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 Statistics, Probability and Game Theory
 IMS Lecture Notes - Monograph Series (1996) Volume 30

 MERGING AND LEARNING

 Ehud Lehrer and Rann Smorodinsky

 Tel Aviv University and Northwestern University

 Abstract.

 This review presents the well-known notion of merging, introduced by
 Blackwell and Dubins, and its later generalizations. While the original
 concept of merging refers to all future events, the two new concepts, of
 weak and of almost weak merging, are concerned only with forecasting
 near-future events. Necessary and sufficient conditions for almost weak
 merging and necessary conditions for weak merging are given.

 1. Introduction. The subject of converging to an equilibrium in game
 theoretical models has captured a lot of attention in the last years. The
 literature is roughly divided into three main branches: rational learning,
 fictitious-play type processes and evolutionary models. In this review we
 focus solely on rational learning, where players consider their future utility
 as well as their present one. In a sense the foundations were laid in a seminal
 paper of Blackwell and Dubins (1962).

 Consider a discrete time stochastic process attaining only countably
 many values. Suppose that there are two distributions over the underly-
 ing probability space: the true distribution according to which this process
 evolves and a subjective distribution held by the decision maker who ob-
 serves the process realizations. We say that an agent learns if his ability
 to forecast forthcoming events improves with time. Blackwell and Dubins
 (1962) introduced the learning notion of "Merging", and they entitled their
 paper "Merging of Opinions with Increasing Information". Our main con-
 cern, in this review, is to introduce the original concept of merging and some
 later extensions of it.

 Naturally it may so happen that at an initial situation, when an agent
 has only his belief and has not yet seen any observation from the process,
 he may not be able to forecast correctly. However, it may happen that as
 time passes and the agent observes more outcomes of the stochastic process
 he updates his belief, in a Bayesian manner, and learns to forecast with
 increasing precision. Blackwell and Dubins focused on the ability to forecast
 long-term events, including tail events. Later developments, inspired by
 models where agents discount their future payoffs, emphasize forecasting of
 short-term events.

 Obviously, not all beliefs will guarantee learning. We are about to
 introduce various initial conditions on the true measure and on the initial
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 148 E. Lehrer and R. Smorodinsky

 belief that ensure different types of asymptotic learning. Throughout this
 article, we refer to these initial conditions as "compatibility conditions".

 It is important to distinguish between the kind of Bayesian learning
 treated here and other kinds of Bayesian Learning. In many general ques-
 tions where learning is concerned one may have a model in which, initially,
 some parameter is chosen at random and according to this parameter the
 stochastic process evolves. The agent knows how the parameter is chosen
 but does not know its realization. When one says that the agent learns, one
 may refer to one of two kinds of learning : learning the parameter and learn-
 ing to forecast future outcomes. These two types of learning are distinct and
 need not occur simultaneously. Any of these types may happen without the
 other. Motivated by game theoretical models we are mainly concerned with
 the second kind of learning. In order to clarify the distinction between the
 two kinds we provide some examples in Section 2. In all these examples,
 as well as all examples throughout this review, we shall look into stochastic
 processes which take only two values at any stage, 0 and 1.

 In Section 3 we present the two models which we will work with through-
 out this paper. The first is referred to as the subjective model and the second
 is the Bayesian model, which is frequently used in Bayesian Statistics. Sec-
 tion 4 is devoted to the different notions of compatibility between two given
 probability measures, defined on the same measurable space. Section 5 con-
 sists of the definitions of various notions of merging. Section 6 and 7 tie
 compatibility conditions with merging and Section 8 is devoted to examples.

 2. Examples.

 Example 1 - Learning the parameter without merging. Suppose
 the parameter space is the interval [0,1]. Given a parameter, the process
 on {0,1}N is deterministic, and it is simply the binary expansion of the
 parameter. Namely at time t the process will give the t - th digit of the
 binary expansion of the parameter. Note that as time goes by the agent,
 not knowing the parameter has increasing knowledge about it. Nevertheless
 the agent's forecast for the next outcome will always be 1 with probability
 \ and 0 with probability |, as opposed to the forecast of someone who is
 knowledgeable of the parameter, which is either 1 with probability 1 or 0
 with probability 1.

 Example 2 - Merging without learning the parameter. Now suppose
 the parameter space has two components, a and b, chosen by flipping a
 fair coin. If a is chosen, then the process is such that the first outcome is
 determined by a (\, |) coin, and from the second outcome on a fair coin is
 used. On the other hand if the parameter ft is chosen then the outcomes
 from the first stage are chosen according to a fair coin. In this example it is
 obvious that an agent knows from stage 2 on to forecast as if he knew the
 true parameter, but he never learns anything about the parameter, other
 than what he learned in stage 1.
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 Merging and Learning 149

 Example 3 - Merging and learning the parameter. Once again sup-
 pose the parameter space has 2 components, a and ft chosen by flipping a
 fair coin. If a is chosen then the process is deterministically 1, and if 6 is
 chosen then the process is deterministically 0. In this example, independent
 of the realization of the parameter, the agent knows the parameter after the
 first stage, and can forecast accurately the future.

 Example 4 - No merging and no learning of the parameter. This
 example is a slight modification of Example 1. Let the parameter space be
 the interval [0,1] and let the outcome of the process at time ? be the digit in
 the 2* coordinate of the binary expansion of the parameter. Once again no
 merging occurs as an agent who does not know the parameter will forever
 assign probability \ to the next out-come being 0 or 1, where as the next
 outcome is deterministic. As opposed to Example 1 no complete learning
 of the parameter occurs. The agent does collect some information on the
 parameter but the accuracy by which he guesses the parameter does not
 diminish to zero.

 As previously mentioned we study here the notion of merging, while
 the issue of learning the parameter is either ignored or considered as a tool
 for merging. That is, in some cases learning the parameter will suffice for
 merging to occur (which is not a general phenomenon as clarified by Example
 1)?

