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1. Introduction

An extension of Nash equilibrium emerged from the learning literature: conjectural

equilibrium (Battigalli [2]).1 In such an equilibrium each player receives a partial infor-

mation regarding the action profile played by others. This information does not reveal

precisely what other players play. Rather, it provides a player with a set of possible

strategies that the others might play. This set contains all the strategy profiles that are

consistent with a player’s knowledge about others strategies. In equilibrium, each player

plays a best response to one of these consistent–with–information strategies. In other

words, a strategy profile constitutes a conjectural equilibrium, if every player’s strategy

is justified by a belief consistent with his information.

Motivated by the notion of justifiability in conjectural equilibrium, we take an ax-

iomatic approach in an Anscombe–Aumann setting [1], and characterize justifiable pref-

erences. More formally, we characterize a binary relation � over acts, such that there

exist a vN–M utility function u and a closed and convex set of probability distributions

P over the state space, where f � g if and only if there exists p ∈ P such that, with

respect to p, the expected value of u(f) is at least as high as that of u(g).

Justifiable preferences need not be transitive. In fact, it is transitive if and only if the

collection of priors consists of a single prior. In this case it admits an expected–utility

representation. Though transitivity is considered by many economists as the “corner-

stone” of normative decision theory, non–transitive literature is abundant, and for the

past fifty years there has been a growing body of evidence, empirical and theoretical,2

that intransitive preferences can reflect underlying rational choices. One of the first who

dealt with non–transitive preferences was May [20]. To quote May,

Theories of choice may be built to describe behavior as it is or as it “ought

to be”. In the belief that the former should precede the latter, this paper

is concerned solely with descriptive theory and, in particular, with the

intransitivity of preferences.

To illustrate the definition of justifiable preferences consider an example of a firm that

delegates responsibility to its employees. Every employee is competent and trustworthy

1Closely related solution concepts are Fudenberg and Levine’s [8] self–confirming equilibrium and

Kalai and Lehrer’s [12, 13] subjective equilibrium.
2See the related literature Section 6.1.
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in the eyes of the management, and considers only the benefit of the firm. All employ-

ees share common sources of relevant information, which usually provide just a partial

picture. However, each agent typically has his own background, education, knowledge,

guts feeling, intuition and instincts. It is quite plausible in such a situation that different

agents would justify their decisions by different assessments about the real state, all are

consistent with their information. It might therefore happen that several agents would

choose f over g, and others would make the opposite choice. This can also occur when

choosing between g and h. Furthermore, it is possible that every agent would choose h

over f . To an outsider who observes the conduct of the firm (and not the agents), it

seems that the firm is indifferent between f and g, and also between g and h. However,

it seems that h is strictly preferred to f . In this case the firm’s observable preferences

appear intransitive and perhaps irrational. However, when confronted, these preferences

are justifiable: management can justify every particular decision made, and back up its

competent employees.

Our model joins a vast literature of non–expected utility attempting to explain behav-

ioral evidence, which violate expected–utility maximization. The most prominent illus-

tration of such a behavior is provided by Ellsberg [5], which shows that partially informed

decision makers typically do not adopt a unique prior that rationalizes their choices, and

therefore, do not adhere to expected–utility theory (Savage [21] and Anscombe–Aumann

[1]). This observation raises several questions like how decision makers perceive un-

certainty? and, what might be a decision maker’s attitude towards uncertainty? The

literature offers several alternatives to these issues.

One way to model uncertainty is by a convex closed set of probability distributions, the

multiple priors model. This set reflects the ambiguity of the decision maker generated by

the partial information he obtained. The maxmin expected–utility model (Gilboa and

Schmeidler [10]) suggests that a decision maker is ambiguity averse: she considers the

worst case scenario and chooses the alternative that maximizes the minimal expectation.

More formally, she prefers f to g if the minimal expectation of f over all possible priors

is greater than the minimal expectation of g.

The maxmin approach is also applied to non–cooperative normal–form games. In

beliefs equilibrium (see Lo [17]) each player is a maxmin decision maker who believes

that the other players play strategies in a certain set (the beliefs set). Furthermore, this

set is consistent in the sense that it contains the strategies actually being played. In
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both, beliefs and conjectural equilibrium players play against ambiguous strategies of

others. While in beliefs equilibrium players are maxmin decision makers, in conjectural

equilibrium players are allowed to respond to any strategy profile in their beliefs set. In

other words, conjectural equilibrium does not restrict a player to any particular attitude

to ambiguity: it allows any justifiable decision.

Following the characterization of justifiable preferences, we proceed with the second

contribution of this paper: extension of the classical ambiguity model of multiple priors,

where the decision maker’s ambiguity is reflected by a single set of priors. As noted

above one possible source of ambiguity (see also Lehrer [16]) is the partial information

a decision maker obtains about the actual distribution over states. Quite often, and

especially when the decision problems considered have a significant importance, different

and parallel agencies are established to collect information. Based on the information

it gathered, each agency provides its own assessments. Since information is typically

incomplete, an assessment amounts to, possibly, multiple priors that settle with the

information available. Thus, the decision maker is provided with a collection of sets

of probability distributions. This is the multiple multiple priors that reflects a hyper

ambiguity: not only that there are several priors, there are several sets of priors.

