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Abstract We introduce the concepts of joint games and compatibility. In a joint
game, members of the grand coalition have the option to split and participate in dif-
ferent underlying games, thereby maximizing their total worths. In order to determine
whether the grand coalition will remain intact, we introduce the notion of compati-
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non-empty. We find a necessary and sufficient condition for compatibility.
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1 Introduction

In this paper, we introduce and study the notions of joint games and compatibility in the
context of transferable utility cooperative games. A joint game is defined on the basis
of a few underlying games. Each player in a joint game can take part in at least one
of the underlying games. A coalition can then take advantage of this option and split
itself into sub-coalitions, each participating in a different underlying game. The goal
of the coalition is to find its optimal split, the one that maximizes the total worth of the
sub-coalitions in their respective underlying game. Thus, the worth of a coalition in the
joint game is determined by its optimal split and is typically greater than in each of the
basis games. The aim of this paper was to formally introduce the notion of a joint game
and to find when it has a non-empty core, which leads us to the notion of compatibility.

Consider, for instance, firms that are capable of producing the same product.
Suppose that these firms operate in different countries, but their productivity and
endowment change across countries. In this case, a consortium of firms can maximize
its total output by properly splitting its members among the countries. The question
arises as to whether this consortium of all the firms could be stable. To study this
problem, we associate each country with a transferable utility cooperative game. In
this game, the worth of any coalition is defined as the maximal production of the coali-
tion if confined to produce in a particular country. This game is a market game and
therefore has a non-empty core. However, on a larger scale, where firms can operate
in different countries, the corresponding game is a joint game, which might have an
empty core. In such a game, the grand coalition, the one that contains all the firms,
typically benefits from the opportunity to operate in different countries. However,
smaller coalitions may benefit as well, and sometimes on a larger scale than the grand
coalition. This could be a source of instability.

Even though the joint game is introduced in a very natural way, its properties cannot
be characterized very easily. It is not clear when the core of a joint game will be non-
empty, even for very appealing cases when all the games involved are totally balanced
or even when they are all convex. The main results of this paper concern the core of the
joint game. Theorems 1 and 2 characterize the joint games which have a non-empty
core. It turns out that the possibility of having sub-coalitions participating in different
underlying games might improve the stability of the grand coalition. In such cases,
the underlying games may have empty cores, while the joint game has a non-empty
one. This happens when the opportunity to take part in different games increases the
worth of the grand coalition to a level that could satisfy all coalitions in a way that
would leave no group of players with an incentive to split from the grand coalition.
However, this is not the most general case. It might also be the case that the underlying
games have a non-empty core, while the core of the joint game is empty; this case is
illustrated in the motivating example below that deals with market games (see Sect. 3).
It turns out, however, that in this example, if the choices of the operating firms are
reduced to only two countries, the core remains non-empty (see Theorem 3).

The study of the core of joint games is surprisingly related to a theory that has
been developed in another context, that of decision making. Lehrer (2009) and later
on Lehrer and Teper (2008) and Even and Lehrer (2014) introduced and studied the
concave integral, which is used to compare different possible actions in a world with
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uncertainty. Whether or not a joint game has a non-empty core is determined by the
concave integrals of the underlying games, when the latter are interpreted as non-
additive probabilities. The Shapley–Bondareva theorem (Shapley 1967) characterizes
when the core of a game is non-empty; in terms of the concave integral, it states that the
core is non-empty precisely when the integral of the indicator of the grand coalition1

does not exceed the worth of the grand coalition. The main result of this paper has the
same spirit. It roughly states that the core of a joint game is non-empty if and only
if the sum of the integrals (each is taken with respect to a different basis game) of
functions that sum up to the indicator of the grand coalition does not exceed its worth.

Despite the popularity of the core and the well-established existence of multi-
issue interactions between economic entities, only a few authors have studied the core
of combined games or games with the possibility of membership in more than one
coalitions. Bloch and de Clippel (2010) look at the core of combined games which
are obtained by summing two coalitional games. They conclude that the set of all
balanced transferable payoff games can be divided into equivalence classes where
the core of the combination of two games is equal to the sum of the cores of the
components if and only if the two games belong to the same class, for example, if both
games are convex. Nax (2014) studies transferable utility cooperative games with
multiple membership and considers economic environments featuring externalities
and membership in multiple coalitions, and he proposes definitions of the core for
this class of games. His definition of the core depends on what assumptions are made
about how society reacts to coalitional deviations. He defines the core for a general
conjecture and concludes that the core of a multiple membership game is the set of
contracts that are feasible and un-blockable, given the conjecture.

To the best of our knowledge, there are not many papers in the literature of eco-
nomic theory that discuss the idea of multi-issue interaction. However, in the literature
of political economics, there are a few papers discussing this issue among which Con-
coni and Perroni (2002), Abrego et al. (2001), Horstmann et al. (2001) and Inderst
(2000) can be named.

The paper is organized as follows: In Sect. 2, we introduce the joint game defined
over K different cooperative games and state the results referring to the non-emptiness
of the core; in Sect. 3, we introduce a motivating example of a joint game and the con-
cept of compatibility using an example from market games. Section 4 deals with the
compatibility of games including necessary and sufficient conditions for compatibility
to hold. In Sect. 5, we have final comments, and proofs are given in the “Appendix”
at the end.

2 Joint games

2.1 Games with the same grand coalition

Let v1 and v2 be the worths of two transferable utility cooperative games on a finite
set of players N (|N | = n). For all S ⊆ N , v1(S) is the worth of S from participation

1 The indicator of the grand coalition is the function defined over it and is equal 1.
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in v1 and v2(S) is the worth from participation in v2. For any coalition, S ⊆ N , we
suppose that the members of S can decide to participate in either v1 or v2, with the aim
of participation being to maximize the worth of the coalition. In mathematical terms,
let S1 and S2 be two exhaustive and mutually disjoint subsets of S ⊆ N (S1 ∩ S2 =
∅, S1 ∪ S2 = S). The whole coalition S is looking for a partition {S∗

1 , S
∗
2 } such that

v1
(
S∗
1

)+ v2
(
S∗
2

) = max
S1∩S2=∅
S1∪S2=S

[v1(S1) + v2(S2)] . (2.1)

Here the coalition has the opportunity to collect a better value by assigning itsmembers
to participate in an appropriate game. We can generalize the same argument for K
different games v1, . . . , vK . Hence, we define a new worth as follows:

Definition 1 A joint cooperative game for v1, . . . , vK defined over N , is a cooperative
game whose worth is defined as

v1 • · · · • vK (S) = max
S1,...,SK∀i �= j, Si∩S j=∅,

S1∪···∪SK=S

v1(S1) + · · · + vK (SK ). (2.2)

Here we recall the definition of the core for coalitional games:

Definition 2 The core of a coalitional game with transferable payoffs 〈N , v〉 is the
set of all payoff profiles, (xi )i∈N , such that x(N ) = v(N ) and for any coalition
S, x(S) ≥ v(S), where x(S) = ∑

i∈S xi .
Example 1 Let N = {1, 2} and define the following games: v1(1) = .9, v1(2) =
.2, v1(N )=1, andv2(1)= .2, v2(2)= .9, v2(N )=1.The joint game, v1•v2, is additive:
v1 • v2(1)= .9, v1 • v2(2)= .9, v1 • v2(N ) = 1.8. While C(v1)=C(v2)=∅, the joint
game has a non-empty core,C(v1•v2)={(.9, .9)}. This simple example illustrates the
typical case that in the joint game, the worths of all coalitions are larger than in each of
the underlying games. In this case, the improvement in the worth of the grand coalition
is high enough to satisfy all coalitions, making the core of the joint game non-empty.

