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Lower Equilibrium Payoffs in Two-Player Repeated Games 
with Non-Observable Actions 

By E. Lehrer I 

Abstract: We characterize, by the one-shot game terms, the set of lower equilibrium payoffs of the 
undiscounted repeated game with non-observable actions. 

1 Introduction 

The classical theory of repeated games deals with standard information, i.e., after each 
stage of the game the players get information about the actions (of each one of  the 

players) that took place in that stage. [L1 ] deals with the case in which each player is 
informed of the equivalence class of  the action of  each of the other players in the 

previous stage. Here we refer to the general case in which the actions are non-observable 
and the information the players get is a function of the actions. 

We characterize the Nash lower equilibrium payoffs in undiscounted two-player 

repeated games by the one-shot game terms. Two sets, C 1 and Cz, of pairs of  strategies 

are defined. C 1 is the set of all the pairs (p 1, P2), where p / i s  a mixed strategy of  player 
] (] = 1,2) ,  which have the following property:  Among all those strategies p which 

satisfy both that p induces the same distribution on the signals of  player 2 as p I does, 

and that p does not decrease the possibility to distinguish between actions of player 2 ,p  1 

is the best response against P2 " C2 is defined in a similar way. By playing (p 1, P2) E C1 
many times repeatedly, player 2 can detect a deviation of player 1. 

The set of  the lower equilibrium payoffs is proved to be the payoffs which are 
both  individually rational and included in the intersection of  the convex hulls of  the 

payoffs sets associated with C1 and with C2. 
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2 Definitions and Notations 

Definition 2.1: A two-players repeated game G* with non-observable actions is defined 

by: 

1. Finite sets 1 ;1 ,22,  called action-sets. 

2. Functions l l ,  12; l i : 1;1 x 1;2 ~ Li ,  i = 1,2,.  l i is called the information-function 
and L i is called the signals set of player i, i = 1,2.  l 1 and 12 satisfy: 

(i) l 1 (s, t) =/= l i (s', t ' )  when s ~ s' for all t, t '  E I; 2 . 

(ii) 12(s, t) 4= 12(s' t ' )  when t 4= t '  for all s, s '  E Y~I. 

3. Functions h 1, h2 ; hi " El x ~2 ~ R,  i = 1 ,2 ,  called payoff-functions. 

Notation 2.2." Denote the range of h i by Xi, i = 1.2.  

The sets of pure strategies of a player in the repeated game, denoted by F i, are defined 
as tollows. 

Definition 2.3 

Fi = { ( f]  , f ~ , f 3  . . . .  ); for each n E IN, f i  n .  L n-1  ~ Zi} 

for i = 1,2,  where L ~ is any single-element set. 
Intuitively, when player i chooses the pure strategy fi,  i - 1 ,2,  the game is played 

as follows. At the first stage, player i plays f ] ,  gets his payoff  h i ( f l ,  f l ) ,  and the signal 

l i ( f  ~ , f l ) .  At the second stage, player i acts f ~ ( l i ( f  ~ , f~) ) ,  gets his payoff  hi( f~( l  1 
1 1 2 1 2 1 1 2 1 

( f  l, f2) ) ,  f2  (/2 ( f  l ,  f l ) ) )  and the signal l i ( f l  (11 ( f  i ,  f2)) ,  f2 (12 ( f  l ,  f l ) ) ) ,  and so forth. 
A mixed strategy of player i is a probability measure/l  i on F i. 

Notation 2.4." The set of all the mixed strategies of  player i is denoted by A(Fi), 
i = 1 , 2 .  

For each pair of pure strategies f ;  ( f l , f 2 )  E F1 x F2 there is a correspondent string 
of signals n n ~ (SlOe), s2 ( f ) )n= 1 E (L 1 X Z 2 )  IN 
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The correspondence is defined as follows: 

s~  is the element o f L  ~ 

l n S1 S 2 n--1 n 1 
s n ( f )  = i ( f l ( l ( f ) ,  l ( f ) ,  ., .. S 1 ( f ) ) , f 2 ( s 2 ( f ) , g 2 ( f ) , . . . , s ~ - - l ( f ) ) )  

There is also a correspondent string of payoffs: 

/'1 n o o  
(X l ( f ) , x 2 ( f ) ) n :  1 E ( X  1 •  IN. 

This correspondence is defined as follows: 

1 
x i  ( f )  = h i ( f  ] , f l  ) 

x n ( f ) = h i ~ l ( S l l ( f ) ,  n - I  n 1 n . . . .  s l  ( f ) ) , f ~  ( s 2 ( f )  . . . .  , s 2 - 1 ( f ) ) ) "  

Let bt = (/~1,/~2) E A(Fx) x A(F2). By the correspondences introduced above, two 

measures are induced:/~x on 0(1 x X2) ~ , and/1L on (L 1 x L2) ~ . 

Definition 2.5: A behavior strategy of player i, i = 1 ,2 , in  G* is a sequence f /=  (f~ ,f/z, 

...) of  functions 

f f : L  n - x - ~ A ( z i ) ,  n = l , 2 , . . .  

A pair (fl , f2)  of behavior strategies induces measure on F x x F2, and thus on 
(AT 1 x X 2 )  ~ and on (Lx x L 2 )  ~q. 
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Remark 2. 6.' A repeated game with non-observable actions is a game with perfect recall, 
and thus, by Kuhn's theorem ([A1 ], [K]), we are allowed to concentrate in behavior 

strategies whenever it is convenient. 

Definition 2. 7." Let/2 = ~ l , / 2 2 )  e A(F1) x A(F2) and n E N,  

Hn( /21 , /22)=Expu(  1- ~ x ~ ( f ) ) ,  i = 1 , 2 .  
\nk=l 

n Hi (/21,/22) is the expectation of the average-payoff of player i at the n first stages of 
the repeated game, when/21 is the strategy played by player 1, and/22 is that played 
by player 2. 

Definition 2. 8." 

(1) H~(/21 ,/22) =lim H~(/21 ,/22) if it exists. 
n 

n~(/21,/22) = lim /~2(/21,/22) if it exists. 
n 

(2) H*(/21 ,/22) = (g~( /21 , /22) ,  g~( /21 , /22) )  if both 

H~ and H~ are defined. 

Definition 2. 9." ~1, /22)  E A(F2) x A(F2) is a lower-equilibrium if: 

(i) H*(/21 ,/22) is defined. 

(ii) For every/71 E A(F l ), liminf ~ (/71,/22) ~< H~'(/21,/22), and for every/72 @ A(F2), 
n 

liminf H~ (/21,/72) ~< H~(/21,/22). 
n 

Notation 2.10." LEP = {H*(p 1 ,/22) 1(/21,/22) is a lower-equilibrium}. 

Notation 2.11: If Z is a set and s E ~;, then 5s will denote the Dirac-measure on s, and 
will be the measure corresponding to s in the set of the probability measures over 
Z : Zx(Z). 

Sometimes we will refer to 6 s as s. 
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Remark 2.12: The functions h = (h i ,  h2)  and l = (/1,12) can be extended to A(EI )  x 

A(E2) in a natural way, such that h i and l i will be ranged to R and to A(Li) respective- 
ly ( /=  1,2).  

Notation 2.13 

(1) d 1 = Min Max hi(p ,  q). 
qEA(~2) pEA(:E 1) 

(2) rl E A(~I)  is a strategy which satisfies d 1 = Min hi (7.1, q)- 
qEA(E 2) 

(3) o 2 E A(~ 2) is a strategy which satisfies d 1 = Max h I(P, 0"2)' 
p~a(Y~ D 

(4) d 2 , 7  2 and ol are defined in a similar way. 