We axiomatize a decision maker whose preferences are determined by multiple multiple

priors in the following manner. An act f is preferred to g if with respect to at least one

set of probability distributions, f dominates g in the Knightian sense (Bewley [3]). In the

context, previously discussed, of many parallel agencies that are in charge of collecting

information and providing assessments, f is preferred to g if according to at least one

agency, f is unanimously preferred to g.

The last part of the paper is devoted to justifiable preferences induced by partially–

specified probabilities (see Lehrer [16]). Here, multiple priors emerge from concrete

partial information about the real distribution governing the state space. This partial

information induces a vN–M representation of the preference over a set of acts that

includes the set of constant acts. There are typically many distributions that can serve as

the prior of this vN–M representation. The multiple priors that generates the justifiable

preferences consists of all these distributions.
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2. Characterization of justifiable preferences

Consider a decision making model in an Anscombe–Aumann [1] setting. Let X be a

non–empty finite set of outcomes, and let Y = ∆(X) be the set of all lotteries,3 that is

probability distributions over X. Let S be a finite non–empty set of states of nature.

Now, consider the collection L = Y S of all functions from states of nature to lotteries.

Such functions are referred to as acts. Endow this set with the product topology, where

the topology on Y is the relative topology inherited from [0, 1]X . We denote by Lc the

collection of all constant acts. Abusing notations, for an act f ∈ L and a state s ∈ S,

we denote by f(s) the constant act that assigns the lottery f(s) to every state of nature.

Mixtures (convex combinations) of lotteries and acts are performed pointwise. In

particular, if f, g ∈ L and α ∈ [0, 1], then (αf + (1− α)g)(s) = αf(s) + (1− α)f(s) for

every s ∈ S.

The primitive of such a decision model is a binary relation � over L, which represents

the preferences of a decision maker (DM) over all acts. � is the asymmetric part of the

relation, that is f � g if f � g but it is not true that g � f . ∼ is the symmetric part,

that is f ∼ g if f � g and g � f . The binary relation � is reflexive if f ∼ f for every

act f . � is complete over K ⊆ L if for every f, g ∈ K, either f � g or g � f . � is

complete if it is complete over L. It is transitive over K ⊆ L if for f, g, h ∈ K, f � g

and g � h imply f � h. Lastly, the relation is non–trivial if there are two acts f and g

such that f � g.

Following is a list of assumptions (axioms) about a binary preference relation � over

acts.

A1 Relation. � is reflexive, complete and non–trivial.

A1 is a structural assumption. Completeness is assumed while transitivity is not

required.

For two acts f, g ∈ L, we denote f �S g and f �S g, if respectively, f(s) � g(s) for

every s ∈ S, and f(s) � g(s) for every s ∈ S

A2 Unambiguous transitivity. (i) f � g and g �S h imply f � h; and (ii) f � g and

h �S f imply h � g.

A2 combines two preferences. The first, f � g, suggests that the DM managed to

decide between f and g in spite of the ambiguity. This is the original preference relation.

3Given a finite set A, ∆(A) denotes the collection of all probability distributions over A.
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The second, g �S h, reflects a domination of g over h beyond uncertainty, and takes into

consideration only the DM’s tastes. A2 requires transitivity in the following sense: if

f � g, and g is beyond any doubt as good as h, then f � h.

A3 Strict monotonicity. f �S g implies that f � g.

A3 is a strict monotonicity assumption. It states that a strictly preferred lottery in

every state of nature yields a strictly preferred act. This is not the common monotonicity

assumption, however, it is necessary for our representation, and the relation between the

two will be discussed later.

A4 Continuity. For any act f the sets {g : g � f} and {g : f � g} are closed.

A5 Independence. f � g if and only if αh + (1− α)f � αh + (1− α)g for every h ∈ L

and α ∈ [0, 1].

A5 is the classical independence assumption.

A6 Favorable mixing. If g � f , and h ∈ L, α ∈ [0, 1] are such that αf + (1 − α)h � g,

then λf + (1− λ)h � g for every λ ≤ α.

Consider the case where an act g is strictly preferred to f , and that the preference

is reversed once f is mixed with h with probability α. This suggests that h is better

than g and that the weight of α on h is sufficient for reversing the order. A6 states that

if f is mixed with h with a probability greater than α, the DM would still reverse her

preference.

When transitivity over all acts is assumed then A6 is implied by A5. Once transitivity

is relaxed and only A2 is assumed, A6 is not implied by A5.

The following lemma is immediate and will be useful in obtaining the representation

of justifiable preferences. The proof is omitted.

