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1 Introduction

A decision maker (DM) is facing a sequential decision problem. At each stage a state of nature

is realized and the DM, who is ignorant of the state of nature, has to choose an action. The

DM’s stage payoff, which is not told to the DM, depends both on her action and on the state of

nature (referred to as outcomes at the machine learning literature) at that stage. In a Bayesian

setting the DM would have a prior distribution over all possible sequences of states and she

could then take decisions that would maximize her expected payoff. In this paper the DM is

not Bayesian: she would like to achieve a certain goal whatever be the realized sequences of

states, namely, to minimize regret.

Hannan (1957) showed that the DM has a randomized strategy that, comparing average

payoffs, could asymptotically perform at least as well as any stationary strategy, regardless of

the sequence of states. Namely, he proved that the DM has a strategy under which, asymptot-

ically, the actual average payoff is as high as the average payoff that any stationary strategy

would obtain, assuming that the states are not affected by the DM’s choices. Strategies of this

type are called external regret-free strategies.

The stronger notion of internal regret-free strategies has been introduced subsequently (see,

Foster and Vohra (1997, 1999), Fudenberg and Levine (1999), Hart and Mas-Colell (2000),

Stoltz and Lugosi (2005), Cesa-Bianchi and Lugosi (2006), or Blum and Mansour (2007)). A

strategy is internal regret-free if for any given sequence of states, and for every action a, the

DM cannot gain asymptotically from replacing a by another action a′, that is, by playing a′

in all stages in which she played a. Hart and Mas-Colell (2000), Foster and Vohra (1998),

and Fudenberg and Levine (1999) proved the existence of an internal regret-free strategy when

monitoring is perfect.

In this paper we study sequential decision problems with imperfect monitoring. Here, the

DM does not observe the state, but rather a noisy signal that may depend also on her action.

To motivate the study, consider the following example, adapted from Mannor and Shimkin

(2003). A doctor treating patients who may be suffering from several illnesses has several

treatments at her disposal. Suppose that the probability that every given treatment will be

effective for every given disease is known, and moreover that even if a treatment is not effective,

it still provides the doctor with some information about the true nature of the disease. For each

patient the doctor chooses a mixture of treatments and observes the effects of the treatment,

thereby increasing the probability of correctly identifying the patient’s illness. In this setup,

the doctor’s strategy is internal regret-free if, in the long run, she never regrets choosing a

specific mixture of treatments for those patients who were prescribed that mixture.

1



The issue of having no regret in decision problems with imperfect monitoring has been

mainly treated in a restricted sense of external regret. Rustichini (1999) proved that external

regret-free strategies exist, Mannor and Shimkin (2003) provided an approachability-based al-

gorithms that generate such a strategy when the DM’s choices do not affect the signals, and Pic-

colboni and Schindelhauer (2001), Cesa-Bianchi, Lugosi, and Stoltz (2006), and Cesa-Bianchi

and Lugosi (2006, Chapter 6) showed regret-free procedures under the condition whereby the

payoff matrix of the DM is obtained through a linear transformation from the signalling struc-

ture. Lugosi, Mannor and Stoltz (2008) proved the general perfect monitoring case. In another

strand of the literature, Foster and Vohra (1997, 1999), Hart and Mas-Colell (2000, 2001), Stoltz

and Lugosi (2005), and Blum and Mansour (2007) investigated internal regret-free strategies

in the perfect monitoring case.

As mentioned before, a strategy is internal regret-free under perfect monitoring, if for any

given sequence of states and for every action a, the DM cannot profit from replacing a with

another action. The internal regret test compares at any stage T the actual total payoff over

the stages where action a was played up to stage T divided by T , with the corresponding payoff

had a been replaced by another action.

In a general sequential decision problem with imperfect monitoring, the empirical frequency

of the signals provides only partial information about the frequency of the actual states chosen

by nature. There might be many distributions over states that are consistent with past signals.

When computing her payoff had she played a different mixed action, the DM could consider any

one of these distributions. For instance, among all these distributions the DM could consider

the one that entails the worst payoff possible. To maximize her payoff in the worst-case scenario,

the DM’s optimal action could be mixed (see Example 1 below). In this case, a strategy is

regret-free if the DM cannot profit by replacing any mixed action that she played infinitely often

by another mixed strategy, where the gain is measured w.r.t. the worst behavior of nature that

is consistent with the obtained signals.

We prove that when the DM is pessimistic, namely considers the worst-case scenario, an

internal regret-free strategy exists. For this purpose we use Blackwell’s approachability theory

to construct such a strategy. In a follow-up to our paper, Perchet (2009) showed that one can

use calibration methods instead of Blackwell’s approachability theory to construct regret-free

strategies. In Remark 9 below we elaborate on the differences between Perchet (2009) and our

result.

Decision makers are not necessarily pessimistic. An optimistic DM, for instance, believes

that nature is benevolent and is trying to help her. In this case she would compare her payoff

had nature been cooperative (and played the best distribution over states) with the performance
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of an alternative action had nature been playing the best possible distribution against the latter.

Our definition and results are general enough to encompass this optimistic approach, as well

as other methods to measure the performance of the DM’s own strategy.

It is well known that in the setup of multiplayer repeated games, when each player plays an

internal regret-free strategy (and each player considers all other players as ‘nature’), the play

converges to the set of correlated equilibria (see Hart and Mas-Colell, 2000). It turns out that

in multiplayer repeated games with imperfect monitoring, when all players play an internal

regret-free strategy, the play does not converge to the set of correlated equilibria, but rather to

the larger set of partially-specified correlated equilibria (see Lehrer and Solan (2007) for more

details).

In recent years the literature on internal regret has expanded in a fast pace. Perchet

(2011, 2013) summarizes the relations between the notions of approachability, no regret, and

calibration, and Hazan and Kakade (2012) relate the computational complexity of calibration

to that of approximate Nash equilibria. The study of the possible optimal rates of internal

regret, that was initiated by Cesa-Bianchi, Lugosi, and Stoltz (2006), was recently completed

by Foster and Rakhlin (2012).

The paper is arranged as follows. In Section 2 we present a model of sequential decision

problems and describe our main results. The proofs are presented in Section 3. The two

appendices contain extensions of known results to more general setups, which we need here.

2 The Model and the Main Results

2.1 The Model

A decision maker (DM) faces a sequential decision problem. At every stage the DM takes an

action in a finite action set A, and nature chooses a state in a finite set of states Ω. The payoff

function of the DM is given by a function u : A × Ω → R, which is assumed (without loss of

generality) to be bounded between 0 and 1. The actual action and the state at stage t are

denoted by at and ωt, respectively.

We denote1 by X = ∆(A) the set of the DM’s mixed actions, and by Y = ∆(Ω) the set of

probability distributions over the set of states, Ω.

The DM does not observe the realized state; rather, she observes a noisy signal that depends

on it and on her action. The monitoring structure is given by a function s : A × Ω → ∆(S),

where S is a finite set of signals. Thus, at every stage t ∈ N the DM observes the signal

st, chosen according to the probability distribution s(at, ωt). We assume that the DM has

1For a finite set Z, the set of probability distributions over Z is denoted by ∆(Z).
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perfect recall, meaning that she recalls all her past actions and the signals she received. For

technical reasons it is convenient to assume that the signal includes the action that the DM

chose; formally this means that if s(a, ω)(s′) > 0 and s(a′, ω′)(s′) > 0 then a = a′. We denote

by a(s) the action corresponding to the signal s.

The domains of the payoff function u and the signal function s are extended to X × Y in

a multilinear fashion. Thus, for every a ∈ A and y = (yω)ω∈Ω ∈ Y , s(a, y) =
∑

ω∈Ω yωs(a, ω) ∈
∆(S) is the mixed signal induced by a and y. For every y ∈ Y the footprint of y is µ(y) =

(s(a, y))a∈A ∈ (∆(S))A. If, for instance, at every stage the state is chosen independently

according to the probability distribution y, and the DM plays the action a ∈ A infinitely often,

then by the strong law of large numbers for martingales, the empirical frequency of signals that

the DM observes during the stages in which she played the action a converges to s(a, y) with

probability 1. Because the DM recalls all past signals, if she plays all actions infinitely often

the information she would collect about y is the collection of distributions (s(a, y))a∈A, which

is the footprint that y leaves. Let M := {µ(y) ∈ (∆(S))A : y ∈ Y } be the set of all footprints.

We say that two distributions over states y, y′ ∈ Y are equivalent, denoted y ∼ y′, if they

have the same footprint: µ(y) = µ(y′). For every µ′ ∈ M denote by Y (µ′) := {y ∈ Y : µ(y) =

µ′} the set of all distributions over states whose footprint coincides with µ′. The set Y (µ) is

defined by linear equalities, and therefore the set-valued functions y 7→ Y (µ(y)) and µ 7→ Y (µ)

are upper-semi-continuous.2 By Rockafeller and Wets (2009, Chapter 9, Section E) it follows

that the set-valued function y 7→ Y (µ(y)) is Lipschitz continuous.

2.2 External regret-free Strategies

Definition 1. (i) Let X̃ ⊆ X be a set of mixed actions. A strategy σ with range X̃ for

the DM is a function that assigns a probability distribution over X̃ to every finite history in

H :=
⋃∞
t=1(X̃ × S)t−1.

(ii) A strategy σ with range X̃ is stationary if σ(h) is independent of h; that is, there is a

distribution p ∈ ∆(X̃) such that σ(h) = p for every h ∈ H.