(5) IR = {(a, b) E ]R 2 [a ~ d 1 and b />  d 2 }. IR is the set of  all individually rational 
payoffs. 

3,  T h e  Main T h e o r e m  

The characterization of the set of  lower equilibrium payoffs is done mainly by a partial 

order defined on A(Zi). We will give the following definitions for strategies of  player 1. 
One can apply similar definitions for player 2. 

Definition 3.1 

(1) Let s, s' E ~1- s is equivalent to s' (s ~ s ' )  if for every t E E2 12(s, t) = 12(s', t). 

(2) Let s E Y'I- The set [s] = { s ' E  E 1 [S' ~X} is the equivalent class ofs.  

(3) Let p, p '  E A(Y, 1). P is equivalent to p '  if for every t E Z2 

/2(P ' ,  t) = 12(,0, t) (in the sense of  Remark 2.12) 

In words, p '  ~ p  if the distributions over the signals of player 2 are the same under p as 
under p ' ,  for any action t .  
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Definition 3.2 

(1) Let s. s' E 2; 1" S' is greater than s(s' ?~ s) if s' ~ s and if for every t, t' E ~2 

l,(s, t)g=l,(s, t ') implies ll(s', t)Vall(S ', t ')  

(2) Let p, p' E A(2; 1). P' is greater than p (p' >- p) if p' ~ p and if there are two ran- 
dom variables X, X' ranged to 2;1, with distributions p and p', respectively, and 
finally X' ~ X. 

In words, p'  is greater than p, in the sense of the partial order >-, if p' u p  and if by 
playing p'  the player can distinguish between two actions of his opponent with a 
greater probability than he can do so by playing p. 

We could define the relation >- in another way: p ' > - p  if p' u p  and if there are 
! 

nonnegative constants ~s',s such that Ps = Zs'~s',s, Ps "= ~s~s',s and if ~s',s > 0 then 
s '~ 's .  

Definition 3. 3 

(1) C1 = {(P, q) E A(2;1) X A(X2)lhl(p, q) = Max hl(p' ,  q)} 
p')-p 

(2) C2 = ((P, q ) E  2x(E 1) x A(2;2)Ih2(p, q) = Max h2(p, q')}, 
q'~-q 

i.e., C i is the set of pairs of the one-shot game mixed strategies, in which player i can- 
not profit by any deviation without being discovered by player 34, or without decreas- 
ing his potential of getting information. Intuitively, if (p, q) E C 1 is played repeatedly 
many times, then player 1 can profit only by a detectable deviation. 

Definition 3. 4 

(1) D 1 ={ ( p , q )  EA(Z1)x  A(2;2)lhl(p,q)= Max hl(p' ,  q)} 
p ' ~ p  

(2) D 2 = ( (p, q) E A(2; X) X A(~ 2) [h2 (P, q) = Max h 2 (p, q ' ) } .  
q'~q 

Here the element of decreasing the potential to get information is dropped. D1 and D2 
will play a role whenever at least one of the players has a trivial information function, 
namely, whenever one player cannot get any information about his opponent's actions. 
This player, on one hand, cannot lose the possibility of getting information because he 
has no such possibility, and in the other hand he cannot recognize that his opponent 
had decreased his possibility of getting information. 
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Definition 3.5 

(1) Player 1 has trivial information if for any s E Z 1 and t, t '  E Ez,  ll(S , t) = ll(S, t ' ) ,  

and a similar definition for player 2. 

(2) A game G* is a game with trivial information if at least one player has a trivial in- 

formation, and otherwise it is a game with non-trivial information. 

Main Theorem: In a two-players repeated game with non-observable actions the fol- 

lowing hold: 

(i) If the game is a game with non-trivial information, then 

LEP =conv  h(C1 ) N conv h(C2) N IR, 

(ii) If the game is a game with trivial information, then 

LEP = cony h(D1 ) A conv  h(D 2 ) AIR, 

where, for all EC,  A(E 1) x A(E2), h(E) = (h(p, q) [ (p, q) E E) .  

Example 3. 6: Standard information. 

A game with standard information is a game where li(s , t) = (s, t) for all (s, t) @ 

E1 X Zz.  In such a game, C i = D i = A ( E 1 ) x A ( Z 2 ) ,  i= 1,2,  and therefore LEP = 

h (A(E  l)  x A(E2)) A I R .  This, in fact, is a part of the content of  the folk theorem. 

Example 3. 7: Repeated prisoner's dilemma with non-observable actions: 

T 

B 

L R L R 

I,I 4 ,0  

0 ,4  3 ,3  

T 

B 

ntn n~n ~ 

nlsn c~c 

payof f s  s l g n a l s  
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In this game a player gets a signal c (for cooperation) only when both players act the 
cooperative actions. Here T +  B and L "~ R, thus LEP is again all the individually 
rational and feasible payoffs. 

Example 3.8: Trivial information for both players. 
Let li(Sl, s2) = si, i = 1,2. Here, 

Di = ((P l, P2)IPi is the best response against P3-i }. 

Note that D1 (~ D2 is the set of all Nash equilibria in the one-shot game. In this 
example we have 

h(conv (Dl ~ D2)) C LEP =conv h(D 1 ) N conv h(D2) A IR. 

= cony h(D 1 ) tq conv h(D2). 

Example 3. 9: The repeated game of 

L M R L H R 

Ij 

B 

D 

2 , 2  

1,1 

0,0 

0,3 

3 , 0  

0,0 

0,0 

0,0 

0,0 D 

a t x  

a l e x  

a t; , Y 

a ~ x  t 

a l w X  t 

a It ~,X t 

a ~ x  ~t 

a t t x  tt 

bt X tt 

.payoffs s i gna l s  

L ~ M  but M btL, because 12(U , L) =x =/=y = 12(0, L) but 12(U , 1]/1) =x' = 12(0, M). 
Therefore h(U, L) = (2,2) E h(C2). Obviously (2,2) Eh(C1). U ~ B  and B >- U. There- 
fore (U,M), (B,L)q~C1 (h I (U ,L )>h l (B ,L ) ,  and hl (B ,M)>hI(U,M)) .  L ~ M ,  
therefore (B, M)q~ C2. Also the Nash equilibrium ((1/2, 1/2, 0), (3/4, 1/4, 0)) of the 

( 1  1) 
one-shot game is in C1 N C2. The payoff associated with this equilibrium is 17,1 , 



Lower Equilibrium Payoffs 65 

Since (dl,  d2) = (0, 0), we get 

LEP = conv (0, 0), (2,2),  15, 1 = cony {(0, 0), (2, 2)}. 

Example3.10: If we would change the former example so that 12(U , M ) = z  then U 
would not be equivalent to B any more and thus (U, M) E C1 N C2 and 

LEP =conv {(0, 0), (2, 2), (0, 3)}. 

In examples 3.7, 3.9 and 3.10, h(C1 n c2) = h(C1) n h(C2). However, in the follow- 
ing example the situation is different: 

Example 3.11: The repeated game of 

L M R L M R 

U 

B 

D 

3 , 0  

2,2 

0,0 

2,2 

1 
2],3 

0,0 

0,0 

0,0 

0,0 

a,x  

a , x  

a", X 

a ~ x  I 

a,x I 

a II )Z 

a,x ~176 

C IX" 

a It ~X II 

payoffs slgnals 

M ;~ L so (B, L), (U, L) ~ C2. B ~ U then (U, M) q~ C 1 . However, (U, M) E (72 and 
since U )r B, (B, L) E C1. Hence, 

(2, 2) E conv h(C1) n conv h(C2)\conv h(C 1 N C2). 