 3. The Model. We consider here only the simple case in which the
 set of outcomes of the stochastic process is either finite or countable. The
 results can be easily extended to any Borei set of outcomes.

 Let (O, B) be a measurable space.

 Definition 1. A filtration on (O, B) is a sequence of partitions of O, denoted
 {7>n}~ i, satisfying:

 i) Vn Vn C B.
 ii) The number of atoms in Vn is finite or countable,
 iii) Denoting by Tn the field generated by the atoms of V\, Vi,..., Vn, and

 J7 = V Fm the s-field generated by all the fields Tn, then B ? T.
 ?

 The results presented throughout, unless specifically mentioned other-
 wise, are for a given, fixed filtration. For any w G O we denote by Pn(w)
 the atom of Tn containing w.

 In what follows we shall state definitions and results in two models. The

 first model, called the subjective model, is a model where two measures ?, ?,
 on (O, ?), referred to as the "true" measure and the "belief respectively, are
 the primitives. In the second model, a measurable set (T, C) of parameters
 and a distribution F on it, are given as primitives and V0 ? ? ?* is a measure
 on (O, B). For obvious reasons we assume that the map ? ?? ?g{S) is Borei
 measurable V5 ? B. The second model is referred to as the Bayesian model
 In this model denote by 0q the parameter initially chosen according to the
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 150 E. Lehrer and R. Smorodinsky

 distribution F, and think of ?g0 as the "truth" and of ?& = / ?gdF(?)
 as the "belief". For any measurable T' C ? we shall use the notation
 ??' = ?f) ^??' ?sdF(e).

 4. Different Notions of Compatibility. This section primarily
 consists of the definitions of the various notions of compatibility. The section
 begins with the stronger notions, which will later yield strong notions of
 learning.

 Some of the definitions will be stated in two versions. Version (a) will
 comply with the subjective model and version (b) will comply with the
 Bayesian model. It is easy to check that in all of these definitions, given
 version (b), version (a) of the definition is satisfied, with the proper inter-
 pretation of the true measure (?) and the belief (?).

 Definition 2(a) (Kalai & Lehrer). Given two probability measures ?
 and ? on (O, B) we say that ? is a grain of ? if there exists a G (0,1] s.t
 ? = a? + (1 ? a)? where ? is an arbitrary probability measure on (il,B).
 In other words we say that ? holds a grain of truth (w.r.t. the "truth", ?).

 Definition 2(b). The measurable set of parameters (Q,C,F) is said to be
 a set of grains if F is purely atomic.

 Definition 3(a). ? is absolutely continuous with respect to (w.r.t) ? (de-
 noted ? < ?) if for any S G ? ?(5) > 0 implies ?(S) > 0.
 Remark 1. One can interpret definition 3(a) as follows: ? is absolutely
 continuous w.r.t ? means that an agent with a subjective belief can never
 be surprised by an event which can actually happen (i.e. an event which
 is "truly" assigned positive probability). Note that among all such events
 are included events which are not in any of the fields Tn. That is given the
 filtration {Pn}?Li definition 3(a) includes sets which are in the tail s-field.
 These can be interpreted, in turn, as events which cannot be verified in any
 finite time, that is events which belong to the infinite horizon future.

 Definition 3(b). The set of parameters ? is absolutely continuous within
 if V0 G ? ?g is absolutely continuous w.r.t ? = J ?gdF(?).
 Remark 2.

 i) If ? is a grain of truth w.r.t. ? then ? is absolutely continuous w.r.t ?.
 ii) If the set of parameters ? is a set of grains then it is also absolutely

 continuous within.

 Note that, as opposed to the following definition, Definitions 2(a), (ft)
 and 3(a), (6) are independent of the filtration.

 In what follows 0/0 is understood as 0 and ?(? \ B) = 0 when ?(?) = 0
 for any probability measure ?. .

 Definition 4. A measure ?? is said to be e - asymptotically near the measure
 ?? if ??-almost everywhere (a.e.) the accumulation points of the sequence

 ?? (Pn(w)\Pn-l(w)) for ? = ^ 2? fo ?n the J^^J (1 - ?> 1 + ?).
 ?l(Pn(w)\Pn-i(w)
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 Merging and Learning 151

 Definition 5(a). The belief ? is diffused around ? if Ve > 0 there exists a
 probability measure ?? on (O, B) such that:
 i) ?? is a grain of ?;
 ii) ?? is e - asymptotically near ?.
 What definition 5(a) states is that the belief ? holds a grain, which is

 not necessarily a grain of truth but is, in some sense an arbitrarily small
 neighborhood of the truth.

 Definition 5(b). The parameter set ? is diffused if for every 0 G ? and
 e > 0 the e-neighborhood of 0, denoted C(0,e), and defined by:

 C(0, e) = < 0' G ?; for ?^-almost every w G O, 3N s.t. ? > ? implies

 |?^(? ? ??(?)))/??(? \ Pn(w)) - l| < e for every A G ^n+i} .

 satisfies F{C(0, e)) > 0.
 The next pair of definitions are concerned with the non-compatibility

 of two measures.

 Definition 6(a). A measure ? has the separation property w.r.t ? if there
 exists d > 0 such that for sufficiently many stages, ? is not d-close to ?.
 That is, the following set of stages:

 {5GN;3AG^+! s.t \\(?\?,(?))-?(?\?8(?))\>?}

 has positive lower density1, ?-a.e.

 Definition 6(b). A set T' C ? has the separation property w.r.t a given 0o G
 ? if ??' has the separation property w.r.t ?g, where ?&* = feeB, ?gdF(?).

 We now turn to the last pair of definitions related to compatibility.

 Definition 7(a). The belief ? accommodates ? if Ve > 0 there exists a
 probability measure ?? on (O, B) such that:

 i) ?? is a grain of ?;
 ii) ?? is e - asymptotically near ?.
 iii) X? is a convex combination of probability measures \{(1 < j < M),

 \t = 53/3?A?, where \{ has the separation property w.r.t ?.