Throughout the paper, X̃ denotes the range of the strategy σ. When X̃ is finite we say

that σ is a strategy with finite range. In case X̃ coincides with the set A, a strategy with range

X̃ is a standard behavior strategy.

The concept of internal regret-free strategy that we are about to introduce takes into account

the actual mixed actions played at past stages, and not the realized actions. In the definition

2Unless indicated otherwise, we use the supremum norm: for every two vectors x, x′ ∈ Rd, the distance
between x and x′ is d(x, x′) = max{|xi − x′i|, 1 ≤ i ≤ d}, and for every subset D ⊆ Rd, the distance between
x and D is d(x,D) := infx′∈D d(x, x′). Likewise, the distance between two subsets Y1 and Y2 of Y is given by
d(Y1, Y2) := maxy1∈Y1 miny2∈Y2 d(y1, y2).
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of a strategy we therefore allow the strategy to choose randomly a mixed action from X̃ (and

then an action is selected according to the chosen mixed action). This feature of a strategy is

essential to the construction of an internal regret-free strategy when monitoring is imperfect.

Given a fixed sequence of states ~ω = (ωt)t∈N, every strategy σ with range X̃ induces a

probability distribution P~ω,σ over the set of infinite plays (X̃ × S)∞.

Let ε ≥ 0. A strategy is external ε-regret-free if the actual (unobserved) long-run average

payoff is at least, up to ε, the long-run average payoff that can be guaranteed against the worst

distribution over states consistent with the empirical frequency of states. Formally, denote by

ω̂T := 1
T

∑T
t=1[1(ωt)] the empirical distribution of states up to stage T .

Definition 2. [Rustichini, 1999] The strategy σ is external regret-free if for every sequence of

states ~ω = (ωt)t∈N and for every x ∈ X,

lim sup
T→∞

(
min
y∼ω̂T

u(x, y)− 1

T

T∑
t=1

u(at, ωt)

)
≤ 0 (1)

with P~ω,σ-probability 1.

In words, a strategy is external regret-free if the actual long-run average payoff is at least the

payoff that the DM would obtain by choosing a fixed alternative mixed action had nature chosen

the states according to the worst distribution over state that is equivalent to the empirical

distribution of states.

Remark 1. The definition of external no regret, as well as the extensions that we will provide

later, implicitly assumes that the sequence of states ~ω is fixed; that is, nature is oblivious to

the DM’s choices. The reason is that if nature responds to DM’s choices, then Definition 2

cannot be interpreted as having no regret. Indeed, when nature is responsive, the sequence of

states is generated as a response to the DM’s actions. If the DM deviates from the sequence

of actions (a1, . . . , aT ) and chooses her actions according to the stationary strategy x, then the

realized sequence of actions changes, and, since nature is responsive, the sequence of states

might change as well. In particular, the quantity miny∼ω̂T u(x, y) in Definition 2 no longer

measures the hypothetical worst-case payoff to the DM, and therefore the left-hand side of

Eq. (1) no longer measures the DM’s regret.

To illustrate this point, consider the Prisoner’s Dilemma game that appears in Figure 1,

where the DM is Player 1, nature is Player 2, and only the payoffs of the DM are depicted.

C D

C 3 0

D 4 1
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Figure 1: The Prisoner’s Dilemma as a sequential decision problem.

Suppose that nature is strategic and plays the Grim-Trigger strategy τ : nature begins with

playing C, and at any other stage it plays C if and only if the DM played C in all previous

stages. Suppose also that the DM uses the strategy σ that always plays C. Then the long-

run average payoff is 3. The strategy σ is not regret-free according to Definition 2. Indeed,

under (σ, τ) the sequence of realized states is ~ω = (C,C,C, · · · ), and the left-hand side of

Eq. (1) is equal to 1 for x = [1(D)]. However, since nature is strategic, if the DM uses the

strategy σ′ that always plays D, her long-run average payoff is 1, and therefore the quantity

miny∼ω̂T u(x, y) does not measure the hypothetical worst average payoff to the DM had she

played the stationary strategy x.

It should be emphasized that Definition 2 is valid also when nature is strategic. However,

its interpretation in this case is questionable.

Remark 2. Standard continuity and compactness arguments show that the convergence in

Eq. (1) is uniform over x ∈ X, so that Definition 2 is indeed equivalent to the definition given

by Rustichini (1999) for external regret-free strategies.

The main objective of this paper is to introduce the concept of internal regret-free strategies

when monitoring is imperfect and to extend the following theorem.

Theorem 1 (Rustichini (1999), Lugosi, Mannor, Stoltz (2008)). There exists an external

regret-free strategy with range X̃ = A.

2.3 Internal Regret-Free Strategies

2.3.1 The definition

Let x ∈ X̃, let a ∈ A, and let T ∈ N. Denote by ITx the set of all stages t ≤ T in which the

DM played the mixed action x, and by ω̂Tx the empirical frequency of states over ITx . That is,

ω̂Tx := 1
|ITx |

∑
t∈ITx [1(ωt)], provided that ITx 6= ∅.

Definition 3. Let ε ≥ 0. A strategy σ with finite range X̃ is internal ε-regret-free if for every

sequence of states ~ω = (ωt)t∈N, every x ∈ X̃, and every x′ ∈ X,

lim sup
T→∞

min
y∼ω̂Tx

u(x′, y)− 1

|ITx |
∑
t∈ITx

u(at, ωt)

 ≤ ε (2)

holds3 on the event {limT→∞ |ITx | =∞}, with respect to P~ω,σ.

3 We say that event B holds on event A if P(A ∩ B) = P(A). Thus, a certain inequality holds on event A if
the probability of all points in A that do not satisfy it is 0.
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A strategy is internal regret-free if for every mixed action x that the DM chooses infinitely

often, and for every alternative mixed action x′ ∈ X (not necessarily in X̃), the actual long-run

average payoff over the set of stages ITx is, up to ε, at least the minimal payoff that the DM

would obtain if in those stages she played the stationary strategy x′, and nature chose states

in a way equivalent to the actual empirical frequency, provided T is sufficiently large.

When monitoring is perfect, the only mixed state equivalent to ω̂Tx is ω̂Tx . In this case,

Definition 3 with X̃ = A is identical to the definition of internal no regret introduced by Hart

and Mas-Colell (2000).

2.3.2 Remarks

Remark 3. The strategy σ in Definition 3 is required to have a finite range. At first glance it

seems that the larger the range of σ, the easier it is to pass the no-regret test, because the DM

has a richer set of choices. This is not the case because the number of inequalities that should

be met grows as the range of σ grows. Note that whether or not a mixed action x is ε-optimal

depends solely on its performance over the set of stages ITx . This means that the existence of

other mixed actions in the range of σ does not help x to be ε-optimal against µ(ω̂Tx ).

Remark 4. As in the case of perfect monitoring, any internal ε-regret-free strategy is, in

particular external ε-regret-free, with ε replacing the 0 on the right-hand side of Eq. (1). Indeed,

suppose that σ is an internal ε-regret-free strategy and fix x′ ∈ X. For every T ∈ N denote

by yT ∈ Y a mixed action where the minimum miny∼ω̂T u(x′, y) is attained. Then for every

T ∈ N,

min
y∼ω̂T

u(x′, y)− 1

T

T∑
t=1

u(at, ωt) = u(x′, yT )− 1

T

T∑
t=1

u(at, ωt)

= u(x′, yT )−
∑
x∈X̃

|ITx |
T

 1

|ITx |
∑
t∈ITx

u(at, ωt)


≤

∑
x∈X̃

|ITx |
T

min
y∼ω̂Tx

u(x′, y)−
∑
x∈X̃

|ITx |
T

 1

|ITx |
∑
t∈ITx

u(at, ωt)


=

∑
x∈X̃

|ITx |
T

min
y∼ω̂Tx

u(x′, y)− 1

|ITx |
∑
t∈ITx

u(at, ωt)

 ,

where the inequality holds because
∑

x∈X̃
|ITx |
T yx ∼ ω̂T whenever yx ∼ ω̂Tx for every x ∈ X̃.

Because σ is an internal ε-regret-free strategy with a finite range X̃, it follows by Definition 3

that the limit superior of the right-hand side is at most ε, as claimed.
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Remark 5. In Remark 1 we mentioned that the interpretation of Definitions 2 (and also of

Definition 3) as regret is questionable when nature is not oblivious, yet the results hold also in

a strategic setup. In fact, as shown in Hart and Mas-Colell (2001), the concept of regret-free

strategies can be useful also in strategic setups; in this paper it is proven that if all players use

regret-free strategies (and ignore the fact that other players do the same), then the long-run

average play converges to the set of correlated equilibria of the one-shot game.

Remark 6. The range of the strategy σ is X̃ and not X. Yet, in order to be internal ε-regret-

free, the performance of a strategy must be better, up to ε, than any alternative mixed action

regardless of whether it is in X̃. For this reason the mixed action x′ in Definition 3 is not

restricted to X̃.

Remark 7. In Definition 3 the quantity miny∼ω̂Tx u(x′, y) represents the hypothetical worst-case

expected payoff to the DM if she played the mixed action x′ instead of x. This hypothetical

payoff is compared to her actual payoff 1
|ITx |

∑
t∈ITx u(at, ωt). Alternatively, one could define

internal regret-free strategy by comparing the hypothetical worst-case expected payoff to the

expected average payoff of the DM, 1
|ITx |

∑
t∈ITx u(x, ωt). By the strong law of large numbers

for martingales, the difference 1
|ITx |

∑
t∈ITx (u(at, ωt) − u(x, ωt)) converges to 0 as |ITx | goes to

infinity, and therefore the current definition and the alternative one coincide.