(21/2,3) is also included in h(C1) N h(C2). Thus, 

LEP =conv {(0, 0)(2, 2), (21/2,3)}. 
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Lemma 3.12. h( C l ) and h( C2 ) are closed sets. 

Proof." We will prove that C1 is a closed set. Let {(Pn, qn)}n=l C C 1 be a sequence 
. ,>. that converge to (p, q). If (p, q) ~ C1 hen there is p p and e > 0 s.t. h l ( p  , q) > 

h 1 (P, q) + e. In particular there is a set 'function q~(s) and constants (t3g,s)s'~O(s) such 

thates, ;~ Ssfors'  @(o(s),p= Y~ses, as= ~ [3s,,sandp'= ~ ~ ~s',ses '. 
s'eO(s) s~:C 1 s'~O(s) 

Denote Pn = ~ ~sSs.n Let (~',s)s'~O(s) be a vector in the set {(~s',s)s'~r ~1 
s E Z 1  s E l ~  1 

[~s',s >1 O, ~ 3s',s = an for all s} which achieves the minimum distance (with 
s'~O(s) 

respect to the maximum norm) from the vector (~3s',s)s'~r Define Pn = N 
s E N  1 s E N  1 

X ~'sSs ". Obviously Pn ~ Pn and P'n ~P' .  By the continuity of h, whenever n is 
s'~O(s) 
big enough, h 1 (P'n, qn ) > h l (fin, qn ) + 6/2, a contradition to the fact that (Pn , qn) E C1. 

Q.E.D. 

Lemma 3.13." Let L be a straight line in ~2 s.t. conv h(Cl) C L + (the open half of  the 

plan). Then there is an a > 0 such that for any h ( p l , p 2 ) E L - =  (L+) c, there is 
t t 

Pl ~ p l  s.t. h l ( P l , P 2 ) > h l ( P l , P 2 ) + a .  

Proof." Assume to the contrary that for any n there is (Pn, qn)s.t, h(pn, qn)E L - ,  but 

for all p' >" Pn, h 1 (P', qn) <- h 1 (Pn, qn) + 1/n. 
We can assume that (Pn, qn) tends to (p, q). L -  is closed. Therefore, h(p, q) E L-  

and (p. q) q~ C1. By a similar argument to that of the previous lemma, if p '  N p and 
t t hl(p', q)> hi(p, q)+ e for a certain e > 0, then one can findPn >" Pn so that hl(pn , 

qn) > h 1 (Pn, qn) + c~/2 for any sufficiently large n, which contradicts the assumption. 

Q.E.D. 

Denote 2 for any 7 > 0  L~- = {x E L -  [dist (x, L)>~ 7}, 

Lemma 3.14." Let L be as in the preceding lemma. Then there is a ~i > 0 such that if 

1 l 

atch(pk,qk) EL~ where N a  k = l  and a k1>0,  k = l , . . . , l  
k = l  1 

2 Ifx~IRnandA~lRnisaclosedsetthendist(x,A)= min IIx-yl[~. 
y~_A 
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then 

h(pk, qk)EL- 

Pro@ Clear. 

a k > 8 .  

Q.E.D. 

Lemma 3.15 

(i) If ( p , q ) ~ C a  then there i s p ' > - D s . t . ( p ' , q )  E C a , p  = Y, as6 sandp '=  E 
s ~ N  1 sEN 1 

asSe~(s ), where 8r >" fis. 

(ii) If (p, q) q~ C2 then there i sq '>~qs . t . ( p ,q ' )EC2 ,q  = s as~sandq '= 
SE~ 2 SE~ 2 

asSr , where 8r >" 8s. 

Proof." We will prove (i). 
Let p">" p be the strategy which achieves Max {hl(/9, q)l/3 >'p}. In particular 

there are set function }(s) and constants (fJs',s)s'~(s) which satisfy ~ lJs',s = as 

and 8s' > 8s for all s' E r Let r E ~(s) be one of the actionsin r which achieves 

Max {hl(~s,, q)ls' E r Define p'  = ~ as~(s). By definition, hl(p', q) ~ h l(P", q), 
and p'>~p. Now if (p',p)gfiC1 then there is /3 >-p' s.t. ha(p, q )>hl (p ' ,  q). The 
partial order >- is transitive, so # >" p and we have got h 1 (P, q) > h 1 (P ' ,  q)/> h a (P" ,  q) ,  

in contradiction to the choice of p". Q.E.D. 

Lemma 3.16: Let 0 < e < 1 and v, r', r E k(s  so that r >- r'. Then 

(1 - e)v + er > (1 - e ) v  + er'. 

Proof." Clear. Q.E.D. 

Lemma 3.17." Let (p, q ) E  A(~I) X A ( ~ 2 ) .  Then, 

(1) I f ( p , q ) E C 1  a n d p =  ~ aafa(aa>lO, 
a E s  1 a E s  1 

(~a ,  q )  E C 1 . 

(2) If (p, q) E C2 and q = 
b E ~  2 

(p, 8b) ~c2. 

a a = 1), then a a > 0 implies that 

/368b (fib > ~ 0 ,  s J3 b = 1),then/3 b >Oimpliesthat  
b E s  2 
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Proof." We will prove (1) and by a similar argument one can prove (2). 

If the conditions of (1) hold but there is one action a E E 1 s.t. a a > 0 and 

(~a, q) ~ Cl, then there is a strategy r E A(~I )  s.t. r >- a and h l(r, q) > h l(Sa, q). 
Define p' = ~ %~b + aar. P' ;~ P by the preceding lemma. Furthermore, 

br 

h l (p ' ,q)= ~, al~'hl(6b, q)+aahl(r ,q)  
b -7S a 

= hi(p, q) - aa(hl(r, q ) -  hl(6a, q)) > h~(p, q). 

This is in contradiction with (p, q) E C 1 . Q.E.D. 

4 P r o o f  o f  the  Main  T h e o r e m  

The proof is divided into four steps; the first three steps deal with the non-trivial in- 

formation. 

Step 1: LEP C_ IR. 

Step 2: LEP C_ cony h(C1) (~ conv h(C2) (3 IR. 

Step 3: cony h(C1 ) N conv h(C2) C~ IR C_ LEP. 

The fourth step deals with the trivial information: 

Step 4: LEP = cony h(D 1 ) (3 cony h(D2) 0 IR. 

At steps 1 and 2 we will concentrate only in behavior-strategy. (Recall Definition 2.5 
and Remark 2.6.) 

Step 1: LEP C I R .  

Let ( f l ,  f2 )  be a pair of  behavior-strategies. If H~( f  1 , f2)  < d l, then by deviating 
to the behavior-strategy gl  = (gl,g21 . . . .  ) where, for each n, g~ is defined to be r l ,  

(1 X l/ .l player 1 can increase his expected payoff, i.e., liminf Exp(g 1:2) k 1 

We have got that ( f l ,  f2) i s  not a lower-equilibrium strategy. 
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Step 2: LEP C conv h(C1) N conv h(C2) :1 IR. 

