~(~  1/ i+3(3d ,  # )  at B~ without being de- 
tected. Recall that in B~v the perturbation (ai(#), r~(d)) is played b = # B ~ / #  
times. 

For every pure strategy, a, of player 1 in Gn, define the random variable R'~ 
to be 1 if player 1 played a at the t-th repetition and 0 otherwise. Similarly, let Y~ 
be 1 if player 2 played the pure strategy r at the t-th repetition and 0 otherwise. 
Define Bo = { t i R e -  1 } and let U(a)  be the probability of a according to a~(#). 

In the following computation we make use of Lemma 5.5 of [L1]. (We will 
elaborate on this point in Appendix 1.) 

The average payoff of player 2 in B~ 

b 

' Y~h2 (a, r) = l /b  Z 2 Z Ro ' '~' 
t = l  a r 

(with probability of at least d l=  1-1/(gi)2b).  

b 

< 1/b Z ~ Z (Pi(a) ' i n i _ Y~+e)h2 (a, r) 
G v t = l  

b 

(defne q( r )=  1/b ~. Y~) 
t = l  

= ~, ~, ( p i ( a ) q ( r ) + e i ) h ' J ' ( a ,  "c) 
a T 

(q is the strategy of player 2 defined by q(r)) 

n I i = h2 (a , q) + kie i. 

Using once again Lemma 5.5 of [L1] (see Appendix 2) one obtains that, with prob- 
ability of at least d2 = 1 - ((ei)4/b + (gi)Z/b)ki2, 

n t II el (a, q) - o L (a, �9 )/NC (•) II < (~') 2/p,  (a) + 1/N~ (a). (7) 
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By Chebyshev's inequality, N~ (cr) is greater than (recall that Pi(cr)_> e ~) (e ~) b/2 
with probability of  at least d3 = 1 -  4/(e)2b.  

Thus, with probability of  at least d3, (7) can be rewritten as: 

I IeT' (G, q) - o~ (~, .)/N~ (G) II < ~' + 2/(e') b _< 2 e' .  (8) 

Since (1) does not hold, (8) implies 

[leY'(a, q ) - e [ ( a ,  re)l] _<2ei+ ei= 3e ~. (9) 

In view of  Remark 2, (9) yields 

h~' (ai, q)< h f  (ai, ..(i)_}_ 1/i + O(3ei, hi). (10) 

If  e ~ is appropriately chosen, 5(3e ~, n ~) goes to zero as i tends to infinity. 
To recapitulate, (10) holds true without player 2 being detected in B~ with 

probability of  at most c~ = (1 - dl) + (1 - d2) + (1 - d3). Notice that all the above esti- 
mates do not depend on the particular deviation, if, played by player 2. 

(ii) After a detection comes a punishment phase which pushes, with high prob- 
ability (to be calculated like the calculations above), the punished player's payoff  
toward his individually rational level. 

(iii) The sub-blocks are designed in such a way that a length of  each sub-block 
B~v compared to its past tends to zero with i. Thus, there is no harsh punishing: the 
punisher can start punishing at the end of  the sub-block, because the influence of  the 
stage payoffs at a particular sub-block on the average payoff  is negligible. More- 
over, even in case where a deviation occurs at a sub-block located at the end of  the 
block (which means that the punishment phase will be short - till the end of  the 
block), the deviator cannot gain by much. 

(i)-(iii) show that for any e > 0 there is a time T s.t. t>  T implies ht~ (f, g-)_< Y2 Jr- e 
for all ft. I.e., (f, g) is a uniform equilibrium. 

As we have already the machinery we are able to show more. We will prove that 
T 

l imsup(1/T) ~. X'z(f, g-) is smaller'than 72 almost surely. Recall from (i) that player 
t - - 1  

2 can gain by more than 1/i+ ~(3 ei, n i) in B~v without being detected with probabil- 
ity that does not exceed c~. 

(iv) The number of  repetitions b is so designed that ~. Z c~ < oo. Therefore, 
i v - - 1  

by the Borel-Cantelli lemma, the event that there are infinitely many B~'s in which 
the payoff  of  player 2 is greater than Y2 + e, for e > 0 and he is not being detected is 
zero. And similarly for player 1. 