Remark 8. [Internal no regret with and without perfect monitoring] Definition 3 labels a

strategy internal regret-free if the performance of any mixed action played infinitely often is

the best possible, over the stage in which it has been played. In the case of perfect monitoring,

in contrast, a strategy is internal regret-free if the performance of any pure action played is the

best possible, over the stages in which it has been played. The question arises as to why in the

imperfect monitoring case only the performances of the mixed actions used are examined, and

not the performance of the actions that have actually been used. The reason is explained in

the discussion after Example 1 below.

Remark 9. Another variation on the theme of internal no regret could be the definition used

in an early version of this paper (Solan and Lehrer, 2007) and adopted by Perchet (2009): a

strategy σ is internal ε-regret-free if for every sequence of states ~ω = (ωt)t∈N, every x ∈ X̃, and

every x′ ∈ X,

lim sup
T→∞

min
y∼ω̂Tx

1

T

∑
t∈ITx

(
u(x′, y)− u(at, ωt)− ε

)
= lim sup

T→∞
min
y∼ω̂Tx

|ITx |
T

(
u(x′, y)−

∑
t∈ITx u(at, ωt)

|ITx |
− ε

)
≤ 0 (3)
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with P~ω,σ-probability 1. Clearly, Eq. (2) implies Eq. (3). The opposite implication is incorrect,

implying that Definition 3 is strictly stronger than this variation. The reason is the following.

As long as lim infT→∞
|ITx |
T > 0, Eq. (3) indeed implies Eq. (2), possibly with a smaller ε.

However, if lim infT→∞
|ITx |
T = 0, a condition that depends both on the sequence ~ω and the

strategy σ, then at those stages in which |ITx |
T is close to zero, Eq. (3) is mute regarding the

actual difference between 1
|ITx |

∑
t∈ITx u(at, ωt) and miny∼ω̂Tx u(x′, y). In other words, whenever

there is no guarantee that actions are asymptotically played with a positive frequency, the

definition that uses Eq. (3) does not imply Definition 3.

Our first result is the following.

Theorem 2. For every ε > 0 there exists a strategy with a finite range that is internal ε-regret-

free.

Theorem 2 is a special case of Theorem 3 below. The proof of Theorem 3 provides an

algorithm that constructs an internal ε-regret-free strategy.

2.4 Response Correspondences

2.4.1 Examples

The notion of internal regret-free strategies introduced above refers to a pessimistic DM who

considers the worst-case scenario. That is, the DM has no regret if the actual average payoff

is at least the payoff that could have been obtained against the worst distribution over states

consistent with past signals. However, the DM might have different ways to assess her perfor-

mance, as illustrated by the following example. This example and the following one serve as a

motivation to the concept of response correspondence, which captures the attitude of the DM

towards uncertainty.

Example 1. Consider a decision problem with three states, Ω = {L,M,R}, and two actions,

A = {T,B}. The payoffs4 are given in Figure 2.

L M R

T 3 0 0

B 0 2 2

Figure 2: The payoffs in Example 1.

Assume that the DM has no information about nature’s choices; that is, the set of signals

is identical with the set of actions.

4For convenience, in the examples we allow payoffs to be greater than 1.
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A pessimistic DM who considers the worst-case scenario will play at every stage the mixed

action [2
5(T ), 3

5(B)], which guarantees an expected payoff of 6
5 per stage. This is the DM’s

optimal strategy in the zero-sum game defined by the payoff function in Figure 2.

Example 1 also illustrates why in the definition of internal regret-free strategies we consider

the performance of the mixed actions chosen by the DM, rather than the performance of the

realized pure actions. In this example, the DM obtains no information about the state of

nature. A pessimistic DM has only one strategy which is internal regret-free. This is the

stationary strategy that prescribes playing the mixed action [2
5(T ), 3

5(B)] at every stage. If the

performance of the realized pure actions would have been examined against alternatives, every

strategy would have generated internal regret. Indeed, in Example 1 both T and B are inferior

to [2
5(T ), 3

5(B)], regardless of the sequence nature chooses.

2.4.2 The definition

The following definition captures the idea that different DMs might have different approaches

to uncertainty. A DM is characterized by what we call a response correspondence.

Definition 4. A response correspondence is a set-valued function R : M ↪→ X that satisfies

R(µ) = R(µ′) whenever Y (µ) = Y (µ′).

The interpretation of a response correspondence is as follows. Suppose that the response

correspondence of the DM is R. When the DM observes that in a certain subset of stages the

empirical footprint coincides with µ, she regards the mixed actions in R(µ) as optimal responses

to the set of distributions over states that could induce µ.

The condition that R(µ) = R(µ′) whenever Y (µ) = Y (µ′) reflects the following property.

The set of mixed actions that the DM views as optimal depends only on the set of distributions

over states that may induce the observed average signal (and not, for instance, on the mixed

actions chosen by the DM or on the order by which signals where received). In particular it

implies that when the DM receives no information, R is constant.

2.4.3 Examples of response correspondences

Three response correspondences that were mentioned earlier are the following.

Maximum entropy: Denote yENTµ := argmaxy∈Y (µ)

{
−
∑

ω∈Ω yω ln(yω)
}

. The response cor-

respondence5 of a DM who believes in maximal entropy is

RENT (µ) := argmaxx∈X
{
u(x, yENTµ )

}
, ∀µ ∈M.

5The compactness of Y (µ) and the concavity of the entropy function ensure that yENTµ is well defined.
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Worst case: The response correspondence of a pessimistic DM is

RWC(µ) := argmaxx∈X

{
min
y∈Y (µ)

u(x, y)

}
, ∀µ ∈M.

Best case: The response correspondence of an optimistic DM is

RBC(µ) := argmaxx∈X

{
max
y∈Y (µ)

u(x, y)

}
, ∀µ ∈M.

Example 1 continued. In Example 1 if the DM’s attitude towards uncertainty were not

pessimistic, she may have different regret-free strategies. Suppose, for example, that the DM

were optimistic, considering the best-case scenario. If she played T at every stage, her best-case

stage payoff was 3, while if she played B at every stage, it was only 2. On the other hand, if

she played a mixed action [p(T ), (1− p)(B)] at every stage, her best-case expected stage payoff

was max{3p, 2(1− p)}. A regret-free strategy for an optimistic DM would then be playing T in

all stages.

A DM who believes in maximum entropy thinks that nature chooses a state with the distri-

bution [1
3(L), 1

3(M), 1
3(R)]. In this case her best response, and her regret-free strategy, is the

stationary strategy B.

When the DM does not get any signal, as in Example 1, she takes into account all possible

distributions over states, because no distribution is excluded. However, when she receives

signals that depend both on her action as well as on the actual state, some distributions over

states are ruled out as being inconsistent with the empirical signals. This is illustrated by the

following example.

Example 2. Consider a decision problem with three states, Ω = {L,M,R}, two actions,

A = {T,B}, and four signals, S = {s1, s2, s3, s4}. The payoffs (at the center) and the signals

that the DM observes (at the upper-right corner) are given in Figure 3.

L M R

T 3 s1 3 s2 0 s1

B 0 s3 2 s4 5 s3

Figure 3: The payoffs and the signals in Example 2.

Suppose that the DM uses the stationary strategy T . At every stage the DM receives the

signal s1 if nature chooses L or R, and the signal s2 if nature chooses M . Suppose that the

long-run frequency of stages in which the DM observed the signal s1 is 50%. The DM can
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deduce from this information that the long-run frequency of the state M is 50%. Thus, during

half of the stages the DM’s payoff was 3, and during the other half her payoff was either 0 or

3.

If the DM played the stationary strategy B, her payoff would be 2 whenever the signal was

s2, and either 0 or 5 whenever the signal was s1. To determine whether the DM regrets playing

T and not B, the DM should therefore compare the following scenarios:

• Stationary strategy T : A payoff of 3 during half the stages, and a payoff in {3, 0} during

the other half.

• Stationary strategy B: A payoff of 2 during half the stages, and a payoff in {5, 0} during

the other half.

• Mixed stationary strategy [p(T ), (1 − p)(B)]: An expected payoff 2 + p during half the

stages, and an expected payoff in {3p, 5(1− p)} during the other half.

The result of this comparison depends on the characteristics of the DM. The reader can verify

that the stationary strategy [5
8(T ), 3

8(B)] maximizes the DM’s payoff in the worst-case scenario,

hence it is a regret-free strategy in this case. On the other hand, a regret-free strategy of an

optimistic DM is to always play B, while a DM who believes in maximal entropy is indifferent

between T and B.

2.5 Internal No Regret with Response Correspondences

For every subset D ⊆ Rd and every ε > 0, denote the set of all points which are ε-close (in the

supremum norm) to D by B(D, ε). That is, B(D, ε) := {x ∈ Rd : d(x,D) ≤ ε}. Thus, for every

µ ∈ M, B(µ, ε) := B({µ}, ε) is the set of all footprints that are ε-close to µ, and R(B(µ, ε))

stands for the union of all R(µ′), where µ′ ∈ B(µ, ε). The set B(R(B(µ, ε)), ε) is then the set of

all mixed actions of the DM that are ε-close to optimal strategies against at least one footprint

that is ε-close to µ.