Remark 1 It is worth mentioning that if we denote the set of all coalitional games
on N by G(N ), then (G(N ), •) has an Abelian semigroup structure. That is, • is a
commutative, associative operator from G(N ) × G(N ) to G(N ). The example shows
that we cannot easily replace G(N ) with a smaller set of games (e.g., the set of games
with empty cores) and still retain the same algebraic structure.

2.2 Extension to games with different grand coalitions

One might argue that in real-world situations, some players can play in one place but
not in another. Let (v1, N1), . . . , (vK , NK ) be K cooperative games, where the grand
coalition of vi is Ni , i = 1, . . . , K . Similar to the definition above, we introduce the
joint game as follows.

Definition 3 A joint cooperative game for (v1, N1), . . . , (vK , NK ) is a cooperative
game whose grand coalition is N = N1 ∪ · · · ∪ NK and is defined as
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v1 • · · · • vK (S) = max
Si⊆Ni , i=1,...,K
∀i �= j, Si∩S j=∅,

S1∪···∪SK=S

v1(S1) + · · · + vK (SK ), (2.3)

for every S ⊆ N .

3 A motivating example

In this section, we motivate the discussions in the paper, in particular the notions of
joint games and compatibility, with an example from market games. Our example
follows the same notation for market games as in Osborne and Rubinstein (1994).
Consider a firm with n units, denoted by 1, . . . , n, which can operate in K different
countries c1, . . . , cK . In country ci , unit j produces according to production function
fi j that uses m production factors and an endowment of ei j ∈ R

m+. For a moment,
let us focus on one country, say ci . For any S ⊆ {1, . . . , n}, denote the aggregate
endowment

∑
j∈S ei j by eiS . The optimal production can be regarded as a coalitional

game: The worth of S in ci is defined as,

vi (S) = max
(x j ) j∈S∈F(eiS)

∑

j∈S
fi j (x

j ), (3.1)

where F(eiS) is the feasibility set defined as

F(eiS) =
⎧
⎨

⎩

(
x j
)

j∈S

∣∣
∣∣x

j ≥ 0 , j ∈ S ,
∑

j∈S
x j = eiS

⎫
⎬

⎭
.

Now to bemore specific, we consider three firms operating in three different countries.
We assume that the production function of firm j in country ci , i.e., fi j , is a Cobb–
Douglas function with two inputs, x and y: fi j (x, y) = Ai j

√
xy, where Ai j is the

total factor productivity (hence TFP). We assume that the aggregate endowment in
each country is one unit of each input; for instance, in country c1, the endowments
of firms 1, 2 and 3 are (0, 0), (2/3, 2/3) and (1/3, 1/3), respectively. To make things
even simpler, we further assume that it is not feasible for firm j to produce in country
c j , and therefore, A j j = 0. The following table summarizes the endowments of each
firm in each country and its TFP.2

Country 1 2 3
Firm 1 2 3 1 2 3 1 2 3
TFP 0 1/3 1 1 0 1/3 1/3 1 0
Endowment 0 2/3 1/3 1/3 0 2/3 2/3 1/3 0

2 In the third row of the table, e denotes the two-dimensional vector (e, e).
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The game v1 is given as follows,

v1(1) = max(
x11 ,x12

)=(0,0)
0 = 0,

v1(2) = max(
x21 ,x22

)=(2/3,2/3)
(1/3)

√
x21 x

2
2 = 2/9,

v1(3) = max(
x31 ,x32

)=(1/3,1/3)

√
x31 x

3
2 = 1/3,

v1(2, 3) = max(
x21+x31 ,x22+x32

)=(1,1)
(1/3)

√
x21 x

2
2 +

√
x31 x

3
2 = 1,

v1(1, 3) = max(
x11+x31 ,x12+x32

)=(1/3,1/3)
0 +

√
x31 x

3
2 = 1/3,

v1(1, 2) = max(
x11+x21 ,x12+x22

)=(2/3,2/3)
0 + (1/3)

√
x21 x

2
2 = 2/9,

v1(1, 2, 3) = max(
x11+x21+x31 ,x12+x22+x32

)=(1,1)
0 + (1/3)

√
x21 x

2
2 +

√
x31 x

3
2 = 1.

The following table summarizes the games v1, v2 and v3 corresponding to the three
countries,

Coalition (1) (2) (3) (2, 3) (1, 3) (1, 2) (1, 2, 3)

v1 0 2/9 1/3 1 1/3 2/9 1
v2 1/3 0 2/9 2/9 1 1/3 1
v3 2/9 1/3 0 1/3 2/9 1 1

We now turn to the joint games. We first consider the joint game v1 • v2 and show
how, for instance, v1 • v2(2, 3) is computed.

v1 • v2(2, 3) = max{v1(2) + v2(3), v1(3) + v2(2), v1(2, 3), v2(2, 3)} = 1.

The values of v1 • v2 for different coalitions are given in the following table.

Coalition (1) (2) (3) (2, 3) (1, 3) (1, 2) (1, 2, 3)

v1 • v2 1/3 2/9 1/3 1 1 5/9 4/3

The cores of the games v1 • v2, v2 • v3 and v1 • v3 are non-empty. For instance,
(3/9, 2/9, 7/9) ∈ C(v1 • v2). However, the core of v = v1 • v2 • v3 is empty. The
table of v is the following:

123



Joint games and compatibility

Coalition (1) (2) (3) (2, 3) (1, 3) (1, 2) (1, 2, 3)

v 1/3 1/3 1/3 1 1 1 4/3

Now let us take a closer look at this example. Observe that when the firms get
access to a new market, the worth of each coalition cannot decrease. Therefore, by
having access to a new market, firms’ core allocations should be at least what they
would receive without it.