Lemma 1. Assume that � satisfies A2. Then,

(1) � is transitive over Lc; and

(2) � satisfies monotonicity, that is, f �S g implies that f � g.

A function u : Y → R, also referred to as a utility function, is affine if for every q ∈ Y

it satisfies u(q) =
∑

x∈X q(x)u(x). Given such a utility function and an act f ∈ L, we

denote by u(f) = (u(f(s)))s∈S.

We are now ready to present our characterization.
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Theorem 1. � is a binary relation over L. Then the following are equivalent:

(1) � satisfies A1–A6.

(2) There exist a non–constant affine utility function u : Y → R, and a non–empty,

closed and convex set P of probability distributions over S, such that for every two acts

f and g,

f � g ⇔ ∃p ∈ P such that p · u(f) ≥ p · u(g).4

Moreover, P is unique and u is unique up to a positive linear transformation.

Remark 1. Theorem 1 shows that strict monotonicity of � is necessary for the set P

to consist of probability distributions. Consider the following example of a preference �
over utility vectors in R2, where the strict monotonicity assumption A3 is dropped. Let

P be the convex–hull of {(−1, 2), (0, 1)}, and define � by x � y if there exists p ∈ P such

that p · (x − y) ≥ 0. Although P consists of signed probability distributions, � satisfies

monotonicity.

Denote by Q the lS1 unit ball, that is, Q = {q ∈ RS :
∑

si∈S |q(si)| ≤ 1}. Following

the proof of Theorem 1, dropping the strict monotonicity A3, Assumptions 1, 2, 4, 5 and

6 yield a representation as in Theorem 1, where P ⊆ Q is closed, convex and contains a

non–negative element of Q but not 0.

Remark 2. Let � satisfy A1–A6. Then, � admits an expected–utility representation

if and only if P is a singleton.

Before turning to the proof of Theorem 1 we need to establish an auxiliary result

regarding the geometric nature of our assumptions. Let N be a finite non–empty set,

and let N also denote the number of elements in N . The collection of all functions

x : N → R can by identified with the linear space RN , where multiplication of such

functions by scalars and addition of functions are performed pointwise. For x, y ∈ RN ,

x ≥ y if x(i) ≥ y(i) for every 1 ≤ i ≤ N , and x > y if x(i) > y(i) for every 1 ≤ i ≤ N .

Consider a binary relation �∗ over a closed and convex C ⊆ RN . The following are

some possible properties for such a relation:

(i). For every x, y ∈ C, either x �∗ y or y �∗ x, and x ∼∗ x

(ii). x > y implies x �∗ y.

(iii). The sets {x ∈ C : x �∗ y} are closed.

4Given vectors x, y ∈ RS , the inner–product of x and y is denoted by x · y. The inner–product of x

and a probability distribution p over S is the expectation of x with respect to p.
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(iv). x �∗ y if and only if αz + (1− α)x �∗ αz + (1− α)y for z ∈ C and α ∈ [0, 1].

(v). If y �∗ x, and z ∈ C, α ∈ [0, 1] are such that αx+(1−α)z �∗ y, then λx+(1−λ)z �∗

y for every λ ≤ α.

Proposition 1. Let �∗ be a binary relation over [0, 1]N . Then the following are equiv-

alent:

(1) �∗ satisfies (i)-(v).

(2) There exists a unique closed and convex set P of probability distributions over N ,

such that

x �∗ y ⇔ ∃p ∈ P such that p · x ≥ p · y.

Proof. It is easy to see that (2) implies (1). For the converse assume that �∗ satisfies

(i)–(v).

First we extend �∗ to a complete binary relation over RN as follows. We start with

RN
+ , the set of all nonnegative vectors is RN . Let x, y ∈ RN

+ and define x �∗ y if and only

if λx �∗ λy for sufficiently small positive λ. To see that this is well defined, apply (iv)

where z = 0. We have obtained that �∗ is (positively) homogeneous over RN
+ , formally

x �∗ y ⇔ λx �∗ λy, for every λ > 0.

Now consider x, y ∈ RN . We say that x �∗ y if and only if there are x′, y′ ∈ RN
+

such that x′ �∗ y′ and x′ − y′ = x − y. Since �∗ is by now defined over all RN
+ , it is

complete over RN . It remains to show that �∗ is well defined. That is, for every distinct

x, y, x′, y′ ∈ RN
+ , if x �∗ y and x′ − y′ = x− y = z then x′ �∗ y′. Define, w = min(x, y)

coordinate–wise. Then x − w, y − w ∈ RN
+ , (x − w) − (y − w) = x − y and x > x − w.

x �∗ y implies by homogeneity that 1
2
w + 1

2
(x−w) �∗ 1

2
w + 1

2
(y−w), and again by (iv)

that (x− w) �∗ (y − w).