Recall that the set-valued function µ 7→ Y (µ) is upper-semi-continuous. It follows that

if µ′ is close to µ, then for every y′ ∈ Y (µ′) there is y ∈ Y (µ) that is close to y′. Thus,

when R is continuous a mixed action that is optimal (according to R) against y′, is close to

an optimal response against y. We conclude that all the mixed actions in B(R(B(µ, ε)), ε)

are close-to-optimal responses against µ. In the following definition we do not distinguish

between continuous and noncontinuous response correspondences. In both cases, actions in

B(R(B(µ, ε)), ε) will be considered approximately optimal.

12



Definition 5. i. Let ε ≥ 0. The mixed action x′ ∈ ∆(A) is ε-optimal against the footprint

µ ∈M if x′ ∈ B(R(B(µ, ε)), ε). ii. Let σ be a strategy with a finite range X̃ and let ε > 0. The

strategy σ is internal ε-regret-free w.r.t. the response correspondence R if for every sequence of

states of nature ~ω, every x ∈ X̃ for which P~ω,σ
(
limT→∞ |ITx | =∞

)
> 0, and every δ > 0 there

exists6a stage T ′ = T ′(~ω, ε, δ) ∈ N such that

P~ω,σ
(
x is ε−optimal against µ(ω̂Tx ), ∀T ≥ T ′ | { lim

T→∞
|ITx | =∞}

)
> 1− δ.

According to Definition 5, the mixed action x is ε-optimal against µ(ω̂Tx ) if it is in the

ε-neighborhood (i.e., in B(·, ε)) of a best response (i.e, in R(·)) to a mixed strategy equivalent

to ω̂Tx . A strategy σ with a finite range is internal ε-regret-free, if for every ~ω and for every

mixed action x that is played infinitely often, the probability that x is ε-optimal against µ(ω̂Tx )

for every T sufficiently large is arbitrarily close to 1.

In the sequel (Proposition 1) we show that when a strategy σ is internal ε-regret-free

w.r.t. the response correspondence RWC , it is in particular internal ε-regret-free (see Definition

3).

Example 2 continued. Suppose that the empirical distribution of signals up to stage T is

[1
2(s1), 1

2(s2)]. A DM who believes in maximal entropy assumes that states are chosen stationar-

ily according to the probability distribution [1
4(L), 1

2(M), 1
4(R)]. One can verify that if the state

is chosen at every stage using this distribution, the average payoff of the DM is 9
4 whatever she

plays, and therefore any strategy of the DM is internal regret-free w.r.t. RENT .

An optimist DM would rather play B: she believes that if she played T her expected average

payoff would be 3, whereas if she played B her expected average payoff would be 3.5. Therefore

the stationary strategy B is internal regret-free w.r.t. RBC .

The next proposition links the notion of internal ε-regret-free strategies w.r.t. a response

correspondence with the notion of internal ε-regret-free strategies presented in Definition 3.

Proposition 1. Let ε > 0. If the strategy σ with finite range is internal ε-regret-free w.r.t. the

response correspondence RWC , then it is internal Lε-regret-free where L > 0 depends on the

payoff function u and the monitoring structure s, and not, e.g., on σ or on ε.

Remark 10. [About external no regret with imperfect monitoring] For the sake of completeness

we briefly discuss the weaker notion of external regret. Definition 5 requires that, conditional

on the event {limT→∞ |ITx | =∞}, with high probability, in the majority of stages up to stage

T , the action played is ε-optimal against the average empirical frequency of states. In contrast,

6 Because the range of σ is finite, we can omit the dependency of T ′ on x.
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external regret refers to the entire history and does not classify stages according to the mixed

action that has been played by the DM. One could define a strategy with a finite range σ to

be external ε-regret-free w.r.t. the response correspondence R if for any sequence of states of

nature ~ω, and for every δ > 0 there exists a stage T ′ = T ′(~ω, ε, δ) ∈ N such that

P~ω,σ
(
aT is ε−optimal against µ(ω̂T ), ∀T ≥ T ′

)
> 1− δ,

where aT is the empirical frequency of actions up to stage T . One has to note that as far as

RWC is concerned, Proposition 1 claims that internal no regret implies external no regret. This

implication does not hold for a general response function.

The following theorem refers to response correspondences and, in light of Proposition 1,

generalizes Theorem 2.

Theorem 3. For every response correspondence R and every ε > 0 there exists a strategy with

a finite range that is internal ε-regret-free w.r.t. R.

3 Proofs

3.1 Proof of Proposition 1

Because Y is a Lipschitz continuous correspondence, there exists K > 0 such that for every

µ, µ′ ∈ M and every y ∈ Y (µ), there is y′ ∈ Y (µ′) that satisfies d(y, y′) ≤ Kd(µ, µ′). In

particular,

d(µ, µ′) < ε =⇒ d(Y (µ), Y (µ′)) ≤ Kε. (4)

Let σ be an internal ε-regret-free strategy with range X̃ w.r.t. the response correspondence

RWC (according to Definition 5). Fix a sequence ~ω of states, a mixed action x ∈ X̃ for which

P~ω,σ(limT→∞ |ITx | =∞) > 0, a mixed action x′ ∈ X, and δ > 0.

Let T ′ = T ′(~ω, ε, δ) be the stage given in Definition 5 and let T ≥ T ′ be arbitrary. Because

σ is internal ε-regret-free w.r.t. RWC , with P~ω,σ-probability at least 1 − δ, x is ε-optimal

against µ(ω̂Tx ), so that x ∈ B(RWC(B(µ(ω̂Tx ), ε)), ε). That is, the distance between x and some

x̂ ∈ RWC(B(µ(ω̂Tx ), ε)) is at most ε. It follows that there exists µ̂ such that µ̂ ∈ B(µ(ω̂Tx ), ε)

and x̂ ∈ RWC(µ̂). Because (i) d(µ̂, µ(ω̂Tx )) ≤ ε, (ii) d(x, x̂) ≤ ε, and (iii) x̂ ∈ RWC(µ̂), it follows
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that with probability at least 1− 2δ,

min
y∈Y (µ(ω̂Tx ))

u(x, y) ≥ min
y∈Y (µ̂)

u(x, y)−Kε (follows from (i) and (4))

≥ min
y∈Y (µ̂)

u(x̂, y)− (K + 1)ε (follows from (ii))

≥ min
y∈Y (µ̂)

u(x′, y)− (K + 1)ε (follows from (iii))

≥ min
y∈Y (µ(ω̂Tx ))

u(x′, y)− (2K + 1)ε. (follows from (i) and (4))

The result follows by Remark 7.

3.2 Proof of Theorem 3

3.2.1 Random vector-payoff games – background

Blackwell’s approachability theory (Blackwell, 1956) is a useful tool in the study of regret-free

strategies. Luce and Raifa (1958) cite Blackwell’s7 proof of Hannan’s (1957) no regret theorem,

which uses this theory. In fact, the approachability technique suggests an algorithm that plays

a regret-free strategy. To make the presentation complete, we briefly review the definitions and

results that we need for the proof.

A two-player repeated game with vector payoffs is given by an n × m matrix Z, whose

entries are Rd-valued random variables,8 such that for every i ∈ I := {1, . . . , n} and every

j ∈ J := {1, . . . ,m}, the random variable Z(i, j) that corresponds to the entry (i, j) has mean

z(i, j) ∈ Rd. At every stage t ∈ N the two players, independently and simultaneously, choose

actions it ∈ I and jt ∈ J , and Player 1 obtains an Rd-dimensional payoff Zt = (Ztk)
d
k=1, which

is randomly chosen according to the distribution of Z(it, jt). Player 1 is not informed of the

action jt that Player 2 chose, but only of the realization Zt. Strategies of the players 1 and 2 are

denoted by σ and τ , respectively. Each pair (σ, τ) of strategies naturally defines a probability

distribution Pσ,τ over the set of plays, endowed with the σ-algebra spanned by all cylinder sets.

We say that a subset C ⊆ Rd is approachable by Player 1 if he has a strategy σ such that,

with Pσ,τ -probability 1, the distance between C and the average payoff 1
T

∑T
t=1 Z

t up to stage

T goes to 0 as T goes to infinity, regardless of the strategy τ of Player 2.

To prove the existence of a regret-free strategy, one usually defines a proper two-player

repeated game with vector payoffs, where Player 1 is associated with the DM and Player 2

with nature. The payoffs in the game measure the discrepancy between the actual payoff of

7Luce and Raifa (1958) refer to Blackwell’s invited address to the Institute of Mathematical Statistics, Seattle,
August 1956, entitled “Controlled random walks”.

8In most applications of Blackwell’s theory in game theory, the payoffs are uniquely determined by the actions
of the players. In our proof, as in Blackwell’s original paper, the payoffs are random variables.
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the DM and her payoff had she played alternative actions. One then shows that a properly

defined set C is approachable by Player 1, and that any strategy of Player 1 that approaches

C is regret-free.

In the study of internal regret-free strategies, for each mixed action x that the DM may play,

we need to consider the stages in which x was played separately from other stages. Therefore,

the vector that should converge to C is not the regular average payoff, but a skewed average

payoff, that takes into account the stages in which each mixed action was played and the number

of these stages. We thus use Lehrer’s (2002) generalization of Blackwell’s (1956) approachability

theory, which studies repeated games with vector payoffs that incorporate activeness functions.