 Definition 7(b). The set ? is accommodating if V0 G ? and Ve > 0 the
 e-neighborhood of T, C(0, e) (see definition 5(b)) satisfies:
 i) F(C(0,e))>O;
 ii) There exists a finite partition of C(0,e)c, i.e., the complementary of

 C(0, e), C(0, e)c = u?i iOj s.t. Vj = 1,2,..., ?, T, has the separation
 property w.r.t 0q.

 1 Let ? be the set of integers and let A ? ?. liminf |?(? {1,... ,n}|/n is
 the lower density of A.
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 152 E. Lehrer and R. Smorodinsky

 Remark 3.

 i) If ? accommodates ? then, trivially, ? is diffused around ?.
 ii) If ? is accommodating then, trivially, ? is diffused.

 Remark 4.

 i) If ? is absolutely continuous w.r.t ? then ? accommodates ?.
 ii) If ? is absolutely continuous within then ? is accommodating.

 Proof

 i) Simply take for every e > 0 ?? = ? and a = 1. An application of
 the Martingale Convergence Theorem gives that the following quotient,
 ?(?$+?(?)\?8(?))/?(?8+?(?)\?8(?)) converges to 1.

 ii) Follows immediately from part i). ?
 We have therefore defined four notions of compatibility. By Remarks

 1, 2 and 3 we note that these notions have the following hierarchy: grain =>
 absolute continuity =F- accommodation => diffusion.

 5. Notions of Merging. This section is devoted to the definition of
 the different notions of learning to forecast. We begin with the strongest
 definition due to Blackwell & Dubins (1962):

 Definition 8 (Blackwell & Dubins). The probability measure ? merges

 to ? (denoted ? ?? ?) along the filtration {Pn}?Li if for all e > 0 and
 ? ? a.e w G O there exists ? = N(e, ?) G ? s.t for all ? > ?

 (1) ?(?\??(??))-?(?\??(?))  < e and VA G ?.

 What definition 8 states is that an agent who has an initial belief ?
 and who updates his belief in a Bayesian manner will asymptotically assign
 the same probabilities to any event. Note that this forecasting power of the
 agent is very strong as the agent is eventually able to forecast correctly even
 events in the infinite horizon (i.e., events in the tail s-field), the occurrence
 of which can never be verified.

 In decision problems when the near future is more payoff-relevant than
 the far future, forecasting short-term events is more important than forecast-
 ing long-term events. Motivated by such problems, the following definition
 refers solely to finite horizon events.

 Definition 9 (Kalai & Lehrer). The probability measure ? weakly merges

 (WM) to ? (denoted ? ?> ?) along the filtration {Vn}n<L1 if for any natural
 number ?, for all e > 0 and ? - a.e w G O, there exists ? = N(e,u,t) G ?
 s.t. for all ? > ?

 (2) \?(? I Pn(w)) - ?(? I Pn(w))\ < e VA G ?n+t .

 Remark 5. The definition of weak merging can be rewritten with I = 1,
 instead of an arbitrary I.
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 Merging and Learning 153

 Proof: The general argument for extending the definition from ? to l+\
 is a mere repetition of the following argument which extends the definition
 from t = 1 to ? = 2.

 Define gt(w) to be the indicator function of the set

 Bt(e) = {w; VA ? JFm \?(A\Pt(w)) - ?(A\Pt(w))\ < e}.

 Assume definition 9 holds with / = 1. Then ?-a.e. gt(w) ?? 1. By Lemma 1
 of Kalai & Lehrer (1994) the set

 Ctie) = {w,g,{w)?l Vs > t}

 = {w;\9-^--l\>l-e Vs>t},

 satisfies that for some t(e) \ft> t(e) then

 ?({w^(Ct(e)\P8(w)) < e,Vs > t}) > 1 - e.

 By the assumption, for ?-a.e wq G O there is ? = N(e,wo) such that
 for all ? > iV

 ?(? | Pn(wo)) - ?{? \ Pn(m)) | < * VA G Tn+1.

 Let ? > max(JV, t(e)) and set C = Ct(e). Now let A G ^"?+2 and define, D =

 UWcPn+i. Notice that ?(?|?>) = S?^??^??^??^?)?
 Thus, |/i(A|Z>) - ?(A\D)\ < 5e. We therefore obtain,

 \?(A\Pn(wo))-?(A\Pn(wo))\<

 < \?(?\?)?(?\??(?>0)) - ?(A\D)?(D\Pn(w0))\+

 \?(?\???(??\??{?,0)) - /2(A|?c)/i(I>c|P?(?;o))|

 < ?{?\??(?>0))\?(?\?) - ?(A\D)\ + ?(A\D)\?(D\Pn(w0)) - ?(D\Pn(w0))\+

 ?(Dc\Pn(wo))HA\D^-?(A\D^\+?(A\D^HDc\Pn(wQ))-?(Dc\Pn(w0))\

 < ?{D\Pn(w,i))S? + ?(A\D)? + e\?(A\Dc)-?{A\Dc)\ + ?(A\De)? < 9e. ?

 Looking at specific examples of measures ? and ? (see Examples 7 and 9
 in the last part of this review) the next definition seems to be quite natural.
 Definition 9 requires that forecasting near-future events with e accuracy will
 take place from a certain point in time on. Instead, Definition 10 requires
 it for "almost all" periods. That is, for having "almost weak merging",
 forecasting near-future events with e accuracy must occur only over a set of
 periods having density 1.
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 154 E. Lehrer and R. Smorodinsky

 Definition 10 (Lehrer L? Smorodinsky). The probability measure ?
 almost weakly merges (AWM) to ? (denoted ? ?? ?) along the filtration
 {Pn}^Li if for any natural number /, for all e > 0 and ? ? a.e w G O, there
 exists a full2 sequence of indices N(w, e, ?) C ? such that

 (3) |?(? | Pn(w)) -?(? \ Pn(w)) | < e "in ? N(w, e, /) and VA G Tn+t .