A simple argument shows that C(v1 • v2) = {(1/3, x, 1 − x)| 2/9 ≤ x ≤ 1/3}. In
particular, in any core allocation, firms 1 and 2 should receive atmost 1/3+1/3 = 2/3.
Now assume that access to c3 becomes available. Since v1 • v2 • v3(1, 2, 3) = v1 •
v2(1, 2, 3), the core C(v1 •v2 •v3) should be a subset of C(v1 •v2). Thus, in any core
allocation of the former, firms 1 and 2 cannot receive more than 2/3. However, with
access to c3, the worth of coalition (1, 2) is 1, which implies that the core of v1 •v2 •v3
is empty.

On the other hand, access to a new country can again change the situation. Suppose
further that the firms have access to country 4 whose figures are described in the
following table.

Country 4
Firm 1 2 3
TFP 0 1/6 2
Endowment 0 5/6 1/6

The game v4 and the joint game are given in the following table.

Coalition (1) (2) (3) (2, 3) (1, 3) (1, 2) (1, 2, 3)

v4 0 5/36 1/3 2 1/3 5/36 2
v1 • v2 • v3 • v4 1/3 1/3 1/3 2 1 1 7/3

Observe that (1/3, 1, 1) ∈ C(v1 • v2 • v3 • v4). Thus, the core of the joint game
v1 • v2 • v3 • v4 is non-empty.

Remark 2 As one can see, even though the cores of v1 • v2 and v3 are non-empty,
their joint game v1 • v2 • v3 has an empty core, which is opposite to example 1.

4 Compatibility of games

4.1 Compatibility

In this section, we introduce the notion of compatibility. We say that games are com-
patible with each other if the core of the joint game is non-empty. This means that
regardless of the stability of each individual game, the joint game is stable.
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Definition 4 The games (v1, N1), . . . , (vK , NK ) are compatible if

C(v1 • · · · • vK ) �= ∅.

In the following, we state a necessary and sufficient condition for non-emptiness
of the core of a joint cooperative game, v1 • · · · • vK . For this purpose, we introduce a
concave integral for games (see Lehrer 2009). For two games v1, v2, by v1 ≥ v2, we
mean v1(S) ≥ v2(S), for all sets S ⊆ N . A game P is called additive if P(S ∪ T ) =
P(S) + P(T ), for two disjoint sets S, T ⊆ N .

Definition 5 For a game v and a vector X ≥ 0 in R
n , the concave integral is defined

as follows: ∫ cav

Xdv = min
P≥v

∫
XdP, (4.1)

where the minimum is taken over all additive games, P , such that P(S) ≥ v(S),∀S ⊆
N .

Remark 3 (i) The concave integral is defined as the minimum over a set of additive
games. This minimum (as opposed to infimum) is justified because the set of the
additive games P such that P ≥ v can be restricted, without loss of generality, to a
bounded set, sayPv . In other words, the concave integral can be defined as an infimum
over a compact set of additive games, and therefore, the infimum is attained.
(ii) The minimum minP∈Pv

∫
XdP is obtained in an extreme point of Pv . Moreover,

the set Pv is defined by a finite number of linear inequalities, which makes Pv a
polyhedron. As such, it has a finite number of extreme points. We conclude that the
concave integral is the minimum of finitely many linear functions (the extreme points
of Pv) and is therefore continuous.

Remark 4 If v is additive, then
∫ cav Xdv = ∫

Xdv, which is why we can equally use∫ cav Xdv or
∫
Xdv when working with additive games.

There is a dual approach to calculating
∫ cav Xdv; the variable X can be decomposed

as a linear combination of indicators. Clearly, X can be decomposed inmanyways and
among all the decompositions X = ∑

S⊆N αS · 1S , where αS ≥ 0 for every S ⊆ N ,
the concave integral considers the one that maximizes

∑
S⊆N αSv(S). Formally,3

∫ cav

Xdv = max

⎧
⎨

⎩

∑

S⊆N

αSv(S);
∑

S⊆N

αS · 1S = X, αS ≥ 0 for every S ⊆ N

⎫
⎬

⎭
.

(4.2)

Remark 5 Since our analysis is in finite spaces, one may wonder why we use the
notation

∫
in Definition 5 and Eq. (4.1). We have two reasons. First, we want to use

standard notations used in the literature, such as the concave integral and the Choquet

3 A similar formula has been used in Shapley and Shubik (1969) to show that every totally balanced game
is a market game.

123



Joint games and compatibility

integral (Choquet 1955) (see below). Second, the integrals used here are indeed sums,
but their domains change from one X to the other. That is, different X ’s might have
different decompositions that attain themaximum inEq. (4.2). These different domains
are concisely captured by the integral notation.

The classical definition of the totally balanced cover of a game v is

Bv(T ) := max

⎧
⎨

⎩

∑

S⊆T

αSv(S);
∑

S⊆T

αS · 1S = 1T , αS ≥ 0 for every S ⊆ T

⎫
⎬

⎭

for every T ⊆ N .

Note that due to Eq. (4.2), the totally balanced cover of v can be written also as,

Bv(T ) =
∫ cav

1T dv for every T ⊆ N . (4.3)

One can now use the notion of the concave integral to re-state the Shapley–Bondareva
theorem (see Shapley 1967): For any game v,

C(v) �= ∅ if and only if Bv(N ) ≤ v(N ). (4.4)

Example 2 Consider v1 in the previous example. There is an additive gamewhich is the
least of all additive games that satisfies P(S) ≥ v(S),∀S ⊆ N : P(1) = 0.9, P(2) =
0.2, P(N ) = 1.1. Let X = (3, 2). Then,

∫ cav Xdv1 = 3 ·0.9+2 ·0.2 = 3.1. As for the
dual approach, the decomposition that maximizes the right-hand side of Eq. (4.2) with
respect to v1 is X = 3 · 1{1} + 2 · 1{2}. Indeed, 3v1(1) + 2v1(1) = 3.1 = ∫ cav Xdv1.
Note that X could be decomposed differently. For instance, X = 2 · 1N + 1{2}. But
then, 2v1(N ) + v1(1) = 2 · 1 + 0.9 = 2.9 which is strictly smaller than

∫ cav Xdv1.

The following two theorems are the main results of this paper.

Theorem 1 The games v1, . . . , vK defined over the same grand coalition N are com-
patible if and only if the following inequality holds

max
f1+···+ fK=1
fi :N→R+

∑

1≤i≤K

∫ cav

fidvi ≤ v1 • · · · • vK (N ). (4.5)

Proof See Appendix. ��
In order to characterize when games defined over different grand coalitions are

compatible,we need some additional notation. Let (v1, N1), . . . , (vK , NK )be K coop-
erative games. Define, N = N1 ∪ · · · ∪ NK and

Fi = { fi : N → R+; fi (�) = 0 whenever � �∈ Ni }.
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For fi ∈ Fi denote by fi |Ni : Ni → R+ the restriction of fi to Ni . That is, the
function defined on Ni and coincides there with fi . The next theorem generalizes
Theorem 1 to games that might have different grand coalitions. Its proof hinges on
that of Theorem 1.