The activeness functions determine the way Player 1 views the average payoff vector at any

stage. A two-player repeated game with vector payoffs and activeness functions is a two-player

repeated game with vector payoffs, supplemented with an infinite sequence of functions (χt)t∈N,

where for every t ∈ N, the function χt = (χtk)
d
k=1 maps histories of length t to vectors in {0, 1}d;

for every history ht = (i1, j1, i2, j2, ..., it, jt) of length t, χt(ht) determines which coordinates of

the payoff vector at stage t contribute to the average payoff vector. In our construction, χt(ht)

depends only on it.

Denote χT =
∑T

t=1 χ
t. This is the total number of times up to stage T in which each

coordinate was active and it depends on the play up to, and including, stage T . Define the

skewed average payoff9 vector ẐT by ẐT := 1
χT
·
∑T

t=1 χ
t · Zt. That is,

ẐTk =

∑
{t≤T : χtk(ht)=1} Z

t
k

|{t ≤ T : χtk(h
t) = 1}|

for each k = 1, 2, . . . , d. Thus, a coordinate is taken into account only in stages in which it

contributes to the average payoff.

Lehrer (2002) studies repeated games with vector payoffs and activeness functions in which

χt depends on past play and not on the play at stage t. As mentioned before, for our purposes

we need χt to depend on it and jt. The generalization of Lehrer’s result to this setup is

presented in Appendix A.

3.2.2 The proof

The outline of the proof is as follows. After some preparations (Step 1) we define an auxiliary

game with vector payoffs and activeness functions (Step 2). We define a target set C, which

is close in spirit to the one defined by Blackwell in his alternative proof of Hannan’s (1957)

9For any two vectors a, b ∈ Rd we denote by a · b the coordinate-wise product: (a · b)k := akbk for every k.
Similarly, a

b
denotes the coordinate-wise quotient of a and b: (a

b
)k := ak

bk
for every k.
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result. We then study some properties of this game (Step 3), and state that the target set C is

approachable by Player 1 in the game with activeness functions. The proof of this latter claim

appears in Appendix A. We conclude by showing that every strategy that approaches C in the

auxiliary game is internal ε-regret-free in the original decision problem (Step 5). We then point

out that this strategy is computable.

Step 1: Preparations.

Let R be a response correspondence. Fix ε > 0, set η0 := ε2

3 , and choose an η0-discretization

Y ∗ = {y1, . . . , yL} of the compact set Y = ∆(Ω); for every y ∈ Y there is ` ∈ {1, 2, . . . , L} such

that d(y, y`) ≤ η0. For each ` ∈ {1, 2, . . . , L} denote Y` := B(y`, η0)∩Y . The set Y` is a convex

polytope, and moreover, ∪L`=1Y` = Y . The collection {Y`, 1 ≤ ` ≤ L} is called an η0-covering

in the learning literature.

For each ` ∈ {1, 2, . . . , L} denote by µ` := µ(y`) = (s(a, y`))a∈A the footprint induced by

y`, and choose x̃` ∈ R(µ`). This is an optimal response of the DM (with respect to R) when

the signals she observes are indistinguishable from the signals generated when nature uses the

stationary strategy y`.

Finally, choose distinct mixed actions X̃ = {x1, x2, . . . , xL} in X that satisfy the following

two properties for each ` ∈ {1, 2, . . . , L}:

• x` has a full support and x`(a) ≥ ε for every action a ∈ A; and

• d(x`, x̃`) ≤ ε.

Step 2: Defining an auxiliary game with random vector payoffs and activeness functions.

Consider an auxiliary two-player repeated game with vector payoffs and activeness func-

tions, where at every stage Player 1 (who represents the DM) chooses a mixed action x` ∈ X̃
and Player 2 (who represents nature) chooses a state from Ω. The payoff is L|S|-dimensional,

where each coordinate corresponds to a pair (mixed action in X̃, signal in S), and it measures

the discrepancy between the actual signal and the theoretical distribution over signals.

The activeness function χt is deterministic and depends only on xt, Player 1’s choice at

stage t. For every t ∈ N, χt`,s′(h
t) := 1 if xt = x` and is equal to 0 otherwise.

We end the definition of the auxiliary game by defining the payoff function. For every

mixed action x` ∈ X̃ and every state ω ∈ Ω we thus define the random payoff Z(x`, ω) =

(Z`′,s′(x`, ω))s
′∈S
`′=1,...,L ∈ RL|S|. Because the payoff in the auxiliary game is observed by Player 1,

and the auxiliary game should reflect the original decision problem, the coordinate Z`′,s′(x`, ω)

should depend on the information available to the DM in the original decision problem, namely,

on his mixed action x` and on the observed signal s, and it should be independent of the state
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ω. Let

Z`′,s′(x`, ω) =

{
0 `′ 6= `,
1{s′=s} − s(a(s), y`)(s

′) `′ = `.

Note that the probability to observe the signal s when Player 1 plays x` is s(x`, ω)(s).

In other words, the vector payoff is L|S|-dimensional, and as in Blackwell’s original setup,

it is random. The coordinates corresponding to mixed actions different than the one that was

actually chosen by the DM are irrelevant and set to 0. This vector measures the difference

between the realized signal (when interpreted as a probability distribution in ∆(S), namely,

the Dirac measure concentrated on (`, s)) and the distribution of signals. We emphasize that

(a) the mixed action x` played by Player 1 determines the activeness function (all coordinates

{(`, s′), s′ ∈ S}, are active); (b) the observed signal s (and the action of Player 1, which

is included in the signal) determines the stage payoff; and (c) both x` and s determine the

distribution of the random payoff. Note that because each x` has full support, if the players

were playing repeatedly the pair (x`, y), the footprint that y leaves could be reconstructed from

the long-run average of the stage payoff vector.

The motivation behind the definition of the payoff function Z is the following. Recall that

x` is almost optimal against y`, so that when the DM plays x`, from the DM’s perspective y`

induces a “good” distribution over states. Because s(a(s), y`)(s
′) 6= 0 if and only if a(s′) = a(s),

the mean of Z`,s′(x`, ω), denoted z`,s′(x`, ω), satisfies

z`,s′(x`, ω) = s(x`, ω)(s′)−
∑
s∈S

s(x`, ω)(s) · s(a(s), y`)(s
′)

= s(x`, ω)(s′)− s(x`, y`)(s
′). (5)

For `′ 6= `, the mean z`′,s′(x`, ω) of Z`′,s′(x`, ω) is 0. If y ∈ ∆(Ω) is a distribution over states

that satisfies
∑

ω∈Ω y(ω)z`,s′(x`, ω) = 0 for every s′ ∈ S, then

s(x`, y)(s′) :=
∑
ω∈Ω

y(ω)s(x`, ω)(s′) = s(x`, y`)(s
′).

Therefore, y and y` are indistinguishable. In particular, x` is almost optimal against y. Sim-

ilarly, because x`(a) ≥ ε for every a ∈ A, when y ∈ ∆(Ω) is a distribution that satisfies

‖z`,s′(x`, y)‖∞ ≤ η, the mixed actions y and y` of Player 2 have close footprints: d(µ(y), µ(y`)) ≤
η
ε . As we will see below, a strategy is internal ε-regret-free once it guarantees that the average

payoff remains near ~0.

The auxiliary game we have defined is equivalent to the original sequential decision problem

in the following sense. Player 1 (resp. Player 2) in the auxiliary repeated game corresponds to

the DM (resp. nature) in the original sequential decision problem, and the random payoff in
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the auxiliary repeated game stands in 1-1 relation with the signal that the DM observes in the

original sequential decision problem. Every strategy σ of Player 1 in the auxiliary game is a

strategy for the DM with range X̃ in the original sequential decision problem and vice versa.

This is so because the information that Player 1 has in the auxiliary repeated game at every

stage t is the sequence of his past choices, as well as the sequence of past vector payoffs, which

is determined also by the signals that he observes in the original sequential decision problem.

Step 3: Properties of the average payoff in the auxiliary game with vector payoffs.

Recall that Zt is the payoff in stage t of the auxiliary game, ITx` is the set of all stages up to

stage T in which Player 1 plays the mixed action x`, and ω̂Tx` = 1
|ITx` |

∑
t∈ITx`

[1(ωt)] is the average

play of Player 2 in those stages. Throughout this step we fix a strategy σ of Player 1 and a

sequence of states ~ω = (ωt)t∈N (a pure Markovian strategy of Player 2), and we consider the

probability distribution P~ω,σ on the space of plays. Denote by I∗x` := {limT→∞ |ITx` | =∞} the

event that x` is played infinitely often and define the random variable L′ by L′ := {` ∈ L : x` is

played infinitely often}. Let ẐT` be the average vector payoff in the auxiliary game in all stages

in ITx` :

ẐT` :=
1

|ITx` |
∑
t∈ITx`

Zt.

Note that E[Zt | ht] = z(xt, ωt). By Lemma 4 in Appendix B, for every ` ∈ L, on the event

I∗x` we have limT→∞ |ẐT` − z(x`, ω̂
T
x`

))| = 0 almost surely. Because L is finite, this implies

that there is a real-valued function (~ω, η, T ) 7→ δ1(~ω, η, T ) satisfying limT→∞ δ1(~ω, η, T ) = 0 for

every η > 0, such that for every T ∈ N, every η > 0, and every ` ∈ L,

P~ω,σ
(
{d(Ẑt`, z(x`, ω̂

t
x`

)) > η, for some t ≥ T} ∩ I∗x`
)
≤ δ1(~ω, η, T ). (6)

Let C := B(~0, η0) be the `∞ ball with radius η0 around ~0, and let Π(ẐT ) denote the closest

point to ẐT in C. In some well-known applications of the approachability theorem, such as

Aumann and Maschler (1995), Foster (1999), and Hart and Mas-Colell (2000), the set C is

defined to be a whole (either the non-negative or the negative) orthant or a translation of it.