 Remark ?. Due to similar arguments as in Remark 5 and due to the
 fact that the intersection of a finite number of full sequences is also a full
 sequence, the definition of almost weak merging can be rewritten with I = 1,
 instead of an arbitrary l. In other words, one can restrict the definition to
 the next stage events.

 6. Relating Compatibility to Merging. We now make the connec-
 tions between the different notions of compatibility and merging. We begin
 with a well-known result of Blackwell & Dubins (1962):

 Theorem 1. If ? is absolutely continuous w.r.t ? then ? ?? ?.
 We shall only mention that the proof is an application of the Radon-

 Nikodym and the Martingale Convergence theorems. Note that Theorem 1 is
 actually independent of the specific filtration. This is because the definition
 of absolute continuity is independent of the filtration.

 An immediate Corollary of Theorem 1 is obtained by applying the the-
 orem to a set of parameters which is absolutely continuous within.

 Corollary 1. If ? is a set of parameters which is absolutely continuous
 within, then V#o G ?, ?? merges to ?gQ.

 Corollary 2.
 i) If ? is a grain of ? then ? ?? ?.
 ii) If ? is a set of grains then, V0o ? ?, ?? merges to ?g0.

 Proof: Immediate from Remark 2, Theorem 1 (part (i)) and Corollary
 1 (part (ii)). ?

 Theorem 1 relates two notions, both involve tail s-field events. The
 main interest in this review is to model learning by agents who discount the
 future. In such situations the agents are almost indifferent among events in
 the far horizon, not to mention events in the infinite horizon. We therefore
 turn to study the case where weak and almost weak merging occur.

 Theorem 2. If ? accommodates ? then ? weakly merges to ?.
 The proof of Theorem 2 relies on the following three lemmas (stated

 without the proofs. The proofs can be found in Lehrer & Smorodinsky
 (1994) ).
 Lemma 1. Let {pi} and {c?} be two sequences of nonnegative numbers that

 sum to at most 1. Then, ?V b? ~ 9t| > d implies ?? y/pT^q? < 1 - ??

 2 A sequence of indices in ? is full if its lower density is 1.
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 Lemma 2. Suppose that ?? is e - asymptotic near ?. Then for ?-almost
 every ? there is a time S s.t. s > S implies

 (4). \??{?\?8(?)) - ?(?\?8{?))\ < e for every A G PJ+1

 Lemma 3. Suppose ? is diffused around ? then ?-a.e Urn inf ? ?\ ? w ? j
 >1-

 We now turn to the proof of Theorem 2.

 Proof of Theorem 2. Fix an e > 0 and let ?? and X{ be as in definition

 ?'(?.(??)|?,-?(?))
 ?(?.(?)|?.-?(?))

 ?? = ?? - 25(Xa|Pa_i). Notice that the sequence {Y8} satisfies:
 i) The second moment is uniformly bounded;
 ii) Vs ^tY8 and Yt are uncorrelated. We show this for the case ? = s + 1

 (showing this for all 5 and t such that s f t is done in the same way,
 using more cumbersome notation): ?(?8?8+?) = ?(?(?8?8+?\?8)) =
 ?(?8?(?8+?\?8)) = ?(?8?(?8+?-?(?8^\^8)\?8)) = 0. On the other
 hand E{Y8)E{Y8+X) = 0 as well, and therefore Cov(Ya,Y8+x) = 0.
 We can now apply the strong law of large numbers for uncorrelated

 random variables and conclude that there exists a sequence d8 diminishing
 to zero such that:

 s s

 (5) (1/5)??, < (?/S?JXX.I^.O +?5 .
 3 = 1 ? = l

 For a period s when there is an A G T8 s.t. \\{ (?\?8-?(?)) - ?(?\?8-\(?))\
 > d (see part (iii) of Definition 7(a) and Definition 6(a)) denote by pi the
 measures of atoms of T8 according to ?? (? \P8~\ (w)), and by g? the measures
 of these atoms according to ?( ? |Pa_i(u/)) (this follows from the inequality

 of averages). Thus, ?(?8\?8-^)) = S%9%?? = Ei\/P?9?> where the
 expectation is according to ?.
 By Lemma 1, S^/?? < (1 - d2/8). Certainly, E(X8\P8^1(w)) is at

 most 1 for all s. However, on a sequence of times with a lower density, say,
 ? > 0, it is at most (1 - d2/8). Thus, from the right side of (3),

 (6)
 s

 (1/5) ? E(X9\P?^(w)) + 6S < (1 - d2/8)(r,/2) + (1 - ?/2) + d8 ,
 ?=1

 for sufficiently large S. (The factor is ?/2 because the density ? is achieved
 only in the limit, but for sufficiently large S the density of those times where
 ?^ and ? are remote by at least d is greater than ?/2.)
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 156  E. Lehrer and R. Smorodinsky

 If Ss is smaller than ?/2 we can bound the right side of (6) by (1 - ?),
 where ? > 0. Combine (5) and (6) and the inequality of averages to get:

 (?*?) 1/5<(l/S)J>,<(l-/3).
 ?=i  ?=i

 Hence, ??.? X? < (1 - ?)S- But

 ih '~[?(?3(?)))
 1/2

 We conclude that X'iP'M) < (1 - ?)2', for some ? > 0.
 /'(J'.MJ

 By Remark 3 ? is diffused around ?, so by Lemma 3 we can conclude

 that (?iPtM]\
 \?(?.(?)))

 We now obtain

 (7)

 1 ? ? a. s.

 ?{(??) =H(P.(w)) ?(??) . ?u
 ?{?.(?)) ?{?.(?)) ?{?.(?)) " ^ ?)

 ?{?.(?))
 ?{P.{*>))

 (1 - ?)'  (?(???>))\
 \?(P.i?))J

 Il ?? a

 (1 - ?)2a -> 0 ? - a.s.