Theorem 2 The games (v1, N1), . . . , (vK , NK ) are compatible if and only if the fol-
lowing inequality holds,

max
f1+···+ fK=1

fi∈Fi , i=1,...,K

∑

1≤i≤K

∫ cav

fi |Ni dvi ≤ v1 • · · · • vK (N ). (4.6)

Proof See Appendix. ��

Definition 6 A cooperative game, v, is a convex game if for two subsets S1, S2,

v(S1 ∩ S2) + v(S1 ∪ S2) ≥ v(S1) + v(S2). (4.7)

Remark 6 The game v has a large core (Sharkey 1982) if for every S ⊆ N and for
every additive game Q that satisfies v ≤ Q, there is P in the core of v such that
P ≤ Q. It is shown in Azrieli and Lehrer (2007) that v has a large core if and only if

∫ cav

Xdv = min
P∈C(v)

∫
XdP. (4.8)

In other words, when v has a large core, the minimum in (4.1) can be taken over the
core of v which is smaller than the set of all additive games that are greater than or
equal to v. Furthermore, as noted in Azrieli and Lehrer (2007), any convex game has
a large core.

A non-trivial application of Theorem 2 is the following theorem:

Theorem 3 If (v1, N1), (v2, N2) are convex games, then they are compatible.

Proof See Appendix. ��

The following example shows that more than two convex games might be non-
compatible.

Example 3 Let N = {1, 2, 3} and define three monotonic simple games. For each
i = 1, 2, 3, the game vi has one minimal winning coalition, N\{i}. Since there is only
one winning coalition, vi is convex. Consider now v = v1 • v2 • v3. It is also a simple
game, and v(S) = 1 if and only if |S| ≥ 2. It implies that the core of v is empty,
rendering v1, v2 and v3 non-compatible.
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5 Final comments

5.1 Another sufficient condition for the non-emptiness of the joint game’s core

In this section, we introduce another sufficient condition for the non-emptiness of the
joint game’s core.

Example 4 Let N = {1, 2}, v1 be a game where v1(1) = 1, v1(2) = .8 and v1(N ) =
2. Also let v2(1) = .9, v2(2) = .9 and v2(N ) = 2. The cores of the two games have
at least one member in common, and v1 • v2 has a non-empty core. If we replace v2
by v′

2, where v′
2(1) = .8, v′

2(2) = 1.1 and leave v′
2(N ) = 2, then the cores of v1 and

v′
2 are disjoint, and the core of v1 • v′

2 is empty.

The following proposition states that, in this example, the linkage between the non-
emptiness of the core of the joint game and the fact that the cores of the underlying
games have at least one member in common is not coincidental.

Proposition 1 Let v1, . . . , vK be a set of games on the same grand coalition N such
that v1(N ) = · · · = vK (N ). Then, v1 • · · · • vK (N ) = v1(N ) if and only if C(v1 •
· · · • vK ) = C(v1) ∩ · · · ∩ C(vK ).

Proof See Appendix. ��
This proposition implies in particular that when v1(N ) = · · · = vK (N ) =

v1 • · · · • vK (N ), if there is a core allocation that is common to all games, then
the core of the joint game is not empty.

An application of this theorem is for simple games. Let v1, . . . , vK be K simple
games, each having a non-empty core. Let us denote the set of veto players (the
intersection of all the winning coalitions) of game i by Ui . Then it is known that
C(vi ) = {P ≥ 0|P( j) = 0 , ∀ j ∈ Uc

i }. Therefore, C(v1) ∩ · · · ∩ C(vK ) = {P ≥
0|P( j) = 0, j ∈ Uc

1 ∪ · · · ∪ Uc
K }. Therefore, by using Proposition 1, one can see

that v1 • · · · • vK is a simple game with the veto players being U1 ∩ · · · ∩UK . On the
other hand, there is no player who is a veto player in all games, if and only if the core
of the joint game is empty.

5.2 Joint games and the least super-additive majorant

From a technical point of view, the definition of a joint game can be considered as a
generalization of the notion ‘least super-additive majorant’ introduced in Shapley and
Shubik (1969). If v is a game, then a least super-additive majorant is introduced as

ṽ(S) = max
∑

Si∩S j=∅
S1∪···∪Sn=S

v(Si ). (5.1)

The game ṽ is the smallest super-additive game that dominates v. This concept
was first introduced in Shapley and Shubik (1969) and was used to study the core of
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super-additive games. This concept was not later studied because it was not found to
be helpful. Here we revisit this concept and put the definition in a correct direction
within the context of joint games.

Note that ṽ = v • · · · • v︸ ︷︷ ︸
n times

. Now assume that in Eq. (5.1), one could arbitrarily choose

games among the set {(v1, N1), . . . , (vK , NK )}. The result would be,

max
∑

Si⊆Ni∀i �= j,Si∩S j=∅
S1∪···∪Sn=S
vi∈{v1,...,vK }

vi (Si ). (5.2)

This quantity is equal to ṽ1 • · · · • ṽK (S). Thus, joint games are generalizations of
least super-additive majorant games.

Given that this paper assumes that a coalition, S, can be split into different partitions,
one may wonder how we explain the choice of (2.3) over the following alternative:

v1 • · · · • vK (S) = max
Si⊆Ni∀i �= j, Si∩S j=∅,

S1∪···∪SK=S

ṽ1(S1) + · · · + ṽK (SK ). (5.3)

Indeed, the definition in (5.3) can be accommodated by (2.3): It is the joint game for a
set of the corresponding super-majorant games. We note that (5.3) cannot accommo-
date (2.3), meaning that (5.3) cannot be as general as (2.3). The definition we adopt
[that given in (2.3)] would make better sense than that given in (5.3) in cases where a
coalition Si that decides to be in the environment of (vi , Ni ) cannot be further split:
Its worth is vi (Si ) and not ṽi (Si ).

One can regard ∼ as an operator on G(N ) (family of all games on N ). As it was
discussed earlier, (G(N ), •) has a semigroup structure. It is interesting that the operator
∼ is distributive on (G(N ), •) as it is shown in the following proposition

Proposition 2 The operator ∼: G → G is distributive i.e., for any set Let v1, . . . , vK
of games on the same grand coalition N, we have

˜v1 • · · · • vK = ṽ1 • · · · • ṽK .

Proof See Appendix. ��
A natural extension, which is related to our discussion in this section, is to extend

the definition of compatibility by using c-cores. Let v be game.We introduce the game
vc as follows,

vc(S) =
{

v(S) S �= N
ṽ(N ) S = N

. (5.4)

The core of vc is known as the c-core and is denoted by Cc(v). This concept was
first introduced inGuesnerie andOddou (1979) and further studied in Sun et al. (2008).
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Now we can introduce the notion of c-compatibility for K games, v1, . . . , vK , on the
same grand coalition N as:

Cc(v1 • · · · • vK ) �= ∅.