(v) For the limsup of  the averages of  player 2's payoffs to exceed 72 it is neces- 
sary that there will be infinitely many sub-blocks B~ in which player 2's payoffs ex- 
ceed y2+l/ i+5(3e ~, n i) without being detected. However, this event has, as was 
shown in (iv), probability zero. Therefore, 

T 

l imsup(1/T) ~. x~(f, g)~<Y2 a.s. Q.E.D. 
t = l  
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6 Concluding Remark 

The approach represented by the uniform equilibrium views the infinitely repeated 
game as an approximation of  long finitely repeated games. Not only the payoff  (of 
the infinite game) is defined as the limit of  the expected finite average payoffs (i.e., 
limit of  the payoffs in the truncated games) but also the incentive compatibility con- 
straints are defined in terms of  the finitely repeated game. One may take another 
approach which ignores the underlying stage game (and all the corresponding finite- 
ly repeated games). This is the "almost surely" approach. 

Define (Yl, Y2) to be a.s.-equilibrium payoff  if there is a pair of  strategies (f, g) 
satisfying: (i) the limit of  the finite average payoffs exists (f, g)-almost surely and 
moreover, the expected value of  these limits is (Yl, Y2), and (ii) for every s t r a t e g y f o f  
player 1 the upper limit (limsup) of  player l ' s  finite average payoffs do not exceed 71 
(J~ g)-almost surely. And a similar condition for every ~-. 

There is no inclusion relation that can be derived directly from the two equili- 
bria definitions. However, this paper shows (see Remark 4 and (iv) and (v) of  Lem- 
ma 2's proof) that every uniform equilibrium payoff  is an a.s.-equilibrium payoff.  
The question whether every a.s.-equilibrium payoff  is also a uniform one remains 
yet to be answered. 

Appendix 1 

Lemma 5.5 of  [L1] is the following: 

Lemma: Let R~, . . . ,  Rn be a sequence of  identically distributed Bernoulli random 
variables with parameter p,  and let Y~ . . . . .  Yn be a sequence of  Bernoulli random 
variables, such that for each 1 _< g _  n, Re is independent of  R~ . . . . .  Re-1, Y~ . . . . .  Ye. 
Then 

Y~+ "'" +Y"  1 1 prob R ~ Y I + . . . + R n Y ~  P _>e _ < - -  
/7 /7 / 7 ~ 2  " 

To apply the lemma, put Rt=R~, Yt = Y~, and n =b .  

Appendix 2 

Fix a pure strategy a of  player 1. 
Define Z~' = 1 if player 2 played a strategy which yields, together with a, the 

Z t - i Z t ' ~  signal s (of player 1) at the t-th repetition. Denote - ~ sJs~LT- Thus, 

b 

e , ( a , q ) = l / b  ~. Z '  and O~(a, o) /Ni(a)=l /N~(a)  ~. Z t. 
t = 1 t ~ B  a 
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Moreover,  for every s the following holds: 

z: 1/b ~ Z~-  I/N~(a) ~, 
t = 1 tEB  a 

_< 1/b Z~-(1/bU(a))  ~, R~Z,t t 
t= l  t= l  

(1/bpi(a)) b R o Z s -  + Z , t 1/N~(a) Z Z~ . 
t = 1 t ~ B ~  

By using Appendix  1 (put Rt=R~ and Y~=Z~), the first summand is smaller than 
(ei)2/pi(a) with probabi l i ty  of  at least d4 = 1 -(,?,i)4/b. As for the second summand,  

b 
notice that  ~. R~Z~= ~ Z~. Moreover,  I1 /bU(a) - l /N~(a) l  <l/N~(a) with 

t= 1 f E B  a 

probabi l i ty  of  at least d5 = 1 - ( e i )Z /b .  This computat ion holds for a fixed signal s. 
Since there are at most  k~ such signals (for a fixed a) we have that,  with probabi l i ty  
of  at least 1 - ( ( 1  - d 4 )  + (1 - d s ) ) k ~ .  

I I el ( a ,  q )  - -  0 / ( G , * ) / N  / ( o )  ][ ~ ( ~  i) Z / p ~  ( a )  + 1/N~ ( a )  

<<.el+ 1/Ni (a). 
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