 Since ? = a?? + (1 - a)?? for some 0 < a < 1 and since (7) holds for every

 ?? ? a.e., which in turn j (see Definition 7) we obtain that / * "V

 implies -?-?-V ?? 1 ? - a.e..
 ?<(?.+?(?)\?9(?))

 Combining this with 1 - e < lim inf / ***?'-J- < lim sup / *~M?if <
 ?(?,+?|?.) - ^ ?(?.+?|?)

 ft ? Ip ]
 1+?,? ? a.e., we get that for an arbitrary e > 0 1 ?e < lim inf ) *~M?^f <

 ?(?,+ 1|?.

 lim sup ) ?'-\ < 1 + e ? ? a.e. Now conclude that ? is e-asymptotic near
 ?^?.+?|?^

 ? for any e > 0, which by Lemma 2 gives the desired result.
 The next theorem is the parametric version of Theorem 2 and its proof

 closely follows that of Theorem 2.

 Theorem 3. If ? is an accommodating set of parameters then V0o G ?, ??
 weakly merges to ?gQ.
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 Merging and Learning 157

 Proof: Take ?o G ?. For any e > 0 we look at the neighborhood,
 C(0o,e), and at C(0o,e)c = U?=i&j (see definition 7(b)). It is straight-
 forward that ??(?0,?) is a grain of ?? and that, furthermore, ??(0?,?) *s
 e-asymptotically near ?g0.

 Using similar arguments as in the proof of Theorem 2 one can show that

 for any j = 1,2,..., ? ??' ) ' / ?? 1 ?$0 - a.e. With this in hand it
 ??\?.(?))

 can be concluded that (again, by a mere repetition of the final argument in
 ??

 the proof of Theorem 2) that ?f-^-*-\ ?? 1 ?0? - a.e.
 ??0(?.+?|??)

 It is concluded that ?? is e-asymptotically near ?g0 for any e > 0. Now
 apply Lemma 2 for the desired result. ?

 We now turn to treat the even weaker notion of merging, the Almost
 Weak Merging. The next theorem presents sufficient conditions for AWM to
 occur. We shall later see (Theorems 6 and 7) that these conditions are very
 close to necessary ones.

 Although, mathematically, the key result regarding AWM is stated in
 the next theorem, we believe that the more important results, from a "prac-
 tical" point of view (when implementing AWM in economic/game-theoretic
 situations), are Corollaries 4 and 5 which follow.

 Theorem 4. If lim inf ? ?\ n w ) J > ? ?-almost surely then ? ?? ?.

 Before giving the proof we emphasize that a similar proof to the proof
 of Theorem 1 can achieve the result. The proof given here is different and
 will be useful for obtaining some more results, such as necessary conditions
 for AWM.

 The proof of theorem 4 needs the following lemma, stated without the
 proof (the proof appears in Lehrer & Smorodinsky (1993) ).

 Lemma 4. Let a?, 6? i = 1,2,... be non-negative numbers. 52 a? = 1.
 i) Given ? > 0 3f = f(?) > 0 s.t. if S, d* < 1 + <p then ? a< log ^ < ?.
 ii) Given e > 0 3f = <p(e) > 0 and 36(e) = d > 0 such that if ]?< bi < 1 + f

 and S |a? ? b{\> e then S a% i?g ^ < ~^?

 Proof of Theorem 4: Suppose lim inf ( ; n w I ) > 1 ? - a.s. and

 that ? does not AWM to ?, i.e., there exist d > 0 and flcil such that
 ?(?) > 0 and Vu; G ? 3N(w) C ? with upper density d(w) greater than d,
 satisfying that Vn G N(w) 3An(w) G Tn such that

 ?{??(?>) | Pn-iM) - ?{??{?>) \ Pn-iM)| > e(w) > 0 .

 Without loss of generality we may assume that e(w) > T> 0 Vw G ?.
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 158 E. Lehrer and R. Smorodinsky

 So:

 Vn ? N(w) S \?(?? \ Pn-i(w)) - ?{?? \ Pn-x(w)) | > e.
 ??6^?(?)

 We write ??(??) = ?{??(?)) \ Pn-i(w)) and ?n{w) = ?{Pn{w) | P?_i(t//)).
 Define the following random variables:

 (8) VneN Xn(w)=log^M and Yn(w)=log^^, ?n{w) ??(^)

 where Xen?(w) = max{/xn(w),e0 ? ??(^)}?
 Note that

 i) Xn(w)<Yn(w) Vn,Vw.
 ii) Vn^?^0(u;) < S??(?) + e???(?) < 1 + eo. (The summations are over

 all atoms of Vn.)
 Taking w G ? and n G N(tt/):

 2 |A?(?) - MnHI > S i?.(?) - M?oi - S ??? <*> - ??(?)? > ? - ^?.

 And so taking e0 < f yields

 (9) E^nH-M^f?
 By the second part of Lemma 4 and (9) we may take eo small enough such

 that for some positive d = d( | J

 (10) ^(???|??_!?)=^??(??;)^^^<-6 Vn G N(ti>) .
 For this ? take a, ? > 0 small enough such that

 -*-f + (i-f)-?<-/?<o.
 By the first part of Lemma 4 take eo such that

 (11) E{Yn(w)\Pn-1(w))=Tvn(v>)log^pl<a Vn G ? .

 The second moment of Yn(w) given Pn_i(u;) is bounded:

 E(Y?(w) | ??_?(?;)) = ?>?? ? log2 ^M =

 S 2 e0 ? ??(?) . V^ ^ \ ? 2 An(w) s ""W'08 "??G + ? *<?>??* ?^
 , V^ ( M 2 ?n(w) .
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 Merging and Learning 159

 < log2 eo+ S MnH-log'eo+S^W-?^Sj
 <?<?<1 ?>1 ? *

 < log2 e0 + log2 e0 + 1 .

 So the strong law of large numbers may be applied to the uncorrelated
 random variables (see Shiryayev, 1984) Yn(w) - E(Yn(w) | Pn-i(w))?