The following result links c-compatibility to the compatibility of the least super-
additive majorant,

Proposition 3 Let v1, . . . , vK be a set of games with the same grand coalition N.
Then, v1, . . . , vK are c-compatible if and only if ṽ1, . . . , ṽK are compatible.

Proof See Appendix. ��

5.3 A concluding remark

In this paper, we have introduced the concept of a joint game and have developed
testable conditions for determining whether or not its core is empty. In a joint game, it
is typically better for the grand coalition to split into sub-coalitions and hence obtain
a total value which is greater than the value of the grand coalition in the underlying
games. We characterized when the core of the joint game is non-empty.

6 Appendix: Proofs

Proof of Theorem 1 We prove that the games v1, . . . , vK are compatible if and only
if

max
f1+···+ fK=1
fi :N→R+

∑

1≤i≤K

∫ cav

fidvi ≤ v1 • · · · • vK (N ) (6.1)

in six steps.

Step 1 Suppose that u(X) = inf P∈Q
∫
XdP , where Q is a comprehensive,4 convex

and closed set of additive games. We show that u(X) = −∞ whenever one of the
coordinates of X is negative. Indeed, let X = (x1, . . . , xn) ∈ R

n such that xr0 < 0,
for some 1 ≤ r0 ≤ n, and let P = (p1, . . . , pn) ∈ Q. For any λ > 0, define an
additive game Pλ = (pλ

1 , . . . , p
λ
n ) as p

λ
r = pr if r �= r0, and pλ

r0 = pr0 + λ. SinceQ
is comprehensive, Pλ ∈ Q. Therefore,

u(X) = min
P∈Q

∫
XdP ≤

∫
XdPλ =

∫
XdP + λxr0 ,

which tends to −∞ when λ → ∞.

Step 2 Suppose that ui (X) = inf Pi∈Qi

∫
XdPi , for i = 1, . . . , K , where Qi is a

comprehensive set of additive games. The convolution of u1, . . . , uK , denoted u1 �

· · · � uK , is defined as

4 Q is a comprehensive if P ∈ Q and P ′ ≥ P , then P ′ ∈ Q.
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u1 � · · · � uK (X) := sup
{
(Xl )

K
l=1∈(Rn)K |X1+···+XK=X

}
u1(X1) + · · · + uK (XK ).

We claim that

u1 � · · · � uK (X) = inf
P∈∩iQi

∫
XdP.

In order to prove this claim, we use convex analysis. Consider a set of convex
functions f1, . . . , fK from R

n to R ∪ {+∞}, whose conjugates are defined as

f ∗
i (P) = sup

X∈Rn

{∫
XdP − fi (X)

}
, i = 1, . . . , K .

The infimal convolution of these K functions is

h(X) = inf{
(Xl )

K
l=1∈(Rn)K |X1+···+XK=X

}{ f (X1) + · · · + f (XK )}.

We state the following version of Theorem 20, d) in Rockafellar (1973) to be used
later. ��
Theorem 4 Suppose that ∃X̄ ∈ R

n and M ∈ R such that the set

K :=
{
(X1, . . . , XK ) ∈ (Rn)K

∣∣∣∣
X1 + · · · + XK = X̄ ,

f1(X1) + · · · + fK (XK ) ≤ M

}
(6.2)

is non-empty and bounded. Then, h∗ = f ∗
1 + · · · + f ∗

K .

Let fi = −ui . We verify that the condition of Theorem 4 is satisfied. Take X̄ = −→
0

and M = 0. First, for every i = 1, . . . , K Qi is comprehensive and therefore, fi is
non-positive on R

n+. In particular, fi (X̄) ≤ 0, implying that X̄ K := (X̄ , . . . , X̄︸ ︷︷ ︸
K times

) ∈ K.

Second, according to Step 1, K ⊆ (Rn+)K . This implies that X̄ K is the only point in
K, meaning that K is non-empty and bounded.

Having verified the condition of Theorem 4, we proceed to apply it to fi . By the
definition of the conjugate function, f ∗

i (Q) = supX∈Rn

{∫
XdQ + ui (X)

}
. Since for

all λ > 0, ui (λX) = λui (X), we have

f ∗
i (Q) = sup

X∈Rn

{∫
XdQ + ui (X)

}

= sup
λX∈Rn

{∫
λXdQ + ui (λX)

}

= λ sup
X∈Rn

{∫
XdQ + ui (X)

}

= λ f ∗
i (Q).

This implies that either f ∗
i (Q) = 0 or f ∗

i (Q) = +∞.
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We now elaborate on ( f ∗
1 + · · · + f ∗

K )(P). If P is such that for any i,−P ∈ Qi ,
then by

∫
XdP + ui (X) ≤ ∫

XdP − ∫ XdP = 0, we have f ∗
i (P) = 0. On the other

hand, if there exists i such that−P �∈ Qi , then due to the assumption thatQi is convex
and closed, there is a unique R ∈ Qi such that R is the closest point (in the Euclidean
norm) to −P in Qi . Let, X := −P − R �= 0. The integral

∫
Xd(−P) − ∫

XdR′ is
bounded away from 0 for every R′ ∈ Qi . Thus, f ∗

i (−P) = +∞. This implies that
f ∗
1 + · · · + f ∗

K is zero iff −P ∈ ∩K
i=1Qi and +∞ otherwise. That is,

( f ∗
1 + · · · + f ∗

K )(P) =
{
0, if −P ∈ ⋂K

i=1Qi

+∞, otherwise
. (6.3)

Now define, g(X) = − inf P∈−⋂K
i=1 Qi

∫
XdP . Since

⋂K
i=1Qi is a comprehensive,

convex and closed set, the same argument just used implies that g∗ is equal to (6.3).
Using Theorem 4, we conclude that h∗ = f ∗

1 + · · · + f ∗
K = g∗. Since h and g are

both lower semicontinuous functions, it implies that they are equal (see Rockafellar
1973). Thus, h(X) = − inf−P∈⋂K

i=1 Qi

∫
XdP , which implies,

u1 � · · · � uK (X) = sup
{
(Xl )

K
l=1∈(Rn)K |X1+···+XK=X

}
u1(X1) + · · · + uK (XK )

= inf{
(Xl )

K
l=1∈(Rn)K |X1+···+XK=X

}{ f (X1) + · · · + f (XK )}

= h(X) = − inf
−P∈

K⋂

i=1
Qi

∫
XdP = inf

P∈
K⋂

i=1
Qi

∫
XdP,

which proves our claim.