Assume that H * ( f l , f 2 ) E I R  \ ( convh(C1)A conv h(C2)). Therefore, without 
loss of  generality it can be assumed that H*(fx,f2)qSconvh(C1).  According to 

Lemma 3.12, conv h(C1) is a closed set. Hence, there is a separation line L, that divides 
~ 2  into two parts: L -  (the close one) and L * . H*( f  l , f2 ) @ L27 and conv h(C l) C L +. 
(Recall the notation of L~- before Lemma 3.14.) 

In order to define the behavior-strategy f l  by which player 1 can increase his ex- 
pected payoff,  we first have to prove a few lemmata. 

Definition 4.1: Let V, U be finite sets, and P a probability measure on V x U. If there 

are non-negative constants {Xv)v~v, (Yu }u~Cr, and a {0, 1 }-valued function ~(v, u) 

s.t. P(v, u)= O(v, u) " xv " Yu, then P is ( { xv )vev ,  {Yu )u~u,  (~)-semi-independent or 
simply semi-independent. 

Lemma 4.2: Let A, B and B be finite sets, p is a ({x a }a~A, (Yb }b ~B, r 
pendent probability on A x B, and o is a ({Xa }a~A, ( Z b ) ~ ,  ~)-semi-independent 
probability on A x/~. Also let 

g : B ~ A  u and ~ : A x B ~ A x B .  

Suppose that the following three conditions hold: 3 

(1) If(a,  b ) E s u p p  (~) then ~l(a, b)=a, where ff = ( ~ l ,  if2), 

(2) u ( ~ - l ( a ,  6)) = o(a, ~), 

(3) ~(a, b) = (a, b), ff(a', b ' )  = (a', b) and (a, b), (a', b ' )  E supp ~ )  imply that (a, b ') ,  

(a', b) E supp ~ )  and ~2(a, b ' )  = ~2(a', b) = b. 

Then, there is a function $ :/~ -+ A u s.t. 

gu(gla) =Eo(Rla) for every a EA. 

Proof.- Denote by P l ,  P2 the marginal probabilities of  p on A and B respectively, and 

by e l ,  e2 the marginal probabilities of  e on A and/~ respectively. By (1), (2)we get 

for every a EA,  p l (a )  = al(a) .  

3 supp ~)  and supp (a) are the supports of/s and a in A x B and in A x/~ respectively. 
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By 0 ) ,  if (a, b), (a', b) E supp (o) and if @-l(a, ]9) (-'1 supp (p) = {a) x B1, f f - l (a ' ,  

/~) (1 supp (p) = (a '  } x B2, then, B 1 = B 2 . 
Thus, we can define by B(b) the projection of  ~/-l(a,  [~) :1 supp (p) to B, for 

some (a, b) E supp (o). B(b) is well defined. 
Let (a, b) E supp (o). Writing r b) as Cab we get, 

o(a b )=xaZb  = p ( ~ - l ( a ,  b)) = 

Hence, 

XaYbCaa = ~ _. XaYb 
bEB(b) 

~" - Y b  = z [ ~ .  
b~B(b) 

Define for every b E/~ 

~ _  Yb" g(b) 
bEB(b) 

g(~) = 
Zb 

Now, 

Eu(gla)  = Z 
bEB 

p(a, b) " g(b  ) 

Pl(a)  b~B 

(Pab " Xa " Yb " g(b ) 
~(a) 

Xa " Y b  " g ( b )  
= E, 

(a,b)Esupp(#) /-/i (a) 

=_ ~- Cd, 
bEB (a,b)Eg/-l(a,b) 

(a, b)Esupp(u) 

Xa " Yb " g(b)  
u~(a) 

x .~d,  
= Z Y, 

~ / ]  /'~1(a) (a ,b )~o- l (a , [O 
(a, b)~supp(u) 

Yb" g(b)  

= ~ x.(~.~ ~ y ~ . g ( b )  
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= ~ Xa 
bE[3 ~ ~ab "7"[9" g(t)) 

o(a, b) 
= ~_, ~ ( b ) = E o ( ~ [ a ) .  i,e~ ol(a) Q.E.D. 

L e m m a  4.3:  Let (e l ,  e2) be a pair of behavior strategies e i = (e I , e 2 . . . .  ), i = 1 ,2 ,  and 

n E N.  If gn is the probability induced by ((e~), (e~))~= 1 on L 7 x L~, then #n is 
semi-independent. 

Proof.- Through induction on n. 

For n = 1,define r :L1 xL2  ~ {0, 1}. 
I f (a ,  b ) E L  1 x L 2 , t h e n  

if there are u E s 1 and v ~ s 2 s . t .  l I (u, v)  = a and l 2 (U, V) = b 

otherwise 

and 

prob(el ,e2)(a, b )  = e l ( u  ) �9 e~ (v )  . q~l(a, b), 

where 

(/I(U, V), 12(U , 7))) = (a, b) 

and 

e~ = (e~ (1), e~ (2) . . . .  , e~ (1Zil)) E A(s , i = 1,2.  

Furthermore,  since a player knows his actions, the same u is good for every b '  E L 2 .  
I.e. for every b '  E L 2 ,  there is v '  E 2; 2 s.t. 

prob(e I ,e2)(a, b ' )  = e l ( u  ) " e l ( v ' ) "  q $1 (a, b ' )  

and the same v is good for all a '  E L 1. That concludes the proof  of  n = 1. 
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By assuming that prob0q ,Y2)(') reduced to (L1 x L2)  n is  ({Xa}aEL7 , (Yb }bEL~,  
Cn)-semi-independent, we will prove that prob(y 1,f2)(') reduced to (L1 x L2) n+l is 
semi-independent. 

Let there be a' EL7  +1 and b' E L~ +1. Denote the first n coordinates of a' by a 
and its last coordinate by a, and the first n coordinates of b' by b, and its last one by/3. 

prob(e I ,e2)(a' , b ') = x a " Yb " ~)n( (1, "b )" eT (a) (u ) �9 e~(b ) (v) " ~bl(a ,/3), 

where 

eT(a) = (e'/(a)(1 ), e7 (a)(2) . . . .  , eT(a)([ 2x 1)) c A(2 l)  

e~(a) = (e~(a)(1),  e~(a)(2) . . . . .  e~(a)([ Z2 I)) ~ A(N2) 

and 

ll  (U, v) = ~, 12(u, v) =/3. 

Furthermore, the constant x a �9 e~ (a ) (u )ho lds  for every b' E L~ +1, and the constant 

Yb" e~(b)(v)  holds for every a ' E  L7 +1. Set Cn+l(a', b')=dPn(a, b)"4~1(a, 3). This 
concludes the proof of  the inductive step. Q.E.D. 

f l  will be defined in the following way. To begin with, a sequence of behavior strategies 
of player l : g l ,  g2, .--, will be defined. This sequence will satisfy the following proper- 
ties: 

(P1) (g~ . . . . .  g~)=  1 n (gn+l ,  ), n = 1 , 2 ,  . . . , gn+l  .... 

In words, gn + 1 coincides with gn on the first n functions. 

(P2) There is a constant a > 0 and an integer N s.t. if n > N, then 

H~l(gn , f2)  > HT(f l  , f2)  + o~ 

(recall Definition 2.7). 
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After this,f1 will be defined by 

j •  _ n -gn ,  n = 1 ,2 ,  .... 

In I_emma 4.4 it will be proved that if {gn }n= 1 is a sequence as here described, then 

f l  is a "good" deviating strategy for player 1. 