In our game the sum of the coordinates of the skewed average payoff Z
t

is 0, and the only point

in the non-negative orthant whose coordinates sum up to 0 is ~0. We therefore define C to be

a ball around ~0.

Claim 1. The set C is approachable by Player 1 in the auxiliary game. That is, there is a strat-

egy σ of Player 1 that guarantees that with Pσ,τ -probability 1 one has limT→∞ d(ẐT`,s,Π(ẐT )`,s) =

0 on the event {l ∈ L′} = {limT→∞ χ
T
`,s(h

T ) =∞}, for every (`, s) ∈ {1, · · · , L} × S and every

strategy τ of Player 2.

19



The proof of this claim appears in Appendix A.

Step 4: σ is an ε-internal regret-free strategy w.r.t. R.

Fix a sequence of states of nature ~ω. Recall that L′ is the random set of indices in L that

satisfy that x` is played infinitely often. Denote by d̂(Ẑt, C) the distance between Ẑt and C,

restricted to the coordinates (`, s) where ` ∈ L′. Because the strategy σ approaches C, we

obtain that for every η > 0 there is a real-valued function δ2(~ω, η, T ) that decreases to 0 as T

increases and satisfies

P~ω,σ
(
{d̂(Ẑt, C) > η, for some t ≥ T} ∩ I∗x`

)
≤ δ2(~ω, η, T ). (7)

Fix ` ∈ L′. If d̂(Ẑt, C) < η0, then by the definition of C it follows that ‖Ẑt`,s‖∞ < 2η0.

Eqs. (6) and (7) with η = η0 imply that for every T ∈ N,

P~ω,σ
(
{‖z(x`, ω̂tx`)‖∞ > 3η0 for some t ≥ T} ∩ I∗x`

)
≤ δ1(~ω, η0, T ) + δ2(~ω, η0, T ).

Let T be a stage at which Player 1 choose the mixed action x` and the realized action

is a. Then for every t ≥ T and every signal s′ such that a(s′) = a we have z`,s′(x`, ω̂
t
x`

) =

x`(a(s′))
(
s(a(s′), ω̂tx`) − s(a(s′), y`)

)
. It follows that if for each action a of the DM there is a

stage before T at which the DM chose the mixed action x` and the realized action was a, then

‖z(x`, ω̂tx`)‖∞ ≤ 3η0 implies d(µ(ω̂tx`), µ`) ≤
3η0

ε = ε, provided that t ≥ T . Because d(x`, x̃`) < ε

implies that x` ∈ B(R(B(µ`, 0)), ε), in such a case we have x` ∈ B(R(B(µ(ω̂tx`), ε)), ε).

Because x` has full support, at every stage each action of the DM is chosen with a positive

probability, bounded away from zero. Hence for every η > 0 there is T ∈ N such that

P~ω,σ
(
{x` ∈ B(R(B(µ(ω̂tx`), ε)), ε) for some t ≥ T} ∩ I∗x`

)
≤ δ1(~ω, η0, T ) + δ2(~ω, η0, T ) + η. (8)

Because this is true for any ` ∈ L′, it follows that σ is indeed ε-internal regret-free w.r.t. R.

Remark 11. In Step 4 of the proof of Theorem 3 we fixed a sequence ~ω and showed that a

properly defined strategy of the DM is ε-regret-free. The proof hinged on the fact that for each

t ∈ N, the state ωt at stage t is conditionally independent of the DM’s choice at that stage

given past play. Thus, the sequence ~ω could be chosen ahead of time or according to a certain

stochastic process as the game unfolds. Moreover, if the sequence of states is randomly chosen,

the proof shows that for any realized sequence ~ω (rather than almost surely) the strategy of

Player 1 is ε-regret-free.
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Appendices

A Approachability with Activeness Functions

Lehrer (2002) studies repeated games with vector payoffs and activeness functions that do not

depend on the current action of Player 1 (the DM). In the auxiliary game that is defined in the

proof of Theorem 3 the activeness functions depend on Player 1’s current action. In this section

we extend Lehrer’s result to this more general setup and prove Claim 1. Thus, we construct a

strategy σ for Player 1 in the auxiliary repeated game with vector payoffs that approaches the

set C. To simplify the section we do not prove the result in the most general setup, but rather

in the formulation discussed here.

Recall that in the auxiliary game, the activeness function for stage t is given by χt`,s(h
t) = 1

if at stage t Player 1 played x` and χt`,s(h
t) = 0, otherwise.

Denote χT =
∑T

t=1 χ
t. This is the total number of times up to stage T in which each

coordinate was active, and it depends on the play up to, and including, stage T . Denote the

total skewed payoff up to stage T by Z
T

=
∑T

t=1 χ
tZt (recall that this is a coordinate-wise

product and not the inner product), and the average payoff by ẐT = Z
T

χT
.

Recall that C ⊂ RL×S is the `∞ ball with radius η0 around ~0, and Π(x) denotes the

closest point in C to x, for every x ∈ RL×|S|. The (`, s)-coordinate of the vector Π(x) will be

denoted by Π(x)`,s. Our goal is to show that Player 1 has a strategy σ that guarantees that

lim supT→∞ |ẐT`,s| ≤ η0, Pσ,τ a.s. for every 1 ≤ ` ≤ L and s ∈ S such that limT→∞ χ
T
`,s = ∞,

and every strategy τ of Player 2. This result will follow from the following lemma:

Lemma 1 (Lehrer, 2002, Proposition 1). Let (hj)j∈N be a sequence of uniformly bounded

functions and let (σ, τ) be a pair of strategies. Define fn := 1
n

∑n
j=1 h

j, for every n ∈ N. If∑∞
n=1

‖fn‖2
n <∞, Pσ,τ -a.s., then the sequence (fn)n∈N converges to 0, Pσ,τ -a.s.

Let τn` be the n-th time in which Player 1 played the mixed action x`. If this event occurs

less than n times, we set τn`,s = 0. In our setup,

fn`,s =

{
Ẑ
τn`
`,s −Π(Ẑτ

n
` )`,s, τn`,s > 0,

n−1
n fn−1

`,s , τn`,s = 0.

In particular, χ
τn`
`,s = n for every n ∈ N, ` ∈ L and s ∈ S, provided that τn`,s > 0. To

prove Claim 1 we will construct a strategy σ for Player 1 such that (a)
∑∞

n=1

‖fn`,s‖
2

n < ∞
with Pσ,τ -probability 1 for every strategy τ , every ` ∈ L, and every s ∈ S, and (b) there is a

sequence of uniformly bounded functions (hj`,s)j∈N that satisfies fn`,s = 1
n

∑n
j=1 h

j
`,s. We start
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by constructing the strategy σ (Step 1), then prove that (a) is satisfied (Step 2), and finally

prove that (b) holds (Step 3).

Step 1: Constructing a strategy σ for Player 1.

Denote gT−1 :=
(

1
χT−1+1

)(
ẐT−1 −Π(ẐT−1)

)
. This is a random variable that depends on

the history up to (and including) stage T − 1.

Lemma 2. For every T ∈ N there is an |L× S|-dimensional vector bT−1 such that Π(bT−1) =

Π(ẐT−1) and bT−1 −Π(bT−1) = gT−1.

Proof. Note that

gT−1
`,s = 0 ⇐⇒ Π(ẐT−1)`,s = ẐT−1

`,s ,

gT−1
`,s =

(
1

χT−1 + 1

)
`,s

(
ẐT−1
`,s − η0

)
> 0 ⇐⇒ ẐT−1

`,s > η0,

gT−1
`,s =

(
1

χT−1 + 1

)
`,s

(
ẐT−1
`,s + η0

)
< 0 ⇐⇒ ẐT−1

`,s < −η0.

Define a vector bT−1 ∈ RL×S as follows:

bT−1
`,s :=


Π(ẐT−1)`,s gT−1

`,s = 0,

gT−1
`,s + η0 gT−1

`,s > 0,

gT−1
`,s − η0 gT−1

`,s < 0.

Then

Π(bT−1)`,s :=


Π(ẐT−1)`,s gT−1

`,s = 0,

η0 gT−1
`,s > 0,

−η0 gT−1
`,s < 0.

The reader can verify that bT−1 satisfies the desired properties.

For every y ∈ Y there is `(y) such that y ∈ Y`(y). Thus, the ‖ · ‖∞ distance between

s(x`(y), y) and s(x`(y), y`(y)) is smaller than η0. By (5), we have z(x`(y), y) ∈ C. This implies

that for every supporting hyperplane of C and every mixed action y ∈ Y , the set C and the

point z(x`(y), y) lie on the same side of the hyperplane.

Suppose that bT−1 6∈ C. Consider the hyperplane perpendicular to bT−1 − Π(bT−1) and

containing the point Π(bT−1), that is, the hyperplane tangent to C at the point Π(bT−1). The

minmax theorem guarantees that there is pT = (pT` )1≤`≤L ∈ ∆(X̃), such that for every ω ∈ Ω,

the vector z(x`, ω) and C are on the same side of this hyperplane and bT−1 on the other.