Step 3 For a set of games vi , i = 1, . . . , K , and any additive game P , it is easy to see
that

P(S) ≥ v1 • · · · • vK (S), ∀S ⊆ N iff P(S) ≥ vi (S), ∀S ⊆ N , ∀i = 1, . . . , K .

Step 4 Consider the games v1, . . . , vK and the functions ui (X) = inf P∈Qi

∫
XdP ,

where Qi is the set of all additive games P such that P ≥ vi . Qi is comprehensive,
convex and closed, and therefore, Step 1 applies. By the definition of the � operator
and Step 1 (ui (Xi ) = −∞ for every Xi �∈ R

n+), for X ≥ 0, we therefore have,

(∫ cav

· dv1 � · · · �

∫ cav

· dvK
)

(X) = max
X1+···+XK=X

∀i,Xi≥0

∫ cav

X1dv1

+ · · · +
∫ cav

XK dvK .

Note that the maximum is replacing the supremum because all concave functions, by
Remark 3, are continuous and the set

{
(Xi )

K
i=1|X1 + · · · + XK = X,∀i, Xi ≥ 0

}
is

compact.
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Step 5 For every S ⊆ N , the following equality holds,

Bv1•···•vK (S) = max
f1+···+ fK=1S

∀i, fi≥0

∑

1≤i≤K

∫ cav

fidvi .

Indeed,
∫ cav

Xd(v1 • · · · • vK ) = min
P≥v1•···•vK

∫ cav

XdP

= min∩{P≥vi }

∫
XdP

=
(∫ cav

· dv1 � · · · �

∫ cav

· dvK
)

(X)

= max
X1+···+XK=X

∀i,Xi≥0

∫ cav

X1dv1 + · · · +
∫ cav

XK dvK .

In the first equality, we use the definition of the concave integral; in the second equality,
we use Step 3; in the third, we use Step 2; and in the fourth equality, we use Step 4.
Using X = 1S , we get the result.

Step 6 Given Step 5 and (4.4) we have,

C(v1 • · · · • vK ) �= ∅ ⇔ Bv1•···•vK (N ) ≤ v1 • · · · • vK (N )

⇔ max
f1+···+ fK=1

∀i, fi≥0

∑

1≤i≤K

∫ cav

fidvi ≤ v1 • · · · • vK (N ).

��
Proof of Theorem 2 Let (v1, N1), . . . , (vK , NK ) be K games and recall that we have
defined N = N1 ∪ · · · ∪ NK . We show first that if (v1, N1), . . . , (vK , NK ) are com-
patible then,

max
f1+···+ fK=1

fi∈Fi , i=1,...,K

∑

1≤i≤K

∫ cav

fi |Ni dvi ≤ v1 • · · · • vK (N ).

Suppose that f1 + · · · + fK = 1, where fi ∈ Fi , i = 1, . . . , K and that∫ cav fi |Ni dvi = ∑ri
j=1 vi (S

j
i ), where S j

i ⊆ Ni and
∑ri

j=1 1S j
i

= fi . Then,
∑

1≤i≤K

∫ cav fi |Ni dvi = ∑
1≤i≤K

∑ri
j=1 vi (S

j
i ) ≤ v1 • · · · • vK (N ). The inequal-

ity holds because
∑

1≤i≤K
∑ri

j=1 1S j
i

= f1 + · · · + fK = 1N .

As for the inverse direction, for any positive number, M , and i = 1, . . . , K , define
the game (vM

i , N ) as follows.

vM
i (S) = vM

i (S ∩ Ni ) − |S \ Ni | · M.
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The worth vM
i (S) coincides with vi (S) as long as S ⊆ Ni . Any player out of Ni is

worth−M , which is also her contribution to any coalition in Ni .WhenM is sufficiently
large, in order to obtain vM

1 • · · · • vM
K (S), it is optimal to split S as S = S1 ∪ · · ·∪ SK ,

where for any i, Si ⊆ Ni . Since there are finitely many coalitions in N , for sufficiently
large M, vM

1 • · · · • vM
K (S) = v1 • · · · • vK (S) for every S ⊆ N . It implies that

(v1, N1), . . . , (vK , NK ) are compatible whenever (vM
1 , N1), . . . , (v

M
K , NK ) are.

We now use Theorem 1 and apply it to (vM
1 , N1), . . . , (v

M
K , NK ). Theorem 1 states

that these games are compatible if and only if,

max
f1+···+ fK=1
fi :N→R+

∑

1≤i≤K

∫ cav

fidv
M
i ≤ vM

1 • · · · • vM
K (N ). (6.4)

We claim that for M large enough,

max
f1+···+ fK=1
∀i, fi :N→R+

∑

1≤i≤K

∫ cav

fidv
M
i = max

f1+···+ fK=1
∀i, fi∈Fi

∑

1≤i≤K

∫ cav

fidv
M
i . (6.5)

We showfirst that for every fi : N → R+, i = 1, . . . , K that satisfy f1+· · ·+ fK =
1, there are f ′

i ∈ Fi , i = 1, . . . , K that satisfy f1 + · · · + fK = 1 and M sufficient
large such that,

∑

1≤i≤K

∫ cav

f ′
i dv

M
i ≥

∑

1≤i≤K

∫ cav

fidv
M
i . (6.6)

Suppose that fi : N → R+, i = 1, . . . , K satisfy f1+· · ·+ fK = 1 and that there are j
and � �∈ N j with f j (�) > 0. Denote by fi1Ni the function that coincides with fi on Ni

and is equal to 0 out of Ni . Note that
∫ cav fidvM

i = ∫ cav fi1Ni dvi − M
∑

� �∈Ni
fi (�).

For every � ∈ N , there is an index i(�) such that � ∈ Ni(�). For every i define,

f ′
i = fi1Ni +

∑

�; i(�)=i

max
j=1,...,K
s.t. � �∈N j

f j (�).

The function f ′
i is 0 on � �∈ Ni . Therefore, f ′

i ∈ Fi . Moreover, on � ∈ Ni , f ′
i (�) ≥

fi (�) with strict inequality when there is j such that f j (�) > 0, � �∈ N j and i(�) = i .
In the latter case, f ′

i (�) is getting the total value of all f j (�) for which � �∈ N j . It is
clear that f ′

1 + · · · + f ′
K = 1.

Regarding the left-hand side (LHS) of (6.6), note that since f ′
i ∈ Fi ,

∫ cav f ′
i dv

M
i =∫ cav f ′

i |Ni
dvi , meaning that it does not depend on M , and therefore, the LHS does not

depend on M as well.
On the right-hand side (RHS), note that

∑

1≤i≤K

∫ cav

fidv
M
i ≤

∑

i �= j

∫ cav

fi1Ni dvi +
∫ cav

f j1N j dv j − f j (�)M,
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which tends to−∞ asM → ∞.We obtain that forM large enough, the LHS is strictly
greater than the RHS. Note that the M we found depends on the functions f1, . . . , fK
under discussion. However, due to the fact that the convex integral is continuous and
that the set {( f1, . . . , fK ); ∀i, fi , N → R+, f1 + · · · + fK = 1} is compact, we
conclude that there is one M such that Eq. (6.5) holds, as desired.