Lemma 4.4: If there is a sequence {gn}n=l of  player l 's  strategies in the repeated 

game that have properties (P1) and (P2), then, provided that f l  is defined to be the 

diagonal, i.e., f~ = gn(n = 1,2,  ...), we have 

liminf H7 (fl, f2) > H~(fl, f2). 
n 

Proof." By (P2), there are a > 0 and an integer N s.t. if n > N, then 

UT(g.,f2) > t / * f f ~ , f 2 )  + ~. 

The desired inequality holds because by (P1)and  the definition of  j~ H ~ ( f l , f 2 ) :  
Hf(g,,f2). Q.E.D. 

Define now the sequence {gn)n=l by induction, go = f l .  Assume that ga, . . . ,gn-1 
were defined to be behavior-strategies of  player 1 which satisfy (P1). Namely, gi+l 
coincides with gi on the first i functions, 1 ~< i ~< n - 1. Assume, furthermore, that 

these behavior-strategies satisfy the following properties: 
For any integers 1 ~< i ~< n - 1, i < m and w E L~ n - x 

]~ prob(f  1 ,f2)(vlw) "ffn(v) = v ~ ? ~ _  1 pr~ "gin(v). 
V E L  r~ --1 

and for all 1 ~< i ~< n - 1 

(4.1) 

E(gi,f2)(xix , xi2 ) E cony h(C 1 ). (4.2) 

In words, in player 2's point of  view, player 1 plays the same strategy, no matter if he 

follows the strategy f l  or the strategy gi. gn will be defined as follows: 

g ~ =  i gn-1,  i = 1  . . . . .  n - - 1 .  (4.3) 
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Denote for every a E L7 - 1, 

kn(a ) = ~ prob(g n ,I2)(b la) "f2(b). (4.4) 
bELt~ -1 

Let a E L 7  -1 If (g~n_l(a), kn(a))ECs,  then define _ n �9 g~n(a)-gn-l(a). However, if 
(gn_l(a), kn(a)) q~ C1, then there is a strategy p(a) E A(EI )  , s.t. p(a) ~ ' g n _ l ( a  ), and 

(p(a), kn(a)) E C1. So, define: 

g~n(a) = p(a). (4.5) 

At this point we have for each a E L~ -1 

- i (g~(a),kn(a))EC1 and gin-gn_ 1 for i<~n-  I. 

In order to define gn k for k > n in such a way that it will satisfy (4.1) for i = n, we have 

to use Lemma 4.2. 

Denote L~ = A, L7 = B = B. 

g = gn-1 �9 

/2 = prob(gin_ 1,f~)n 1( ' ) ,  

i.e.,/2 is the probability induced by i i n (gn-x,f~)i=l o n A  x B. 

o = prob(gi n ,f~)n= 1('). 

According to Lemma 4.3,/2 and o are semi-independent and, by the proof of  I.emma 4.3, 

we learn that the constants of / l  and of  o on A are the same ones. There remains to define 

qJ : A  x B - + A  x/~�9 Fix u E L~ -1 . Denote for the moment g~n_l(U)= ( a  I . . . . .  ~  I)" 

Since gnn(u) =p(u)  >" gn_l (u) ,  by Lemma 3.15,p(u) can be chosen to be: 

p ( u ) =  N as6e(s), where ~ ( s ) >s .  
s ~  1 

If  u EL~ -1,  vELt~ -x ,  s E Fq and t E 2~2, let u and ll(s , t) be joined to become a 

string of  signals in E L~, and let v and 12 (s, t) be joined to become a string of  signals in 

L~; denote them by (u, ll(S, t)), and by (v, 12(s, t)) respectively�9 
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Define for every s E E l ,  t E E2 and (u, 7)) E L ~  -1 x L~ -1 

~((7), 12(s, t)), (u, ll (s, t))) = ((v, 12((~(s), t)), (u, ll ((~(s), t))). 

On all the remaining points o fA x B, r can be defined arbitrarily, q~(s) >- s, in particu- 

lar q~(s) ~ s; therefore, 

/2(r t) = 12(s, t) and (7), 12(r t)) = (v, 12(s, t)). 

So, ff satisfies (1) of Lemma 4.2. 
In order to prove that ff satisfies (3), assume that 

~z((V, 12(s, t)), (u, ll(S, t)))= ~z((7)', 12(s', t ')), (u', ll(S' , t '))); 

then, u = u' and ll((~(s), t)) = l l (~ s '  ), t'). Because player 1 knows his actions ~b(s) = 

q~(s') and because ~b(s) ~ s and ~(s') >- s', we get l I (s, t) = l I (s, t ') and l i (s', t) = l 1 (s', t'). 
Furthermore r  and (~(s')~ s'. Thus, s ~ s', in particular 12(s, t )= 12(s', t) and 
12(s', t ')=12(s, t'). If t~((v, 12(s, t)), (u, (la(s, t ) ) ) > 0  and t1(7)', 12(s'. t ')), (u', ll(S', 
t '))) > 0 ,  then gn--](u)(s), gn-ln-l(u')(S'), f~-l(7))( t)  and f~-l(7) ')( t ' )  are all positive 

numbers. We have got that 

((7)', 12(s', t')), (u, ll(s, t))) = ((7), lz(s, t')), (u, la(s, t'))) 

and 

((7), 12($, t)), (U, ll  (S' , t ' ) ) )  = ((7), 12(S', t)), (12, ll  (S' , t))) 

are in supp ~ ) .  The other conclusion required in (3) follows immediatedly from the 

definition of ~ on the points of  this form. 
The proof that ~ satisfies (2) is derived from the definition o f g  n . 
Apply, now, Lemma 4.2 to get g. Define gn + 1 to be g. We have got 

E(g i .:i)n(~n +l Iw) = E(~,/n_ 1 /~)~(~n-+ ~ Iw) 
n,  2 1 

for every w E L~. Moreover, by the definition ofg~n 
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prob(gi  ,~ i -n(W) = prob. i :i .n(W), 
,J2 ) 1 tgn - 1 ,I2 ) 1 

thus, 

E(gi,/i)7+l(xn+l)=E(gin z n-1 'f2)li n+l(xn+l),  i :  1,2,  

i.e., the expected payoff  for both players in the n + 1 stage is the same, whether g~n_+ ~ 
or gn n + 1 is played by player 1. 

By applying Lemma 4.2 repeatedly, we will define gn l for all l > n + 1, and get the 

strategy gn. 
(4.1) for i = n is given by the following: if n ~< m and w E L ~ - I ,  then by the de- 

finition of  (g~)~n= 1 and by adding (4.1) for i < n, we get: 

g(gln ,f]2 );__~1 (gin [w ) = E(g{  -1 'f2/')?=l 1 (g"m-1 l w) = E ( f l  ,f2 ) ( f~  [ w). 

We have got gl . . . . .  gn which satisfy (4.1) and (4.2) for 1 ~< i ~< n. Continue inductive- 

ly this way in order to get the sequence g l , g 2 ,  ---- It remains to prove that  this se- 
quence has (P1) and (P2). (P1) results immediately from the definition (see (4.3)). In 

order to prove that the sequence g l , g2  . . . .  has (P2) we need some notions and lem- 
mata: 

Definition 4.5." Let M be a set of  integers. The lower density o f  M, denoted by LD(M), 
is liminf #214 A {1 . . . .  , t}/t. 

t 

Lemma 4. 6." If H * ( f l ,  f2)  (~ conv C1, then the set M = {n E N iE(x~, x~) E L~ } has a 
positive lower density, namely, LD(M) = ~ > 0. 

Proof- Clear. 