 For ? -a.e. iu G O exists m(w) such that for every ? > m(w),

 (12) ;:?y? * ?'S,e???) I pi-iH) + ? ?

 Take w e ? and an infinite sequence Ni(w) C ? such that n G Ni(u;)

 implies ? > m(w) and #W*S" a?d keNW) > f So by (10), (11) and (12)
 for n G Ni (u;)

 j=l L
 f

 - ? 2 2

 i?iog^44=i?^H * 1?^? * 4 ? 4-1 Mi (ti;) ?4-? J nf-? J 2

 which implies

 V/npnM)/

 thus contradicting the assumption over ? and ?. ?
 Remark 7. A careful reading of the proof shows that we have actually
 shown more than required. Notice that Yn, defined in (8), depends on eo-
 Define for every eo

 <?n?{Pn(w)) = l[\'*(w)
 k=l

 1/n
 > 1 We have actually shown that if lim inf ? <p%(Pn(w)) /?(??(t/;)) J

 r ^ ? *u AWM
 ? - a.s for every eo > 0, then ? ?? ?.

 Using this remark the condition in Theorem 4 can be slightly relaxed:

 Corollary 3. If ?-a.e a; G O there exists a full sequence of indices ?(?) C ?

 such that lim infn??(?) ? ?\ n w ) j > j ^en ? ?? ?.
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 160 E. Lehrer and R. Smorodinsky

 Proof: Fix d > 0. 3M = M(w,6) G N(w) s.t. if ? > M and n G ??(?)

 then ? ??a 1 n > 1 - d and I^W^-WI > ? _ d [sm]
 te (?, V*e,W,tSm: irf)*,^)*,,-,.

 Vfc g ?G(?), jb > m :3M < k{w) < k such that

 (14) k(w) 6 N(w), {k(w) + 1, ...,*} ? N(w) = 0

 i.e. k(w) is the last number which is in N(w) and is less than k. It is easy

 to verify that lim*.,,? ^?p = 1 /*-a.e.

 \rtPk(w))) \ ?(?(?)(?? J vn?=fc(u,)+1MiH; -

 As ? is arbitrary the result follows from (13) and (14). ?
 It will be shown the the condition stated in the above corollary is not

 equivalent to AWM. In Example 10 AWM is satisfied, while the condition
 from Corollary 3 is violated.

 AWM
 Corollary 4. If ? is diffused around ? then ? ?? ?.

 Proof: Apply Lemma 3 to get the condition of Theorem 4. ?

 Corollary 5. If ? is a diffused set of parameters then V0O G ?, ?? AWM
 to ???.

 Corollary ?. Let ?, ?, ? be three probability measures satisfying:
 i) ? weakly merges to ?.
 ii) ? is a grain of ?, i.e. ? = a ? ? + (1 - a)?, where 0 < a < 1 and ? is a

 probability measure.
 ? ~ AWM
 Then ? ?? ?.

 Proof: Fix e0 > 0 and recall the notation ffi(Pn(w)) in Remark 3.
 We similarly define <p%(Pn(w)) corresponding to ?. It is clear that since ?
 merges to ? for ? - a.e w and Ve > 0 3N s.t. Vn > ?

 ??{PnW)>(l , %Li(U?))
 ?(???) -V ] m(P?_i(u?)) "
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 So

 ft0(^M)>fl ?n-s V%{PsM)
 ?(???) -V ' ?(?^?) '

 Since ? is a grain of ? ?/? > a > 0. Therefore,

 ?(???) ft?(P?M)' ?(??(??)) -a l ?) ?{???) '
 It follows that

 As this is true for arbitrarily small e in view of Remark 3 the proof is com-
 plete. ?

 Another result which is achieved with the technique of the previous
 proof is the following:

 Remark 8. For any two probability measures ? and ?, we have ?-almost

 surely lim sup ( -4-^?{ J < 1. In other words, the hypothesis of Theo-
 \?[Pn(w)) J

 rem 4 is actually ? ?\ n w / \ ?> j ?-almost surely. \?(pn(w))J n-oo ** J
 7. Necessary Conditions for Merging. The previous section dealt

 with sufficient conditions for all kinds of merging. It related the different
 notions of compatibility to those of merging. These conditions are certainly
 not necessary. We refer the reader to Section 8 for examples which clarify
 this claim.

 In order to form necessary conditions for merging we must first define
 properly the environments in which the belief, ?, can be properly updated
 using Bayes rule. Therefore we need the following definitions:

 Definition 11(a). ? is locally absolutely continuous (abbreviated LAC)
 w.r.t ? if for any n G ? and any S?fn ?(S) > 0 implies fi(S) > 0.
 Definition 11(b). The set of parameters, T, is locally absolutely continuous
 within (abbreviated LAC within) if for any oo G ? ?g0 is LAC w.r.t ?&.

 Throughout Section 6 we shall assume that the the truth is LAC w.r.t
 the belief and that the set of parameters is LAC within.

 The next theorem, stated without a proof, is the converse of Theorem 1
 under local absolute continuity (for the proof see Kalai and Lehrer(1994).)

 Theorem 5. If ? is LAC w.r.t ? and ? merges to ? then ? is absolutely
 continuous w.r.t ?.

 An example can be provided (see Example 10) to show that the converse
 of Theorem 4 is generally incorrect. We therefore, turn to specify necessary
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 162 E. Lehrer and R. Smorodinsky

 conditions for AWM. We will use the notations ??? (w) ( introduced in the
 proof of Theorem 4) and <p%(Pn(w)) (see Remark 7).
 Theorem ?. Suppose ? is LAC w.r.t ? and ? AWM to ?. Then for every
 e0>0:

 1/n

 lim inf I ^n/ T!v~Vy I > 1 ? - a.s .