Define w′ = min(x′, y′). Note that x′ − w′ = x− w = max(z, 0) coordinate–wise, thus

x′ − (x − w) = w′ is in RN
+ . The previous argument applied to x′, y′ and w′ (that play

the roles of x, y and w) shows that x′ �∗ y′. We conclude that x �∗ y if and only if

x− y �∗ 0 for every x, y ∈ RN .

Next we show that the set K = {x ∈ RN : x �∗ 0} is a positive homogeneous

closed cone, and that its complement Kc is convex. By homogeneity K is a positive

homogeneous, and by (iii) it is closed. To see that Kc is convex, assume to the contrary

that there exist x, y, z ∈ RN and α ∈ (0, 1) such that 0 �∗ y, 0 �∗ z and αy+(1−α)z �∗
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0. However, by (v), 0 �∗ y and αy + (1 − α)z �∗ 0 imply z �∗ 0 (with λ = 0), which

contradicts 0 �∗ z.

As a closed cone whose complement is convex, K can be written as a union of hyper-

spaces Hi of RN . For every Hi there is a unique vector pi ∈ RN such that pi · h ≥ 0 for

every h ∈ Hi and the sum of coordinates of pi is 1. Denote P the convex–hull of {pi}i.

We have that x ∈ K if and only if there exits p ∈ P such that p · x ≥ 0.

By (ii), Kc contains the negative orthant5. Thus, P consists of probability distributions

only. Otherwise there would exist p ∈ P with p(s) < 0 for some s ∈ S, which would

imply that there exists x < 0 with p · x > 0. This implies that K and the negative

orthant are not disjoint. A contradiction.

We therefore obtained that under the assumptions stated above, x �∗ y if and only

if x − y �∗ 0 if and only if there exists a probability distribution p ∈ P such that

p · (x− y) ≥ 0. �

We now turn to the proof of Theorem 1.

Proof of Theorem 1. The necessity of A1–A6 is obvious. We now prove the converse.

Since A1, A2, A4 and A5 are satisfied, the hypothesis of the von Neumann–Morgenstern

theorem hold. The theorem assures the existence, and uniqueness up to a positive lin-

ear transformation, of an affine function u : Y → R, which represents the preferences

restricted to Lc. By A1 the function u is non–constant. Moreover, u can be normalized

so that the minimal utility is 0 and the maximal utility is 1.

The existence of such utility function u induces a preference relation over [0, 1]S. For

f, g ∈ L, u(f) �∗ u(g) if and only f � g. �∗ is well defined due to assumption A2 of �.

Furthermore, �∗ satisfies properties (i)–(v).

Now, applying Proposition 1 completes the proof. �

3. Decision models with multiple priors

3.1. Generalizations of the maxmin model. The maxmin model has been extended

in several directions. Ghirardato et al. [9] axiomatize a model termed α–maxmin, dif-

ferentiating ambiguity attitude from ambiguity. In this model, a DM valuates an act

partially by maxmin and partially by maxmax.6 The variational preferences model,

5By negative orthant of RN we mean the collection of all x < 0.
6The maxmax preference order induced by a set of priors P and a utility function u is defined by:

f � g ⇔ maxp∈P p · u(f) ≥ maxp∈P p · u(g).
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introduced by Maccheroni et al. [18], suggests that using a particular prior involves a

cost, and that agents maximize the net worst–case utility that takes into account also

the cost involved. As the maxmin model, variational preferences are ambiguity averse.

Recently, Cerreia et al. [4] established a representation, resorting to multiple priors, for

general uncertainty averse preferences. Smooth preferences, presented and axiomatized

by Klibanoff et al. [15], suggest that the decision maker’s ambiguity is reflected by mul-

tiple priors, however there exists an additional subjective distribution over the set of

priors, suggesting the probability that a specific prior is the “correct” one.

3.2. Bewley’s Knightian model. Bewley [3] introduces a different approach towards

uncertainty in the multiple priors model, and axiomatizes Knightian preferences. Under

Knightian preferences the decision maker prefers f to g if f dominates g in the sense that

according to all priors, the expected–utility induced by f is greater than that induced

by g. Formally, for every two acts f and g,

f �′ g ⇔ ∀p ∈ P, p · u(f) > p · u(g),

where P is a given convex closed set of probability distribution over S. In other words,

f is preferred over g if all possible priors unanimously agree that indeed f is better than

g. The obvious shortcoming of the Knightian preference order is that it is incomplete.7

In the case where the set of priors consists of more than one prior, there are many (i.e.,

continuum) ways to extend the Knightian preferences to a complete binary relation. An

obvious way, which we call a Bayesian extension, is to adopt one of the many possible

priors, say p, and to declare that f is preferred over g if p ·u(f) ≥ p ·u(g). Following one

particular prior, like in the Bayesian extension, has many desirable properties such as

transitivity, ambiguity aversion and time consistency when temporal aspects are involved.

Gilboa et al. [11] complete the Knightian preferences to maxmin preferences.