We obtain that there isM large enough such that [by Eqs. (6.4 and (6.5)], v1, . . . , vK
are compatible if and only if,

max
f1+···+ fK=1

∀i, fi∈Fi

∑

1≤i≤K

∫ cav

fidv
M
i ≤ vM

1 • · · · • vM
K (N ). (6.7)

However, for M > 0 when fi ∈ Fi ,
∫ cav fidvM

i = ∫ cav fidvi . Moreover, when M is
sufficiently large vM

1 • · · · • vM
K (N ) = v1 • · · · • vK (N ). This implies Eq. (4.6), and

the proof of Theorem 2 is complete. ��
Proof of Theorem 3 Let (v1, N1), (v2, N2) be convex games.

Step 1: We first assume that N1 = N2. Denote by C(vi ) the core of vi . Since vi is
convex, by Remark 6,

∫ cav

Xdvi = min
P∈C(vi )

∫ cav

XdP, X ≥ 0.

We therefore have,

max
f1+ f2=1
f1, f2≥0

∑

i

∫ cav

fidvi = max
f1+ f2=1
f1, f2≥0

∑

i

min
Pi∈C(vi )

∫ cav

fidPi

= max
f1+ f2=1
f1, f2≥0

min
(Pi )i∈C(v1)×C(v2)

∑

i

∫ cav

fidPi

= min
(Pi )i∈C(v1)×C(v2)

max
f1+ f2=1
f1, f2≥0

∑

i

∫ cav

fidPi , (6.8)

where the last equality is obtained by using the minimax theorem, as explained in
what follows. Consider the zero-sum game in which player 1’s set of strategies is
{ f1 + f2 = 1, f1, f2 ≥ 0} and C(v1) × C(v2) is player 2’s set of strategies. Both
sets are compact. Finally, the payoff function ((Pi )i , ( fi )i ) �→ ∑

i

∫
fidPi is bilinear.

The minimax theorem allows us now to change the order of the minimum and the
maximum in order to obtain the last equality.

Let (P∗
1 , P∗

2 ) and ( f ∗
1 , f ∗

2 ) be the optimal strategies of the players. In particular,
( f ∗

1 , f ∗
2 ) solves the maximization problem in the LHS of Eq. (6.8).

For every j ∈ N , denote5 M( j) = {i; P∗
i ( j) ≥ P∗−i ( j)} = argmaxi=1,2P

∗
i ( j).

When i ∈ M( j), P∗
i ( j) is greater than or equal to P∗−i ( j). Since ( f ∗

1 , f ∗
2 ) solves

5 −i denotes 3 − i .
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max
f1+ f2=1
f1, f2≥0

∑

i

∫ cav

fidP
∗
i , (6.9)

we infer that if f ∗
i ( j) > 0, then i ∈ M( j). Indeed, if i �∈ M( j), then P∗−i ( j) > P∗

i ( j).
Define now, f ′

i ( j
′) = f ∗

i ( j ′), f ′−i ( j
′) = f ∗−i ( j

′) for every j ′ �= j, f ′
i ( j) = 0 and

f ′−i ( j) = f ∗−i ( j)+ f ∗
i ( j). One obtains that f ′

1 and f ′
2 are nonnegative, f

′
1+ f ′

2 = 1 and,
∑

i

∫ cav

f ∗
i dP

∗
i <

∑

i

∫ cav

f ′
i dP

∗
i ,

a contradiction. Furthermore, any two nonnegative functions, f ′
1 and f ′

2, such that
f ′
1 + f ′

2 = 1 and that satisfy the implication [ f ′
i ( j) > 0 ⇒ i ∈ M( j)] solve Eq. (6.9).

Claim There are two disjoint sets S1 and S2 such that S1∪S2 = N (i.e., 1S1 +1S2 = 1)
and

(a) j ∈ Si implies i ∈ M( j) for every j ∈ N and i = 1, 2;
(b)

∫
1Si dP

∗
i = P∗

i (Si ) = vi (Si ).

Before we prove the claim, we argue that (a) and (b) together would complete
the proof. Indeed, by the previous paragraph, (a) would imply that (1S1 , 1S2) solves
Eq. (6.9). (b) would imply that

∑
i

∫
1Si dP

∗
i ( j) = ∑

i vi (Si ). Together we would
obtain

max
f1+ f2=1
f1, f2≥0

∑

i

∫ cav

fidvi =
∑

i

∫ cav

f ∗
i dvi =

∑

i

∫ cav

f ∗
i dP

∗
i

=
∑

i

∫ cav

1Si dP
∗
i =

∑

i

vi (Si ) ≤ v1 • v2(N ).

Theorem 1 implies that v1 and v2 are compatible. ��
Proof of the claim The game vi is convex, and therefore, the concave integral takes
a special form. Let πi be a permutation over N such that f ∗

i (πi (1)) ≤ f ∗
i (πi (2)) ≤

· · · ≤ f ∗
i (πi (n)). Define Ai ( j) = { j ′ ∈ N ; f ∗

i ( j ′) ≥ f ∗
i (πi ( j))}. It is clear that

Ai (n) ⊆ Ai (n−1) ⊆ · · · ⊆ Ai (1). Note that f ∗
i attains its maximum on the set Ai (n)

and Ai (1) = N . By Lovász (1983),6

∫ cav

f ∗
i dvi =

n∑

j=1

(
f ∗
i (πi ( j)) − f ∗

i (πi ( j − 1))
)
vi (Ai ( j)),

where f ∗
i (πi (0)) = 0.

Recall that f ∗
1 + f ∗

2 = 1.

Case 1: max f ∗
1 < 1. Then, min f ∗

2 > 0 implies 2 ∈ M( j),∀ j , and therefore,
A2(1) = N . In this case, set S1 = ∅ and S2 = N . Properties (a) and (b) are satisfied,
and the proof of the claim is complete.

6 This is also known as the Choquet integral (Choquet 1955).
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Case 2: max f ∗
2 < 1. This is similar to the previous case.

Case 3:max f ∗
1 = max f ∗

2 = 1.Denote by j∗ the smallest index such that f ∗
2 is strictly

positive on A2( j∗) (it exists because otherwise, f ∗
2 = 0 contradicting max f ∗

2 = 1).
Note that the complement of A2( j∗) is the set where f ∗

2 = 0, which is precisely where
f ∗
1 = 1, namely A1(n). Define, S1 = A1(n) and S2 = A2( j∗). The sets S1 and S2 are

complements of one another. Moreover, (a) is satisfied (because j ∈ Si implies that
f ∗
i ( j) is positive and therefore in M(i)).