The strategy σ of Player 1 in the auxiliary game is to play the (history dependent) mixed

action pT when bT−1 6∈ C, and to play arbitrarily when bT−1 ∈ C.
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The random variable pT` represents the probability that the mixed action x` is chosen by

the DM at stage t, given past play. Denote by pT`,s := pT` x`(a(s))s(a(s), ωT )(s) the probability

that x` is the mixed action being played at stage T and the realized signal is s. The following

expresses the expectation of the inner product of 〈z(x`, ω) − Π(bT−1) and bT−1 − Π(bT−1),

conditional on the information available to Player 1 at stage T and on the state at stage T

being ω, when DM uses pT :

ETpT
(〈
z(x`, ω)−Π(bT−1), bT−1 −Π(bT−1)

〉∣∣∣ωT = ω
)

=
∑
`,s

pT`,s

(
z(x`, ω)−Π(bT−1)

)
`,s

(
bT−1 −Π(bT−1)

)
`,s
≤ 0, ∀ω ∈ Ω. (9)

The inequality is due to the choice of pT . Note that pT depends only on the play up to (and

including) stage T − 1. In particular, it can be calculated by Player 1 at stage T . Eq. (9)

states that the average (across all ` and s) of
(
z(x`, ω) − Π(bT−1)

)
`,s

(
bT−1 − Π(bT−1)

)
`,s

is nonpositive, which means that the vectors z(x`, ω) and bT−1 are on different sides of the

hyperplane tangent to C at the point Π(bT−1).

Step 2: Condition (a) holds.

Note that if at stage T Player 1 plays x`, then

(
χT − χT−1

χT
)`,s = (

1

χT−1 + 1
)`,s.

From now on we fix a strategy τ of Player 2. For every T ∈ N let ETσ,τ (·) be the conditional

expectation under (σ, τ) given the play up to stage T − 1. The choice of pT is made so that

the following inequality, which will be used in the sequel, holds:

ETσ,τ

〈ZT−1

χT−1
−Π(

Z
T−1

χT−1
),
ZT −Π(Z

T−1

χT−1 )(χT − χT−1)

χT

〉 ≤ 0. (10)

Indeed, denoting by τT (ω) the conditional probability that ωT = ω given the history up to
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stage T − 1, we have

ETσ,τ

〈ZT−1

χT−1
−Π(

Z
T−1

χT−1
),
ZT −Π(Z

T−1

χT−1 )(χT − χT−1)

χT

〉
= ETσ,τ

〈ZT −Π(Z
T−1

χT−1 )(χT − χT−1)

χT
,
Z
T−1

χT−1
−Π(

Z
T−1

χT−1
)

〉
= ETσ,τ

(〈
ZT −Π(

Z
T−1

χT−1
),

(χT − χT−1)

χT

(ZT−1

χT−1
−Π(

Z
T−1

χT−1
)
)〉)

(11)

=
∑
ω∈Ω

τT (ω)ETpT

(〈
ZT −Π(

Z
T−1

χT−1
),

(χT − χT−1)

χT

(ZT−1

χT−1
−Π(

Z
T−1

χT−1
)
)〉 ∣∣∣ωT = ω

)
(12)

=
∑
ω∈Ω

τT (ω)
∑
`,s

pT`,s

(
z(x`, ω)−Π(

Z
T−1

χT−1
)
)
`,s

1

χT−1
`,s + 1

(ZT−1

χT−1
−Π(

Z
T−1

χT−1
)
)
`,s

(13)

=
∑
ω∈Ω

τT (ω)
∑
`,s

pT`,s

(
z(x`, ω)−Π(bT−1)

)
`,s

(
bT−1 −Π(bT−1)

)
`,s
≤ 0. (14)

Eq. (13) holds for two reasons. First, all the terms in Eq. (11) except of ZT and χT are

measurable with respect to the history up to stage T − 1. Second, (χT − χT−1)`,s = 1 only

when x` is played at stage T , an event that occurs with probability pT` . Eq. (14) is due to

Lemma 2 and the inequality is due to Eq. (9).

Define

eT :=
Z
T

χT
− Z

T−1

χT−1
(15)

=
Z
T−1

χT
+
ZT

χT
− Z

T−1

χT−1

= Z
T−1

(
1

χT
− 1

χT−1

)
+
ZT

χT
. (16)

Note that either χT`,s = χT−1
`,s and ZT`,s = 0, or χT`,s = χT−1

`,s + 1 and |ZT`,s| ≤ 1. In particular, if

χT`,s = χT−1
`,s then eT`,S = 0, while if χT`,s = χT−1

`,s + 1 then

|eT`,s| =

∣∣∣∣∣ZT−1
`,s

(
1

χT`,s
− 1

χT−1
`,s

)
+
ZT`,s

χT`,s

∣∣∣∣∣ ≤ |ZT−1
`,s |

χT−1
`,s χT`,s

+
|ZT`,s|
χT`,s

≤ 2

χT`,s
. (17)
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In addition,

ETσ,τ (‖fT ‖2)

= ETσ,τ

∥∥∥∥∥Z
T

χT
−Π(

Z
T

χT
)

∥∥∥∥∥
2


≤ ETσ,τ

∥∥∥∥∥Z
T

χT
−Π(

ZT−1

χT−1
)

∥∥∥∥∥
2
 (18)

= ETσ,τ

∥∥∥∥∥Z
T−1

χT−1
+ eT −Π(

Z
T−1

χT−1
)

∥∥∥∥∥
2
 (19)

= ETσ,τ

∥∥∥∥∥Z
T−1

χT−1
−Π(

Z
T−1

χT−1
)

∥∥∥∥∥
2
+ ETσ,τ (‖eT ‖2) + 2ETσ,τ

(〈
Z
T−1

χT−1
−Π(

Z
T−1

χT−1
), eT

〉)

= ETσ,τ

∥∥∥∥∥Z
T−1

χT−1
−Π(

Z
T−1

χT−1
)

∥∥∥∥∥
2
+ ETσ,τ (‖eT ‖2) + 2ETσ,τ

(〈
Z
T−1

χT−1
−Π(

Z
T−1

χT−1
),
ZT

χT
)

〉)

+2ETσ,τ

(〈
Z
T−1

χT−1
−Π(

Z
T−1

χT−1
), Z

T−1
(

1

χT
− 1

χT−1
)

〉)
(20)

= ETσ,τ
(
‖fT−1‖2

)
+ ETσ,τ (‖eT ‖2) + 2ETσ,τ

〈ZT−1

χT−1
−Π(

Z
T−1

χT−1
),
ZT −Π(Z

T−1

χT−1 )(χT − χT−1)

χT

〉
+2ETσ,τ

〈ZT−1

χT−1
−Π(

Z
T−1

χT−1
), Z

T−1
(

1

χT
− 1

χT−1
) +

Π(Z
T−1

χT−1 )(χT − χT−1)

χT

〉 (21)

≤ ETσ,τ
(
‖fT−1‖2

)
+ ETσ,τ (‖eT ‖2)

+2ETσ,τ

〈ZT−1

χT−1
−Π(

Z
T−1

χT−1
), Z

T−1
(

1

χT
− 1

χT−1
) +

Π(Z
T−1

χT−1 )(χT − χT−1)

χT

〉 . (22)

Indeed, Eq. (18) holds because Π(Z
T

χT
) is the closest point in C to Z

T

χT
; Eq. (19) holds by (15);

Eq. (20) holds by (16); Eq. (21) holds because we added and subtracted the same term; and

Eq. (22) holds by (10).
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Iterating this derivation one obtains for every stage T

0 ≤ E
(
‖fT ‖2

)
(23)

≤ E
(
‖f1‖2

)
+

T∑
t=2

E(‖eT ‖2) (24)

+2
T∑
t=2

E

Et
〈Zt−1

χt−1 −Π(
Z
t−1

χt−1 ), Z
t−1

(
1

χt
− 1

χt−1 ) +
Π(Z

t−1

χt−1 )(χt − χt−1)

χT

〉 .

Consider the second summand in (24). Eq. (17) and the discussion that precedes it imply

that

T∑
t=2

E(‖eT ‖2) ≤
∞∑
t=2

E
(
‖eT ‖2

)
(25)

=

∞∑
t=2

E(
∑
`,s

(eT`,s)
2)

=
∑
`,s

∞∑
t=2

E((eT`,s)
2)

≤
∑
`,s

∞∑
t=2

4

t2
≤ 8L|S|.

Eqs. (23), (25) imply that the series in the third summand of (24) is greater than −1−8L|S|.
That is,

−1− 8L|S| ≤
T∑
t=2

E

〈Zt−1

χt−1 −Π(
Z
t−1

χt−1 ), Z
t−1

(
1

χt
− 1

χt−1 ) +
Π(Z

t−1

χt−1 )(χt − χt−1)

χt

〉
=

T∑
t=2

E

〈Zt−1

χt−1 −Π(
Z
t−1

χt−1 ),
Π(Z

t−1

χt−1 )(χt − χt−1)

χt
− Zt−1

(
1

χt−1 −
1

χt
)

〉
=

T∑
t=2

E

〈Zt−1

χt−1 −Π(
Z
t−1

χt−1 ),
Π(Z

t−1

χt−1 )(χt − χt−1)

χt
− Zt−1

(
χt − χt−1

χt−1χt
)

〉
=

T∑
t=2

E

(〈
Z
t−1

χt−1 −Π(
Z
t−1

χt−1 ),

(
Π(
Z
t−1

χt−1 )− Z
t−1

χt−1

)
χt − χt−1

χt

〉)
.
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By letting T go to infinity we deduce that

∞∑
t=2

E

(〈
Z
t−1

χt−1 −Π(
Z
t−1

χt−1 ),

(
Π(
Z
t−1

χt−1 )− Z
t−1

χt−1

)
χt − χt−1

χt

〉)

is bounded, and therefore

∞∑
t=2

(
Z
t−1

χt−1 −Π(
Z
t−1

χt−1 )

)2

(
χt − χt−1

χt
) <∞, Pσ,τ − a.s.