Another way to extend the incomplete Knightian preferences is as follows. For every

two non–comparable acts f, g define f �′ g. In words, whenever preferences are indecisive

about the comparison of f and g, the definition of�′ implies that both, f �′ g and g �′ f .

This extension is complete and is precisely the justifiable preferences presented above.

7In fact, such preferences are complete if and only if P consists of a singleton, which implies expected

utility preferences.
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3.3. Knightian and Justifiable preferences. To see the dual roles of the Knightian

and the justifiable preferences, one needs to notice that Knightian preferences satisfy

(1) f �′ g ⇔ min
p∈P

p · (u(f)− u(g)) > 0,

whereas justifiable preferences admit the form

(2) f � g ⇔ max
p∈P

p · (u(f)− u(g)) ≥ 0.

A binary relation over acts is formally defined as a subset of pairs contained in the

product of the set of acts with itself. Eq. (1) implies that the (irreflexive) Knightian

preferences are the intersection of all the irreflexive Bayesian preferences induced by

the priors in P . Moreover, all the irreflexive Bayesian preferences are open and convex

(again, as sets of pairs) and so are the Knightian preferences.

On the other hand, Eq. (2) implies that any Bayesian preference order is a subset of

the justifiable preferences. Moreover, the justifiable preferences are the union of all the

Bayesian extensions.

The reader is referred to subsection 6.2 below for a further elaboration on this point.

4. Multiple multiple priors: a model of ambiguity

The models mentioned so far refer to a decision maker facing one set of priors. This

section is devoted to a new model of ambiguity, the multiple multiple priors model, and

to a representation of a particular decision method that is based on it. This ambiguity

model and the resulting preferences encompass the Knightian and justifiable preferences.

4.1. Multiple multiple priors. Recall the example of the firm given in the introduc-

tion. The firm’s employees are partially informed regarding nature’s true state. They

share common sources of information, such as those provided by the firm, however, each

of them might obtain private information (depending on business acquaintances and past

experiences for example) different than that obtained by the others. Also, it is natural

that, due to uncertainty, different agents would end up with different information, some

overlapping but some also contradicting each other. For example, each agent ends up

with the true expectation of a collection of random variables, or the true probability

of a partial collection of events. The list (of random variables or events) obtained by

one agent need not be exactly the same as that obtained by the others. Typically in-

formation is incomplete, and each agent’s ambiguity amounts to a set of priors, each of
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which is consistent with the information obtained. Therefore, the firm is provided with

a collection of sets of priors, and has to base its decisions according to it.

4.2. Knightian and justifiable preferences combined. Next we characterize a model

which extends both Knightian and justifiable preferences. For this we need to weaken

the completeness of � as stated by A1.

A1’. � is reflexive, complete over Lc and non–trivial.

Definition 1. A set P is a collection of multiple priors if each P ∈ P is a set of priors.

It is minimal if it contains no two sets of priors that one contains the other.

Theorem 2. For a binary relation � over L the following are equivalent:

(1) � satisfies A1’ and A2–A5.

(2) There exist a minimal collection P of closed and convex sets of probability distribu-

tions over S with
⋃

P∈P P being closed, and a non–constant affine function u : Y → R,

such that for every two acts f and g,

f � g ⇔ max
P∈P

min
p∈P

{p · (u(f)− u(g))} ≥ 0.

Moreover, u is unique up to a positive linear transformation.

Consider the example of the firm discussed in the previous Section 4.1. Theorem 2

suggests that, subject to the assumptions described, the firms’ decisions will be based

on a few sets of multiple priors, obtained by its agents, in the following sense. 8 An act

f is preferred to g if there exists at least one agency that prefers f to g in the Knightian

sense. That is, there exists an agent for whom the expected–utility of f is greater than

that of g according to every prior consistent with his information.

For a numerical illustration of the model consider the following example. Suppose that

an urn contains 30 red balls, and additional 60 balls that are either black or white. A ball

is randomly drawn from the urn and the decision maker is given the choice between lottery

R of receiving $100 if a red ball is drawn, and lottery B of receiving $100 if a black ball is

drawn. Assume that two different sources of information provide the decision maker with

two sets of possible distributions over {r, b, w}, Pb = {p ∈ ∆(r, b, w) : p(r) = 1
3
, p(b) ≥ 1

2
}

and Pw = {p ∈ ∆(r, b, w) : p(r) = 1
3
, p(w) ≥ 1

6
}. With respect to any p ∈ Pb, the ex-

pected utility of B is greater than that of R. However, there are two priors in Pw such

8We follow the “observed preferences” interpretation given in the example.
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that with respect to one the expected utility of B is greater than that of R, while the

expected utility of R with respect to the other is greater than that of B. The model

presented in Theorem 2 suggests that the decision maker would strictly prefer B to R.

It is clear by the assumptions of Theorem 2 that this model is an extension of Knightian

and justifiable preferences. In terms of representation, when P consists of a single closed

and convex set of probability distributions over S, one obtains Knightian preferences.

And when P consists only of singletons, the resulting preferences are justifiable.