We now show that (b) is satisfied. As (P∗
1 , P∗

2 ) and ( f ∗
1 , f ∗

2 ) are the optimal strate-
gies, we have

2∑

i=1

∫ cav

f ∗
i dvi =

2∑

i=1

∫
f ∗
i dP

∗
i

=
2∑

i=1

n∑

j=1

(
f ∗
i (πi ( j)) − f ∗

i (πi ( j − 1))
)
P∗
i (Ai ( j))

≥
2∑

i=1

n∑

j=1

(
f ∗
i (πi ( j)) − f ∗

i (πi ( j − 1))
)
vi (Ai ( j))

=
2∑

i=1

∫ cav

f ∗
i dvi ,

where the inequality is due to the fact that P∗
i is in the core of vi . We obtain that this

inequality is actually an equality, and therefore, P∗
i (Ai ( j)) = vi (Ai ( j)) for every j .

In particular, it holds for Si , i = 1, 2, and hence (b). This shows the claim and the
proof of Theorem 3 in case of identical grand coalitions.

Step 2Wenow lift the restriction that N1=N2 and allow different grand coalitions, N1
and N2. Denote N =N1 ∪ N2 and use the same technique we employed in the proof of
Theorem2: For i =1, 2 and a positiveM , define vM

i over N . Recall that in vM
i theworth

of � /∈ Ni is −M , which is also her contribution to any coalition she does not belong
to. Thus, vM

i is also convex. Furthermore, from the proof of Theorem 2, we know that
when M is sufficiently large, vM

1 and vM
2 are compatible if and only if v1 and v2.

Using Step 1, vM
1 and vM

2 are compatible as convex games. Thus, when M is large
enough, v1 and v2 are compatible, as desired. ��
Proof of Proposition 1 Denote v = v1 • · · · • vK . Suppose first that v(N ) = v1(N ).
We show that C(v) = C(v1) ∩ · · · ∩ C(vK ). Assume that P ∈ C(v1) ∩ · · · ∩ C(vK ).
Let S ⊆ N and let S1, . . . , SK be a partition of S to pairwise disjoint sets such that
v(S) = ∑

i vi (Si ). One obtains, P(S) = ∑
i P(Si ) ≥ ∑

i vi (Si ) = v(S). Further-
more, P(N ) = v1(N ) = v(N ) and therefore, P ∈ C(v). Now assume that P ∈ C(v).
For every coalition S, v(S) ≥ vi (S), implying P(S) ≥ v(S) ≥ vi (S) for every
i = 1, . . . , K . Since P(N ) = v(N ) = vi (N ), P ∈ C(vi ) for every i = 1, . . . , K .

As for the inverse direction, C(v) = C(v1) ∩ · · · ∩ C(vK ) readily implies that
v(N ) = v1(N ), which completes the proof. ��
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Proof of Proposition 2 We prove the theorem by induction on the number of games.
First assume that K = 2. We have

ṽ1 • ṽ2(S) = max
S1∩S2=∅
S1∪S2=S

[
ṽ1 (S1) + ṽ2 (S2)

]

= max
S1∩S2=∅
S1∪S2=S

⎡

⎢⎢⎢
⎣

max
Si1∩S j

1=∅
S11∪···∪Sn1=S1

{
v1

(
S11

)
+ · · · + v1

(
Sn1
)}

+ max
Si2∩S j

2=∅
S12∪···∪Sn2=S2

{
v2

(
S12

)
+ · · · + v2

(
Sn2
)}

⎤

⎥⎥⎥
⎦

= max
S1∩S2=∅
S1∪S2=S

max
Si1∩S j

1=∅
S11∪···∪Sn1=S1

max
Si2∩S j

2=∅
S12∪···∪Sn2=S2

[
v1

(
S11

)
+ · · · + v1

(
Sn1
)

+ v2

(
S12

)
+ · · · + v2

(
Sn2
)]

= max
Ti∩Tj=∅

T1∪···∪Tn=S

⎡

⎢⎢⎢
⎣

max
S11∩S12=∅
S11∪S12=:T1

{
v1

(
S11

)
+ v2

(
S12

)}

+ · · · + max
Sn1∩Sn2=∅
Sn1∪Sn2=:Tn

{
v1
(
Sn1
)+ v2

(
Sn2
)}

⎤

⎥
⎥⎥
⎦

= max
Ti∩Tj=∅

T1∪···∪Tn=S

[v1 • v2(T1) + · · · + v1 • v2(Tn)]

= ṽ1 • v2(S).

Now assume the induction hypothesis: The statement of the theorem holds for
2, . . . , K − 1 games. Let v := v1 • · · · • vK−1. By using the induction hypothesis and
by the semigroup structure of (G(N ), •), we have,

˜v1 • · · · • vK = ṽ • vK

= ṽ • ṽK

= (ṽ1 • · · · • ṽK−1) • ṽK

= ṽ1 • · · · • ṽK .

��
Proof of Proposition 3 We need the following three lemmas.
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Lemma 1 For any game v,

{Plinear|P ≥ v} = {Plinear|P ≥ ṽ} = {Plinear|P ≥ vc}.

Proof This is an immediate result of the linearity of P and the definition of ṽ and vc.
��

An immediate consequence of this lemma is the following one,

Lemma 2 For any game v,

Bv = Bṽ = Bvc .

The third lemma is,

Lemma 3 For any game v,

Cc(v) �= ∅ iff C(ṽ) �= ∅.

Proof By (4.4), Cc(v) �= ∅ is equivalent to Bvc(N ) ≤ vc(N ). Since vc(N ) = ṽ(N ),
by Lemma 2, Bvc(N ) ≤ vc(N ) is equivalent to Bṽ(N ) ≤ ṽ(N ), which is, by (4.4),
equivalent to C(ṽ) �= ∅. ��

Now we complete the proof of the proposition. We have,

v1, . . . , vK are c-compatible ⇔ Cc(v1 • · · · • vK ) �= ∅
⇔ C( ˜v1 • · · · • vK ) �= ∅
⇔ B

˜v1•···•vK
(N ) ≤ ˜v1 • · · · • vK (N )

⇔ Bṽ1•···•ṽK (N ) ≤ ˜v1 • · · · • vK (N )

⇔ Bṽ1•···•ṽK (N ) ≤ ṽ1, . . . , ṽK (N )

⇔ C(ṽ1 • · · · • ṽK ) �= ∅
⇔ ṽ1, . . . , ṽK are compatible.

The first equivalence is the definition of compatibility. The second one is due to
Lemma 3. The third equivalence is by (4.4), while the fourth and the fifth are due
to Proposition 2. The last two equivalences result from (4.4) and the definition of
compatibility, respectively. ��
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