Let n CM. Because of (4.1), 

E(gn-l,f2) (xT' x~) = E(:1,:2)(xT, x~) E L~ (4.6) 
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By Lemma 3.14 there is a ~i > 0 such that 

prob(gn_ l,.r2) (a @ L T - l l h ( g n _ l ( a ) ,  kn(a)) E L -  } > 6 (4.7) 

(recall (4.4)). 

if h(g n --1 (a), kn(a)) E L - ,  By Lemma 3.13 and by (4.5), there is ~ > 0 such that" n 

then 

h n hl(gn(a) ,kn(a))  > l (gn- l (a ) , kn(a) )  + ~. (4.8) 

(4.6), (4.7) and (4.8) give that 

E(gn ,f2) (x~) > E(g n _ 1,f2) (x7) + 6 " o~ = E( f  1 ,f2 ) (x~) + ~ �9 ~. (4.9) 

Because the sequence gl  ,g2,  ..- has (P1), by (4.9) and according to Lemma 4.6, i fn  is 

big enough, then 

H~(gn,fz)  >H~( f l  , f 2 )  + ~ " ~"  r//2. 

This means that the sequence g l , g 2  . . . .  has also (P2), and the proof  of  this step is 

finished. 

Step 3: conv h(C1) (~ conv h(C2) N IR C LEP. 
We will show that for every (•1, Or2)E h(conv C1) O h(conv C2) C) IR, there is a 

lower equilibrium strategy f = ( f l ,  f2)  s.t. H*(f )  = (a 1, az). 
Let (a I , a2) @ h(conv C 1) C~ h(conv C2). By the Caratheodory Theorem, for each 

i E {1 ,2}  there are 3 pairs of mixed strategies {(Pi, l, qi, l)}3=l C C i and three positive 

constants 7~, l = 1, 2, 3, with total sum 1 so that 

3 

/=1 
7[" h(pi, l, qi, l) = (0~1,0:2)" 

Furthermore, by Lemma 3.17, Pl , l  is a pure strategy of player 1 and q2,t is a pure 
strategy of  player 2, l = 1 ,2 ,  3. 
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In order to define f w e  need the following notation:  

Notation 4. 7: Let e > 0 and x = ( X l ,  . . . ,  X n )  E A n , the simplex of  dimension n - 1. 

x e is the po in t in  ( ( Y l  . . . .  , y n ) E A  lyi>~e, 1 <~i<~n}, 

which achieves the minimum distance from x with respect to the maximum norm. 

For every x E A n and e > 0 

[ Ix-xr  ~ < ( n -  1)e. 

Divide N into an infinite number of  sets M l ,  M2, B1, B2, B3, B4, ... as follows: 

(1) B1 = (1}  2 ~ M 1  

B2 = {3} 4 ~ M 2 .  

(2) IfB2k has been defined, then let b2k = Max Bzx 

b2k  + 1 CM2. 

B2k+l = {b2k + 2, b2k +3  . . . . .  bzk " 2 ( k +  1)} 

and let 

b 2 k + l  = MaxB2k+l. 

b2k+ 1 + 1 E M  1 

Bzk+ z = {b2k+ l + 2 ,  . . . , b2k+ l  " 2 ( k +  1)} 

and so forth. 

Remark 4. 8 

1--1 
(1) Forany l@IN,#B/#  U Bk>~l, 

k--1 
and 
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( 2 )  M 1 and ME are infinite and 

l imsup#MiN{1  . . . . .  t)/t=O, i = 1 , 2 .  

In the sequel, Bl ,  B2 . . . .  will be called blocks. All the blocks with odd indices will be 

devoted to player 1 and all the others to player 2, in the sense that in blocks with odd 
indices, player 2 (by playing a modification of strategies in Cx) checks player 1 while 
in the remaining blocks player 1 (by playing a modification of strategies in C2) checks 

player 2. 
The payoffs at stages of M 1 tO M 2 will have no influence on the payoff's average 

because of the zero density. 
In addition to the information player i gets during the play in block Bk, he also 

gets information about the block B k during the stages ofM i. By these data player i will 
be able to check if his opponent has deviated in block B k or not. The additional in- 

formation received in Mi is needed because the information received in "real-time" is 

not sufficient to detect all possible deviations. The information collected in "real-time" 

is available for a discovery of deviations to strategies which are non-equivalent to the 

strategy that should have been played. The information collected not in "real-time", 

namely in M1 or in 3/2, is required for a discovery of deviations to strategies which are 
not greater (in the sense of ~)  than the strategy that should have been played. 

How player i can get information about what was going on at stage t long after 

stage t has passed? Both players have non-trivial information, therefore player 1 has 

three actions 7)1, Sl, s2 E ~1 and player 2 has three actions v2, t l ,  t2 E ~2 such that 

l l (Vl , t l )&ll(Vl , t2)  and 12(s1,v2)&12(s2,v2). (4.11) 

Since L1 and L2 are finite, by a finite number of "Yes-No" questions, player i can 

identify the signal player 3-i got at any former stage. 
In a precise way: 

Let L 1 = (x 1 . . . . .  X[Lll ~ and L2 = (Yl,  ...,YlL2[}, and denote the question "Did 
you get the signal s at stage t?" by ~t(s). 

To each stage t in a block with an even index we will correlate [L 2 [ - 1 stages in 
M2, say the stages of the set R2(t), and for each stage t in a block with an odd index 
we will correlate [ L 1 [ - 1 stages in M1, say the stages of R 1 (t). Now, at the ]-th stage 
of R2(t) player 2 has to answer the question ~t(yi) i.e. to act t l  for "Yes" and t2 for 

"No", and player 1 has to play Vl in order to get the answer. If player 1 gets the signal 
ll(vl, tx), he understands that the answer to question ~t(yi) is "Yes" and he under- 

stands "No" otherwise (see (4.11)). The procedure is similar to stages in M 1 with ex- 
changed roles. 
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Player 2 has to answer honestly because in the stages of even index blocks he 
plays pure strategies, and therefore player 1 (knowing his own actions) knows what 
signals player 2 should have received. Hence, he knows on which action player 2 has 
to report "Yes" and on which "No". 

The strategy f will be defined as follows: Divide the block B k into three parts 
B~, B]~ and B 3, in such a way that for any segment S in Bk of length k and for any 
1~<l~<3: 

[ # B ~ A S / k - T t l [ < 2 / k  if k i sodd  and 

I#B~ NS/k-3'~ [ < 2 / k  if kiseven. (4.12) 

_ I l k  (see If t EB~c and k is odd, then player 1 has to play Pl,I and player 2 has to play ql,l  
Notation 4.7), unless player 2 has come to the conclusion that player 1 had deviated 
some time before B k had started. In this case player 2 will play Oz, by which the 
punishment is executed, forever. 

Alternatively. if t E B k and k is even then player 1 has to playp~(~and player 2 
has to play q2,1 unless player 1 comes to the conclusion that player 2 had deviated 
sometime in the past, before B k. In this case player 1 will punish his opponent forever 
by playing ol. 

How does a player decide whether or not his opponent has deviated? In blocks 
with odd indices, player 1 plays only pure strategies, therefore when player 2 is acting 
some a E E2, he is expected to get some signal with probability 1. If he does not get 
it, he knows that player 1 has deviated. Furthermore, he knows what signal (in L1) 
player 1 should have got and thus on what signal player 1 should have reported (in the 
corresponding stages of M2). If the signal reported does not fit the expected one, then 
player 2 comes to the conclusion that player 1 had deviated. 

Player 1 checks player 2 in a similar way. 