As in the Proof of Theorem 1, we first examine the geometric implications of our

assumptions. Recall the binary relation �∗ over a closed and convex set C ⊆ RN

discussed in the Section 2. We describe two additional properties for such a relation.

The first is a weakening property (i).

(i’). For every x ∈ C, x ∼∗ x.

Given (i′), as opposed to (i), �∗ need not be complete. However, property (ii) implies

that if x, y ∈ C are two constants, then wither x �∗ y or y �∗ x (thus, �∗ is complete

over the constants in C).

(vi). x �∗ y and z ≥ x implies that z �∗ y.

Proposition 2. Let �∗ be a binary relation over [0, 1]N . Then the following are equiv-

alent:

(1) �∗ satisfies (i’) and (ii)-(vi).

(2) There exists a minimal collection P of closed and convex sets of probability distribu-

tions over N with
⋃

P∈P P being closed, such that

x �∗ y ⇔ max
P∈P

min
p∈P

p · (x− y) ≥ 0.

Proof. First, as in the proof of Proposition 1, the relation �∗ is extended to RN , to obtain

an homogeneous binary relation (typically intransitive and incomplete). Furthermore, it

satisfies x �∗ y if and only if x− y �∗ 0 for every x, y ∈ RN .

Let K = {x : x �∗ 0}. K is, as obtained in the proof Proposition 1, a positive

homogeneous closed cone, satisfying RN
+ ⊆ K. Next we show that K can be split into a

union: K =
⋃

j∈J Kj, where for every j ∈ J , Kj is a positive homogeneous closed and

convex cone that contains RN
+ .
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Let x ∈ K \ RN
+ , y ∈ RN

+ and α ∈ (0, 1). Then, αx + (1 − α)y ≥ αx �∗ 0. By (vi),

αx + (1 − α)y ∈ K. Thus, Kx = conv{{λx : λ > 0} ∪ RN
+} is a closed and convex cone

contained in K, and K =
⋃

x∈K Kx.

As in Bewley [3] (see his proof of Theorem 1, p. 105), for every x ∈ K there exists

closed and convex set Px of probability distributions over N , such that y ∈ Kx if and

only if for every p ∈ Px, p · y ≥ 0. Denote by P the collection of all Px. We obtained

that y ∈ K if and only if there exists P ∈ P such that for every p ∈ P , p · y ≥ 0. This

implies that

(3) y ∈ K ⇔ max
P∈P

min
p∈P

p · y ≥ 0

The set Px is convex and therefore p ∈ Px if and only if there exists y ∈ Kx such

that p · y = 0 and y 6= 0. To show that
⋃

P∈P P is closed assume that a sequence

{pk}k ⊆
⋃

P∈P P converges to p. For every pk there is yk ∈ K such that pk · yk = 0. As

K is a cone, the vector yk can be normalized to be with norm 1, and since K is closed,

{yk}k has a converging subsequence to a point x 6= 0 in K. Thus, p ·x = 0 and therefore

p ∈ Px. In particular, the limit of {pk}k is in
⋃

P∈P P , and
⋃

P∈P P is closed, as desired.

Consider the set of all collections P of closed and convex sets of distributions that

satisfy Eq. (3) and
⋃

P∈P P is closed. This set is partially ordered by inclusion. A

minimum in this order is a minimal collection and it satisfies the properties stated in

Proposition 2 (2). In particular, minp∈P p · x for every P ∈ P , and maxP∈P minp∈P p · x
are well defined for every x ∈ RN . �

We are now ready to prove Theorem 2.

Proof of Theorem 2. As in the proof of Theorem 1, A1’ along with the other assumptions

ensure that the preference relation restricted to Lc satisfies the hypothesis of the von

Neumann–Morgenstern theorem. This assures the existence and uniqueness up to a

positive linear transformation of a non–constant, normalized affine function u : Y → R,

which represents this relation.

The binary relation �∗ given by u(f) �∗ u(g) if and only f � g, for every f, g ∈ L, is

well defined due to A2. Furthermore, �∗ satisfies properties (i’) and (ii)-(vi). Applying

Proposition 2 completes the proof. �
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5. Justifiable preferences and partially–specified probabilities

5.1. Partially–specified probabilities. In [16], Lehrer suggests a different perception

to uncertainty than that of multiple priors, non–additive prior (Schmeidler [22]), and

others appearing in the literature. This alternative is information based. The deci-

sion maker obtains a partially–specified probability (PSP), in particular, either the true

probability of some, but maybe not all, events, or the true expectation of a partial list

of random variables. The decision maker then evaluates the alternatives, according to

her attitude to uncertainty, utilizing only the PSP and completely ignores unavailable

information.

5.2. Justifiable preferences and PSP. In this subsection we characterize justifiable

preferences that are generated by PSP.