This implies that for every ` ∈ L and s ∈ S,

∞∑
t=2

(
Z
t−1

χt−1 −Π(
Z
t−1

χt−1 )

)2

`,s

(
χt − χt−1

χt
)`,s <∞, Pσ,τ − a.s. (26)

Recall that fn`,s := Ẑ
τn`
`,s −Π(Ẑτ

n
` )`,s = Z

τn`

χ
τn
`
−Π(Z

τn`

χ
τn
`

)`,s when τn` > 0. In this case we obtain

by (26)
∞∑
n=1

(fn`,s)
2

n
=
∞∑
t=1

(
Z
t−1

χt−1 −Π(
Z
t−1

χt−1 )

)2

`,s

(
χt − χt−1

χt
)`,s <∞,

and condition (a) above holds for every ` ∈ L and s ∈ S for which limn→∞ τ
n
`,s = ∞. If

limn→∞ τ
n
`,s <∞ then there is N ∈ N that satisfies τn`,s = 0 for every n ≥ N , so that

∞∑
n=1

(fn`,s)
2

n
=

N−1∑
n=1

(fn`,s)
2

n
+ fN−1

`,s

∞∑
n=N

(N − 1)2

n3
<∞,

and condition (a) holds as well.

Step 3: Condition (b) holds.

By the definition of fn, for every coordinate 1 ≤ ` ≤ L and every s ∈ S,

fn`,s =


(Z

τn`

χ
τn
`

)`,s − η0, if (Z
τn`

χ
τn
`

)`,s > η0

(Z
τn`

χ
τn
`

)`,s + η0, if (Z
τn`

χ
τn
`

)`,s < −η0

0, otherwise.

Note that in the summation (26), if χt = χt−1 then the t-th term vanishes. We now present

fn`,s as a sum of n functions. Set,

h1
`,s := f1

`,s,

hn`,s := nfn`,s − (n− 1)fn−1
`,s = fn`,s + (n− 1)(fn`,s − fn−1

`,s ), ∀n > 1. (27)
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Then for every n ∈ N we have

fn`,s =
h1
`,s + h2

`,s + · · ·+ hn`,s
n

.

It remains to show that the sequence (hn)n∈N is uniformly bounded. Fix n ∈ N, and note that

when τn` > 0, ∣∣∣∣∣∣Z
τn`
`,s

n
−
Z
τn−1
`
`,s

n− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣Z
τn`
`,s + Z

τn−1
`
`,s

n
−
Z
τn−1
`
`,s

n− 1

∣∣∣∣∣∣ ≤ |Z
τn`
`,s |
n

+
|Zτ

n−1
`
`,s |

n(n− 1)
. (28)

Case A: Both |fn`,s| and |fn−1
`,s | are positive. Eqs. (27) and (28) imply that

|hn`,s| = |nfn`,s − (n− 1)fn−1
`,s |

≤ |fn`,s|+ (n− 1)|fn`,s − fn−1
`,s |

≤ 1 + |Zτ
n
`
`,s |+

|Zτ
n
`
`,s|
n

+ 2η0 ≤ 3 + 2η0,

Case B: |fn`,s| > 0 and |fn−1
`,s | = 0. In this case |Z

τn`
`,s

n | > η0 while |Z
τn`
`,s

n−1 | ≤ η0. Therefore,

|hn`,s| = |nfn`,s| = |Z
τn`
`,s| − nη0 ≤ |Z

τn`
`,s| − |Z

τn−1
`
`,s | − η0 ≤ |Z

τn`
`,s − Z

τn−1
`
`,s | − η0 = |Zτ

n
`
`,s | ≤ 1.

Case C: |fn`,s| = 0 and |fn−1
`,s | > 0. Similarly to the previous case,

|hn`,s| = |(n− 1)fn−1
`,s | = |Z

τn−1
`
`,s | − (n− 1)η0 ≤ |Z

τn−1
`
`,s − Zτ

n
`
`,s|+ η0 ≤ |Z

τn`
`,s |+ η0 ≤ 1 + η0.

Case D: |f τ
n
`
`,s | = 0 and |f τ

n−1
`
`,s | = 0. In this case hn`,s = 0.

We deduce that if τn`,s > 0 then hn`,s ≤ 3 + 2η0, while if τn`,s = 0 then

hn`,s = fn`,s +
n− 1

n
fn−1
`,s ≤ 2.

Therefore condition (b) is satisfied.

Remark 12. The proof can be easily transformed into an algorithm. Indeed, the calculation

of Π(Z
T

), the closest point in C to Z
T

in the Euclidean norm, requires to check whether the

absolute value of each coordinate of Z
T

exceeds η0, and if so, to round it down to η0 or up

to −η0. The distribution p∗ defined in Step 4 can be obtained by a linear program. The rest

of the construction of σ involves only arithmetic operations. The computational time at each

stage is therefore polynomial in L. Because the size of X̃ is of the order of L ≈ 1
ε2|Ω|

, it follows

that the computational time at each stage is polynomial in 1
ε .
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B A Variation of the Law of Large Numbers

Let L be a finite set of indices. For every ` ∈ L let Ṽ` be a discrete random variable with

mean 0 that takes only finitely many values with positive probability. Consider the following

stochastic process (VT )T∈N: An index C1 ∈ L is given and V1 has the same distribution as ṼC1 .

For every stage T = 2, 3, · · · there is a choice function CT = CT (V1, · · · , VT−1) ∈ L that chooses

an index in L as a function of past realizations of V1, · · · , VT−1. Conditional on V1, · · · , VT−1,

the random variable VT is distributed like ṼCT . Formally, for every possible realization of ṼCT ,

P(VT = x|V1 = x1, · · · , VT−1 = xT−1) = P(ṼCT (x1,··· ,xT−1) = x),

whenever the left-hand side is well defined.

Let IT (`) := |{t ≤ T : Ct = `}| be the number of stages up to stage T in which the chosen

index is `. Define A` := {CT = ` infinitely often}.

Lemma 3. For every ` ∈ L,

P

(
A` ∩

{
lim
T→∞

∑
{t≤T ; Ct=`} Vt

IT (`)
= 0
})

= P (A`) .

Proof. Fix ` ∈ L. Denote by τ(k) the k’th time in which XT = Ṽ`. We set τ(k) = ∞ on the

event that XT is equal to Ṽ` less than k times. Define a new stochastic process (Vk) as follows:

Vk := Vτ(k) when τ(k) <∞, and Vk := 0 when τk =∞. Then, Vk is uncorrelated with each of

V1, · · · , Vk−1. By the law of large numbers, with probability 1 the long-run average of (Vk)k∈N

is 0. Because the long-run averages of (Vk)k∈N and
∑
{t≤T : Ct=`}

Vt

IT (`) coincide on A`, the desired

result follows.

We need a slight variation of Lemma 3, in which the random variables take values in a

Euclidean spaces and the index selection function depends also on another stochastic process.

Suppose that the random variables (V̂`)`∈L take values in a finite set Q1 of a Euclidean

space. Let (WT )T∈N be a stochastic process that takes values in a finite set Q2 of a Eu-

clidean space. Consider the following stochastic process, (VT )T∈N. An index C1 ∈ L is given

and V1 has the same distribution as ṼC1 . For every T = 2, 3, · · · there is a choice function

CT = CT (V1, · · · , VT−1,W1, · · · ,WT−1) ∈ L that chooses an index in L as a function of past

realizations of V1, · · · , VT−1,W1, · · · ,WT−1. Similar to what we had before, the random vari-

able VT satisfies,

P(VT = x|V1 = x1, · · · , VT−1 = xT−1,W1 = w1, · · · ,WT = wT ) = P(ṼCT (x1,··· ,xT−1,w1,··· ,wT−1) = x)
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whenever the left-hand side is well defined.

Note that there is no further assumption of independence between W1,W2, .. and V1, V2, · · ·
beyond this one. In particular, WT might be dependent of V1, · · · , VT−1. The function IT (`)

plays the same role as before.

Finally, let s be a bi-linear function that assigns to each (q1, q2) ∈ Q1 × Q2 a distribution

s(q1, q2) over a finite set in a Euclidian space. Define the stochastic process U1, U2, · · · as

follows. For every stage T , conditional on V1, · · · , VT−1,W1, · · · ,WT−1, UT has the distribution

s(VT ,WT ). Let A` = {CT = ` infinitely often}.

Lemma 4. For every ` ∈ L,

P

A` ∩
 lim
T→∞

∑
{t≤T : Ct=`}

(
Ut − Et(Ut)

)
IT (`)

= 0




= P

(
A` ∩

{
lim
T→∞

(∑
{t≤T : Ct=`} Ut

IT (`)
− E(UT ) = 0

)})
= P (A`) ,

where UT has the distribution s
(
E(Ṽ`),

∑
{t≤T : Ct=`}

Et(Wt)

IT (`)

)
.

The proof is a slight variation of the proof of Lemma 3 and is therefore omitted.
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