Lemma 4.9: H*(f)  = (al ,  a2) 

Proof." Let t E IN. Denote by v~ the expected payoff of player i at stage t, i.e., v t = 
E(xt), 1 = 1,2. Player 2 checks player 1 in blocks with odd indices. In addition, in 
these blocks, player 1 plays only pure strategies. Therefore, the probability that player 
2 will punish player 1 because he found a deviation in block B k (although, actually, 
player 1 did not deviate at all) is zero. Similarly, the probability that player 2 is being 
punished although he did not deviate is zero. Let n = Max (IN1[, 1~21). For every 
odd k, 1 ~< l ~< 3, and t E B/,  we have 



Lower Equilibrium Payoffs 81 

II(v], v ~ ) -  h(p 1 ,t, ql / lk)  oo < (n - 1)W/k, (4.13a) 

where W = 2 Max {llh(s, r)Hoo I(s, r)  E E1 x E2 }. 

For every even k and 1 ~< l ~< 3, if t C B~, then 

[[(v], v~) - h(p~/l:, qz t)[ ~ <~ (n - 1)W/k. (4.1 3b) 

Because of (4.12), (4.13a) and (4.13b), we have 

l l(1/#Bk) 
t E B  k 

By Remark 4.8(1 ), 

(v t , v t )  - ( a l ,  a2)ll <~ (n - 1)W/k + 2W/k. 

1 bk 
(7)I,  7) t ) -- (0~1, ~2) IIo~< (n - 1)W/k + 2W/k + W/k + kW/b k. 

, = 1  
(4.14) 

The term W/k appears because #Bk/k,~<k #B  k' < 1/k, and kW/bk  appears because 

#((M 1 f3M2) Cl (1 . . . . .  bk} ) ~< k. The right hand term of (4.14) tends to zero. Since 
B1 o 2  o 3  k, ,~k, '-'k are distributed homogeneously in B k (in the sense of (4.12)), the average 
of the expected payoffs at a stage in the middle of  B k is not far from (~1, ~2). In a 
precise way, let T E B  k. By (4.12), (4.13a) and (4.13b), 

T 
I I 1 / ( T - ( b k _  1 + 1)) 

t = b k _ l + 2  

~< [ ( k -  1 ) W / ( T - ( b k - 1  + 1))1 + [(n - 1)W/k] + 2W/k. (4.15) 

The first term of the right hand of (4 .15)appears  because the evaluation of the ex- 
pected average is done on segments of length k and there are at most k - 1 stages that 

are not contained in such a segment. 

1 T 1 bk--1 1 
l i t  t : l  (7)1' '/)2 ) - (~  )[Ioo = II T t= x t~Bk 

1 z'k-1 1 
E 

t<~T 

(v],  2)II  
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By (4.14) and (4.15), this is less or equal to 

(bk l/T)[(n - 1)W/(k - 1) + 3W/(k - 1) + (k - 1)W/bk_l]  

+ [ ( T -  (bx-1 + 1))/T][(k - 1 ) W / ( T -  (bx-1 + 1)) + (n - 1)W/k + 2W/k] -~ O. 
k--+ oo 

This concludes the proof. Q.E.D. 

In order to prove that f is a lower equilibrium strategy we need the following probabi- 

listic proposition. 

Proposition 4.10." Let {13 n ) be a decreasing sequence of positive reals such that 

n[Jn <0% and let {An}  be a sequence of events which satisfies A c C A  m for all 
n = l  13 n 

n < m. Then, 

p rob (An)  ~ 1, 
n ~  

where A c is the complement of  An,  and A C B if prob (A \B)  ~< e �9 prob (A). 
e 

Proof: Assume in the contrary that there is 1/2 > 6 > 0 and a subsequence {Ank ) s.t. 

prob (Anx) < 1 - 8 for all k. Let l be an integer such that the following holds: 

l > 1/82 and Z k/3 k < 1. 
k = l  

It is known that AC k C Ank, for every k < k' .  So, 
&k 

prob AC k = prob ( h C l )  + prob AnCk 
\ k  = l  \ k = l + l  

prob(/  ,k=/+, 

(2 ,  o ) 
i> (1 -lt3t)6 +prob  U Ank 

k = l +  1 
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Continue this way inductively and get: 

2=~ l ) 21 oo 
prob Ank 

k k = l  k = l  
k{Jk > (l - 1)5 > 1, 

a contradiction. Q.E.D. 

Lemma 4.11." f i s  a lower equilibrium strategy. 

Proof." Let g2 be a strategy of player 2. We will show that 

liminf H~(f l ,  g2) ~ ~2- 
t 

By a similar argument one can show that 

liminf H[(g I , f2) < al  for every gl .  
t 

Both arguments will give the desired proof. Denote by p the probability measure in- 

duced by (fl,g2)on F 1 x F  2 (see Definition 2.3). Fix an r~>0.  We will define a se- 

quence {An }n=l of events inductively. 
A n will be the event in which the average of the random variables (x~ Jt=l ~btn is less 

than a2 + r/, where bln is the end stage of the block Btn which has an even index and 
starts after all the questions about the block Bln_l have already been asked. In a 

precise way: A2 is the event 

[ o2 / 
( l /b2)  Z x t ~< ~2 "1" n �9 

t= l  

IfAn_l is defined, let Bln be the first block with an even index which satisfies 

MinBtn > Max R2(t) 
t E B  in  _ 1 

(recall the definition of R2(t) at the beginning of this step), and let A n be the event 

bl n 
{ (e/bln)t~=l X~ ~a2 +~7 }" 
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1 ...+x?) X 2 + 
Claim." If l2(An)-~ l, then liminf E ~ <~ a2 + rl. 

Proof of  Claim." The random variables {x~ } are uniformly bounded. The proof  is, 

therefore, clear. 

According to Proposition 4.10, and by the preceding claim, it is enough to prove that 

t C for every n and n < n , An C_ An, for some sequence (/3 n } which satisfies ~ n~n < oo. 
fin n = 1 

We will show that whenever n is big enough, 

prob (An'IA c)/> 1 - O ( l n  1~ + 12 l~ 

for some constant ~, provided that prob (A c)  > 0, and thus 

A,~ C An'. 
0- (/n lO+~n '10) C, 

Since l n < l n,, we can define /3 n = 2el n 1o and get ~ ~n "n < ~ ~n In < ~'. Fix an 
n = l  n = l  

n, and assume that A c is given from this moment  on. The event ACn ' (n < n ' )  is in- 

cluded in the union of two events. The first one is that player 1 did not discern any 

deviation in block Bin and the second is that player 1 did discern a deviation in block 

Bln and from that moment  on he takes measures in order to punish player 2 (this he 

does also in block Bin,), but after all this happened, A~, did, all the same, occur. 
For evaluating the probabilities of  these events we need I .emma 5.5 of  [L1 ]: 

Proposition 4.12: Let II1 ... . .  Yn be a sequence of identically distributed Bernoulli 

random variables with parameter p, and let R1, . . . ,Rn  be a sequence of Bernoulli 

random variables such that for each 1 <, l <~ n, Yl is independent of  R 1, -.., R1, Y1, .--, 

Y1-1, then 

p r o b [ I  R1YI  + ''' + -P"  RI + "" + Rn I ] > e <he  z -  

for every e > 0. 
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The event A c is included in the event {(1/#Btn ) ~ xt2 > as + rl/2} whenever 
t~Bl  n 

n is big enough because #Bln/l<Z 1 #Bt>~ln -> oo. Fix  j E  { 1 , 2 , 3 } ,  and for the 

m o m e n t  let l = In. n n~oo 

Define for every s E 2;1 , r  @ 2; 5 and t EBb,  

and 

Yt(s) = 1 if player 1 acted s at stage t, and 0 otherwise, 

Rt(r ) = 1 if player 2 acted r at stage t, and 0 otherwise; 

finally define 

1 
wi(s ,  r )  = #tt[ 

and 

t:B[ Rt(r) rt(s) 

1 dr [ R,<,). 