Definition 2. An act f is primitive if for any α ∈ [0, 1):

(i) for any constant act c such that f � c, the inequality h � αf + (1 − α)g implies

h � αc + (1− α)g and αc + (1− α)g � h implies αf + (1− α)g � h; and

(ii) for any constant act c such that c � f , the inequality αf + (1 − α)g � h implies

αc + (1− α)g � h and h � αc + (1− α)g implies h � αf + (1− α)g.

Primitive acts are essentially those that keep transitivity in a broad sense. A primitive

act f satisfies simple transitivity when constants are involved. That is, h � f and

f � c with c being constant imply h � c. However, primitive act satisfy a broader

sense of transitivity. Assume, for instance, that f � c with c being constant and that

h � αf +(1−α)g, then c can replace f to produce h � αc+(1−α)g. This is transitivity

and mixing combined

Remark 3. Note that the definition immediately implies that whenever f is primitive,

and c, d are constants such that c � f � d, then c � d.

A7 Primitives determine preferences. For any two acts g1, g2 the following are equivalent:

(i) g1 � g2.

(ii) If for every two primitive acts f1, f2, αg2 + (1 − α)f1 �S αg1 + (1 − α)f2 for every

α ∈ (0, 1), then f1 � f2.

According to A7 the primitive acts are those which the preference relation should be

founded on. It suggests that the fact that αg2 + (1−α)f1 dominates αg1 + (1−α)f2 for

every α ∈ (0, 1) cannot co–exist with f2 � f1, attests that the domination of αg2 + (1−
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α)f1 over αg1 + (1 − α)f2 stems from f1 � f2 and not from g2 � g1. A7 states that if

the primitive acts do not provide a strong evidence that g2 � g1, by default g1 � g2.

Theorem 3. For a binary relation � over L the following are equivalent:

(1) � satisfies A1-A5 and A7.

(2) There exist a collection of acts F , a non–constant affine function u : Y → R and a

prior distribution p over S, such that for every two acts g1 and g2, g1 � g2 if and only if

(4) min {p · (u(f1)− u(f2)) : γ[u(f1)− u(f2)] ≥ u(g1)− u(g2), f1, f2 ∈ F, γ > 0} ≥ 0.

Furthermore, u is unique up to a positive linear transformation.

(3) There exist a collection of acts F , a non–constant affine function u : Y → R and a

prior distribution p over S, such that for every two acts g1 and g2,

g1 � g2 ⇔ ∃q ∈ P such that q · u(g1) ≥ q · u(g2),

where P = {q : q · u(f) = p · u(f) for every f ∈ F}. Furthermore, u is unique up to a

positive linear transformation.

Theorem 3 (3) is the PSP version of justifiable preferences. The DM is informed of the

expectations, with respect to p, of all the variables u(f), f ∈ F . The set of priors P that

consists of all the distributions q that agree with p on F induces a justifiable preference

relation.

In order to prove Theorem 3, we need to establish some preliminary results regarding

the collection of all primitive acts, and how they relate to one another with respect to

�.

Lemma 2. A2 and A5 guarantee that every constant act is primitive.

Proof. Suppose that f, c are constants and f � c. By A5, αf +(1−α)g �S αc+(1−α)g

for every act g and α ∈ [0, 1]. Let h � αf + (1− α)g. Then, by A2, h � αc + (1− α)g.

All other implications required in Definition 2 are shown in a similar fashion. �

Lemma 3. A1, A2, A4 and A5 guarantee that for every primitive act f there is a

unique9 constant act c such that c ∼ f .

9Here we mean unique up to the equivalence class. That is, if c, c′ are constants such that c ∼ f and

c′ ∼ f , then by Remark 3 c ∼ c′.
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Proof. Consider the collection Lc of all constant acts endowed with the relative topology.

Completeness of � implies that any constant is a member of at least one the following

closed sets of constants, {c ∈ Lc : c � f} and {c ∈ Lc : f � c}. Remark 3 guarantees

that the intersection of these sets contains at most one act, and the convexity of the set

of constants (which implies connectedness) implies that the intersection contains exactly

one act. �

For any primitive act f denote by cf the constant act that satisfies cf ∼ f .

Lemma 4. A1, A2, A4 and A5 guarantee that the set of primitive acts is convex.

Proof. Let f1, f2 be primitive acts and suppose that γf1 + (1 − γ)f2 � c. Let h �
α(γf1 + (1 − γ)f2) + (1 − α)g. We need to show that h � αc + (1 − α)g. Since f1, f2

are primitive acts, h � α(γcf1 + (1− γ)cf2) + (1− α)g and γcf1 + (1− γ)cf2 � c. Thus,

Assumption 2 implies h � αc + (1− α)g. All other implications required in Definition 2

are shown in a similar fashion. �

Lemma 5. A1, A2, A4 and A5 guarantee that � is transitive over the set of primitive

acts.