 Proof: We use the proof of Theorem 4. Fix eo > 0. Using the random
 variables Yn defined with An?(it/) in (8), one may get, similar to (12) that

 (15) i ?E(YiM I pi-i<w)) * ? S Y??) + * ? . t? .
 j=l j=l

 ?-a.s whenever ? > n(w, ?). The assumption of the proposition implies that
 the left side of (15) converges to 0 and therefore 0 < lim inf ? S?=? Yj(w)-

 Thus,l<Uminff^#?1/n? ?
 Now one can summarize this last theorem and Remark 5 to get a char-

 acterization of AWM:

 Theorem 7. ? ?? ? if and only if ? ? a.e and for every eo > 0

 1/n

 lim inf ? rv"",v'::/1 >1 .
 ^ ?(???) J

 A necessary condition which is slightly more elegant is stated in the
 following corollary:

 Corollary 7. Suppose ? is LAC w.r.t ? and ? AWM to ?. If there is a ran-
 dom variable c> 0 s.t. liminf?(Pn(w) \ ??-?(??))/?(??(t?) \ Pn.i(ti;)) >

 c ? ? a.e, then ( ?f-^?e ) ?? 1 ?-almost surely.

 8. Examples. This section is devoted to various examples which
 demonstrate the different theorems presented here. Other examples are pro-
 vided to show that natural relaxations of the conditions stated in some of

 the theorems will yield conditions which are insufficient for maintaining the
 results.

 In all of the following examples let O = {0,1}N, let Vn = {all the
 cylinder sets determined by the first ? coordinates of ? } and let ? be the
 s-field generated by U^Pn.
 Example 5 - Merging. Suppose a stochastic process on {0,1} is a deter-
 mined by a "rational" coin, i.e. at each stage the probability for the next
 outcome to be 1 is a fixed number p, where ? is rational. Suppose this
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 is all our agent knows. By Corollary 2, no matter what the true ? is, as
 long as it is rational, merging will occur. This is so because the parameter
 set {p G [0,1]; ? is rational }, together with any measure, which has full
 support, is a set of grains.

 Example 6 - Weak Merging. This example is quite close to the previous
 one, yet in this example merging does not occur, but rather weak merging.

 Suppose a stochastic process on {0,1} is a determined by a coin, i.e. at
 each stage the probability for the next outcome to be 1 is a fixed number p,
 where 0 < ? < 1 is the outcome of a uniform distribution on (0,1). Denote
 by C(p, e) the interval (p ? pe, ? + pe) and decompose the complementary
 of C(p, e) as follows C(p, e)c = (0,p - pe] U [p + pe, 1). It is easy to verify
 that ??(?,?) is e-asymptotically near ?? and that both (0,p ? pe] and [p +
 pe, 1) have the separation property w.r.t. ??. Conclude that (0,1), along
 with the uniform distribution on it, is an accommodating set of parameters.
 By Theorem 3 weak merging occurs, independently of ? the agent, after
 sufficiently many periods, will be able to forecast the next outcome, or the
 next / outcomes, almost as good as if he knew the true p.

 Nevertheless, merging does not occur here. The conditions of Theorem
 1 are not satisfied, and as local absolute continuity is satisfied, we may
 conclude by Theorem 5 that merging does not occur.

 To see why the condition of Theorem 1 is not satisfied look at the
 following set:

 ? = {a; G {0,1}N| density of l's is exactly ? }

 Note that ??(?) = 1 and simultaneously ?(0|?)(?) = 0, i.e., the absolute
 continuity condition is violated. Also note that the event ? is a tail event.

 Example 7 - Almost weak merging. Let O be the space {0,1}N, and
 let Vn be the partition induced by the first ? coordinates. Define ? to
 be the Dirac measure on the point (1,1,...). Define ? to be the measure
 |?? + \?<? where ?? and ?2 are defined as follows, ?? is the measure induced
 by a sequence X\,X2,... of independent Bernoulli random variable, where
 prob(Xn = 1) is 1 if ? f 22 and it is ^ if p = 22 . The measure ?? is the one
 induced by the following. Denote by vn the measure induced by the i.i.d.
 sequence X\,X2,... of random variables, where prob (-?? = 1) = 1 ? ? =
 1 - prob (?? = 0). Set ?2 = S ?;??? In other words, with probability ^
 (n = 1,2,...) it is defined by a repeated toss of a coin assigning probability
 l-itol.

 One can show that after observing 22 - 1 times the outcome 1 the
 updated measure of ? assigns a probability close to \ to the event that the
 next outcome will be 1 while the updated measure of ? assigns the same
 event the measure 1. Thus, ? does not weakly merge to ?, which in turn
 yields that ? does not merge to ?. But as ? is diffused around ? it is
 concluded by Corollary 3 that ? almost weakly merges to ?.

This content downloaded from 
�������������132.66.41.31 on Wed, 26 Jan 2022 12:45:51 UTC�������������� 

All use subject to https://about.jstor.org/terms



 164 E. Lehrer and R. Smorodinsky

 Looking at the definitions of "accommodating" (Definition 7(a)) and
 "diffused" (Definition 5(a)) a natural question is whether one can relax the
 condition on the residual measure Ae and still maintain the property of weak
 (as opposed to almost weak) merging. We now show a pair of examples in
 which the conditions on the residual measure ?* are indeed relaxed, yet in
 the first example weak merging occurs, while in the second only almost weak
 merging can be obtained.

 Example 8 - Relaxing the definition of accommodation without
 violating the weak merging property. Modify the definition of ? from
 the previous example, such that for any ? of the form ? = 2t (instead of
 ? = 22 ) prob (Xn = 1) is \ and is 1 otherwise. For any e > 0 let ?? = ?2
 and \t = ??. Obviously the set of indices for which the conditional of X?
 is not equal to the conditional of ? has density zero, yet Xe is eventually
 assumed away and WM actually occurs.