By this defini t ions we have 

( I /#B[)  ~] x t2=( l / #B [ )  ~ .  
t~B l tEB~ rEZ, 2 

s E Z  1 

Rt(r) " Yt(s) " hz(s, r) 

= Z, Z, h(s, r)" wi(s, r). 
s E ~  1 r E ~  2 

According to Proposi t ion 4.12,  with probabi l i ty  of  at least 1 - (12/#B[), the last term 

is less or equal to 

~ 11l U]@) h2(s , r)  W/l] [ p : j ( s ) .  �9 + 
r E ~  2 sEl~  1 

w uy(r) § I~, I/U = ~, [h2(P2,/,r ) �9 W" 
rE)2 2 

--I,, g=l[ l IA[)"I'W" I : ~ I  I:~2111, -- r~2 k p 2 , / ,  

where u / = (u[(r))r~r,2. 
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If(1/#Bl) Z xt2 >a2 +r~/2, thenforsome/E (1 ,2 ,3}  
tEB 1 

1[l j h2(p2,j, u l )  + W- 12; 11 - 1 ~ 2 / l  > c~21 + 7/4,  

where a2,i = h2(P2,j, q2,]). Whenever l = l n is big enough, we have 

h .  1/I ], 2 tP2,j, ut ) > a2,j + 7/8. 

Since h 2 is continuous, 

h2(P2d, u[) > a2,j + 7/10. 

However, (P2d, q2,j)E C2, therefore u] ~ q2,j, and furthermore, there is a certain 

r 0 E E 2 s.t. r 0 ~ q2,j and u{(ro) > 2/I. 
Two cases: 

(i) r o ~ q 2 , j .  In this case there is some s E Z 1 such that ll(s, ro)~ll(S , q2d) and 
according to Proposition 4.12, 

prob (I(1/#Bj) N Yt(s)"Rt(ro)-plff(s)"U]l(ro)[ > 1/13}<16/#B~. (4.16) 
tEB~ 

In particular with probability of  at least 1 - 16/#B{, 

(1/#B]) E Yt(s).Rt(ro)~O. 
tEB i 

Say Yto(S) .Rto(rO)= 1. In other words, at stage t o player 1 acted s and player 2 

acted r 0. However, player 1 had expected to get the signal la(s, q2,] ) but he got 

ll(S, ro) which is different. Therefore, player 1 comes to the conclusion that player 2 

has deviated and thus he punishes player 2 (by playing ol )  from block Btn+l on for- 
e ver. 

(ii) r o ~ q 2 , j  but r o ~ q2 , j .  This means that there are s l ,  s2 E ~1 such that 

12(sl,q2,i) va 12(s2, q2 d) but /2(s l , ro)  =12(s2,ro). 
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Ill Since P2,](s)/> 1/l for all s E ~1, by (4.16) with probability of  at least 1 ~ 216/#Bi 
there holds: 

Yt(s)Rt(ro) > #Bit/2l u . 
t E B  i 

Now, player 2 has to report (at the stages of  M2) about his signals. In particular he has 

to report whether 12(sl,ro) or /2(s2,ro)  were the signals at those stages whereby 

Yt(sl)Rt(ro)  + Yt(s2)Rt(ro)= 1. But player 2 does not know this difference, because 

by acting r 0 he cannot distinguish between s 1 and s2. The probability to guess correct- 
ly (without any mistake) in which stages s,  was carried out by player 1 and in which 
stages s2 was carried out is less than 2 - is~ (because #Bi/2l  2 > / s o  whenever l = l n is 

big enough). 
To recapitulate, the probability of  the first event (i.e. that  player 1, given that A~ 

had occurred, did not discern a deviation) is less than 

2 lsO c~1-10 lZ / #B[ + 16 / #B] + 216/#B{ + - <~ 

for some constant c 1, whenever l = l n is big enough. 

We come now to the evaluation of the probability of  the second event (i.e., that 

player 1 played so as to punish player 2, but it so happened that the average payoff  of  

player 2 at block Bin, is greater than a2 + 7/2). Denote l = l n, and define Yt(s) and 
Rt(r ) for all s E ~1 and r E 2;2 as above. 

By a calculation similar to the former one, we can get the following: With prob- 

ability of at most IE1 [ �9 [Y~z[ "12/#Bt <<- c" �9 1~ there are s E 2;1 and r E E 2 that  
satisfy: 

[(1/#Bt) ~ Y t ( s ) 'R t ( r ) - (Ol (S ) /#B t )  ~-, Rt(r)l > 1/l, 
t E B  l t E B  l 

. . - - 1 0  and therefore with probability of  at least 1 - c t n, 

(1/#BI) ~ xt2 <-d2 + iZl[" [2;21" W/l<ot2 +r~/2 
t E B  I 

whenever l = ln" is big enough (so that 1I; 1 ] ' 12;21" W/l < 7//2). 
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Summary: Let ~ = Max (c', c"). 
We obtain that 

prob (A n. [A c)/> 1 - ~ ( l n  !0 + In ,1~ 

as desired. The proof of Lemma 4.11 is finished. Q.E.D. 

Step 4: Trivial information. 

Step 1 does not depend on the information, therefore LEP C IR. 

Let player 1 be the player with trivial information. By the definitions, C 1 =D 1 . 
The proof of step 2 provides that LEP C_ cony h(D1). LEP C_ convh(D2), because 

otherwise let f =  ( f l , f 2 )  be a lower equilibrium strategy with H*(f)q~ conv h(Dz). 
Since the information of player 1 is trivial the actions of player 1 do not depend on 

the previous actions of player 2. Therefore a deviation gz of player 2 can be defined as 
follows: for every m E IN and w EL~ n-1 let gr~(w) be the strategy q(w) which is the 

I 2 best response against N probfl ( u ) f  1 (U). The proof that g2 = (g2 ,g2 , - - - )  is a 
u E L  r~ --1 

"good" deviation is similar to the proof appearing at Step 2. 

The opposite direction of the inclusion, namely that cony h(D 1) r3 cony h(D2) C3 

IR _C LEP is proved in a way similar to that in Step 3, except for the element of asking 
questions during the game, which is dropped here. 

5 Conc lud ing  R e m a r k s  

5.1 We required in Definition 2.1.2(i) that a player will be informed about his own 
actions. By Dalkey's Theorem [D], any mixed (or behavior) strategies in which a player 

can rely on his own previous actions has an equivalent mixed strategy in which a 

player does not rely on his actions. Therefore, we could drop that requirement and get 
the same results. 

5.2 We could define the notion of upper equilibrium by exchanging liminf with 
limsup (in Definition 2.9), or instead define an equilibrium by any Banach limit. The 
question of characterization the set of all the payoffs associated with upper (Banach) 
equilibria in the general case is still open. In [L2], which relies on this paper, a charac- 
terization of these sets in the case of observable payoffs is given. Another case in 
which we have a full characterization is the case of semi-standard information in which 
a player is informed about the class that includes his opponent's action (see [L1 ]). 
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