Proof. Assume f1, f2, f3 are primitive acts that satisfy f1 � f2 � f3. Then, cf1 � f1 � f2

which implies cf1 � f2. On the other hand cf1 � f2 � cf2 which implies cf1 � cf2 . In

the same manner cf2 � cf3 . By Lemma 1 we have that cf1 � cf3 . Now, f1 � cf1 � cf3

implies f1 � cf3 , and f1 � cf3 � f3 implies f1 � f3. �

We are now ready to prove Theorem 3.

Proof of Theorem 3. Let F ⊆ Y be the set of all primitive acts. This set is convex,

includes all constant acts, and � is transitive over F . Therefore, there exists a utility

function u : Y → R and a prior distribution p over S such that for every two primitives

f1 and f2,

(5) f1 � f2 ⇔ p · u(f1) ≥ p · u(f2).

Now, define a binary relation �∗ over all acts as follows: for every two acts g1 and g2,

g1 �∗ g2 if and only if Eq. (4) holds. Let us show that �∗ and � coincide.

Suppose that g1 �∗ g2 and assume to the contrary that g2 � g1. A7 implies that

there exist two primitive acts f1, f2 such that αg2 + (1 − α)f1 �S αg1 + (1 − α)f2 for

every α ∈ (0, 1), and f2 � f1. By Eq. (5) we obtain p · u(f2) > p · u(f1). However,
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αg2 +(1−α)f1 �S αg1 +(1−α)f2 implies that 1−α
α

[u(f1)−u(f2)] ≥ u(g1)−u(g2). Thus,

the minimum in Eq. (4) is less than 0, which contradicts the assumption that g1 �∗ g2.

Conversely, assume that g1 � g2. By A7 the minimum in Eq. (4) is at least 0, which

implies that g1 �∗ g2.

The equivalence of (2) and (3) is a routine application of a separation theorem and is

therefore omitted. �

6. Comments

6.1. Intransitivity and related literature. May [20] showed that transitivity is not

necessary for axiomatic characterizations of preferences, and that intransitivity is a natu-

ral result when choosing among alternatives that have several attributes with conflicting

criteria. He also showed several natural examples in which transitivity is violated and

how experiments may be designed to create such violations.

Tversky [24] created an experimental situation in which individuals revealed consistent

patterns of intransitive choices. Tversky was also one of the first to propose a nontran-

sitive preference representing functional, which generalizes transitive preferences.

Following Tversky, many representations of preferences that accommodate intransitiv-

ity have been suggested and axiomatized (see Fishburn [6] for a survey on nontransitive

preferences in decision theory). The basic form for most representations is a functional

J over couples of acts into R, such that f � g ⇔ J(f, g) ≥ 0.

Finally, there is an abundance of theoretical results that deal with agents whose pref-

erences are intransitive. Excellent example are Sonnenschein [8] and Kim and Richter

[5], who prove equilibrium existence in pure exchange economies where preferences need

not be transitive. Also, there is a body of literature in social choice, cooperative decision

making and team theory (for example, Fishburn [7] and Marschak and Radner [19]) in

which it is customary to abandon transitivity.

6.2. Extensions of Knightian preferences. In Subsection 3.2 we mentioned that

all Bayesian completions of the Knightian preferences are contained (as subsets) in the

justifiable preferences. The same is true for the maxmin extension. It turns out that

any complete preferences contained in the justifiable preferences contain the Knightian

preferences.

Two issues arise from this observation. The first can be phrased as a question: for given

Knightian preferences, what are the continuous and complete extensions that are subsets
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of the corresponding justifiable preferences? Equivalently, what are the continuous and

complete preference relations contained in given justifiable preferences?

The second issue concerns an axiomatization. Beyond the Bayesian and the maxmin

preferences one can think of other preference relations, such as the maxmax, that are

subsets of justifiable preferences and satisfy completeness and continuity. It would be

interesting to axiomatize the continuous and complete preference relations that are sub-

sets of a justifiable preferences (w.l.o.g. the set of priors could be the set of all probability

distributions over S). And in the case of such preferences, what in terms of the relation

itself is the unique minimal and convex set of priors that generates the corresponding

justifiable preferences.

6.3. General justifiability. A general notion of justifiability is hidden in the unambigu-

ous transitivity assumption A2. Theorem 1 states that a weakened transitivity axiom

together with those that yield expected–utility maximization imply an order induced

by taking the maximum over a collection of preferences, all admit an expected–utility

representation. That is, the decision maker is looking for one out of several expected–

utility maximization preferences to justify his choice. Theorem 2 presents a similar result

for Knightian preferences. Bewley’s axioms [3], with A2 replacing transitivity, yield a

relation induced by taking the maximum over a collection of Knightian preferences. In

other words, the decision maker justifies every choice with one Knightian witness out of

several others.

LetA be a set of axioms that includes transitivity. A preference relation isA–justifiable

if it is the maximum over a collection of preference orders that satisfy A. In light of the

observations above, a natural question arises as to what should the set A be in order to

obtain A–justifiable preferences from replacing the transitivity axiom in A by A2?
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