 In the following example we have a measure ? which almost weakly
 merges to another measure ? but does not weakly merge. In this example
 ? is diffused around ? (thus, AWM is obtained) and furthermore ? can be
 decomposed as follows:
 (i) Ve > 0 ? = \?? + |??
 (ii) Vi G ? |??(??|??_!) -?(??|??_?)| < |??(??|??-?) - ?(??\??-?)\
 (iii) On a sequence of periods with upper density 1 and lower density zero

 the following occurs:

 M?>n|Pn-l) - ?(??\??-?)\ + \< \K(Pn\Pn-l) ~ ?(??\??-?)\

 i.e. the differences are bounded away.
 For any measure a(?) we denote a? = a?(?) = a(??(?)\??-?(?)).

 Example 0 - Relaxing the definition of Accommodation and vio-
 lating the weak merging property. Let O = {"?", "T"}N and let ? be
 the Borei s-field on O. Let ? be the measure generated by tosses of a fair
 coin. Let ??(?) be the first ? outcomes of the coin.

 Defining ?. In order to define ? we begin with a decreasing sequence
 {?nJ??Li 0 < en ?? 0, which will be determined later. Using it, we define the
 following sequence of triples of random variables. For ? = 1:

 * ?? (?) is the first time where the difference between the number of Heads
 and the number of Tails is greater than 1.

 * Si(u/) = l.Tx(u;)

 **iM = ?^
 We continue the definitions inductively:

 * ??(?) is the first time where the difference between the number of Heads
 and the number of Tails since Sn_i(u;) is greater than ??-?(?).
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 * Sn(u;) = n-Tn(u;)

 165

 ??(?) = minj*|(!?li)fc ? (t^)^ > 2 ? ?}
 Remark a) Tn is a stopping time and thus Sn and Kn, are ?t? measurable.

 Remark b) Since ??(?) < oo Vn ? - a.e., Sn(u) < oo and ??(?) < oo
 Vn ?- a.e.. Having defined the sequence {(Tn, Sn, Kn)}^)=l we proceed by
 defining ? = \v + |? where y and ? are defined as follows, (v will serve as
 ?? Ve > 0 and ? will be \t Ve > 0).

 Defining v. ? is derived from a sequence of Bernoulli random variables:

 Vi < ??(?) Pro6("iJ") = - - e0 = 1 - Pro6("T")
 ??

 \/??^(?) < t < ??(?) Pro?("iF) = ^ - en_! = 1 - Pro6('T")

 Remark c)As Tn < oo ? - a.e. and en ?? 0, lim  Mn
 = 0 ? ? a.e.

 Since ?/ is equal to ?? Ve > 0 (see Definition 5(a) ) one obtains that ?
 AWM

 is diffused around ? and by Corollary 4 ? ?? ?.

 Defining ? We first need to define, Vn G ?, a decreasing sequence of positive

 number {??(?)}??? s.t. f]ili 2~ln+g > 5. Having these sequences, we
 define ? by the following sequence of Bernoulli random variables:

 Vt < Ti Prob{?H") = - + e0 + r/o(*) = 1 - Prob{"T")

 VTi < t < Si Probi"!!") = | = 1- Pro6("T")
 4

 V5n_! < t < Tn Prob(?H?) = ? + en_! + ^(t) = 1 - Pro6(?T")

 VTn < < < 5n Prob{"H") = | = 1 - Pro6("T") .

 Remark d) For every time period t

 ??|?*)-?(?|??)|<|?(?|?*)-?(?|??)|.

 Remark e) For any time t satisfying Tn <t < Sn

 ,1 1. 1
 (0

 (?)
 |??-??| ,2 4, 4
 ? - Mn| = Cn -? 0 .
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 166 E. Lehrer and R. Smorodinsky

 Remark f ) The set of periods satisfying Remark e) has upper density 1.
 (Because Sn = n-Tn). Finally we show that in spite of Remarks c,d and
 e there is no WM (although AWM occurs - Remark b). We show that
 infinitely often |?? - ??| = | ? - a.e.
 Claim: ? does not WM to ?.

 Proof: Look at the infinite sequence of periods {Tn(u>)}%Lv We shall
 show that JpTt>{ ?? oo. I.e., ? is much more likely to produce the atom

 ?t? then ? and thus a-posteriori ? gives substantially more weight to ? than
 to ? on the times {Tn}^x. Thus, \??? -?G|1| -> 0, yielding??t?\??? -?t?\ =
 /?t?|?G? -???| = i Vn.

 ?(?t?+1|?t?)= rff X(Pj+i\Pi) = tt1 A? =
 ^t?+1|?t?) ,if+l^+i|Pi) ?}Tl^
 Sn . ??+? / I \ Sn-(Tn + l) G?+l .

 - ? i- ? ?*(t+?) ? ?*

 (1 \ Sn 2?+1 ? t?t) ? ? ?-
 Define A ? ?(?) = the set of times at which UH" occurred and ? = ? (?) =
 the set of times at which "T" occurred. We obtain,

 = (t?t)" ? ?? ? ?-

 2^cn/ Sn<i<Tn+1 V 2 Cn / S?<?<TW+1

 = (**)

 Recall that between Sn and Tn+i the number of outcomes of "if" exceeds
 that of "T" by Kn. So:

 V 2 "?" en / \ 2 en / 5n<i<Tn+1 2 + ?"

 Using the definitions of {??(?)} an<^ ?f ^n:

 (* * *) > 2n ? - = ? .
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 Merging and Learning  167

 And so

 ?(?t?+1)  ?(?G?) ?(???+1|???) ?(?G?)
 ?--^ ?tit?r ? ?

 KPrn+1) ?{?t?) "(???+?\???) " *(*?.) *-??
 ??.

 In the following example we show that the converse of Theorem 4 is

 generally incorrect.
 . AWM , .
 ? ?? ? and yet

 In particular we show that ? ?? ?,  and therefore

 I?(PnM)
 ?(???)

 0 ? ? a.e.

 Example 10. As usual let O = {0,1}N. Take a sequence {d*}^! such that
 dn ?? 0 and S??=? dn = oo. Let ? be the measure defined by an independent
 sequence of tosses of coins, where at stage ? the coin has probability dn to be
 1 and 1 - dn to be 0. For any ? G O let ?(?) be the set of indices for which
 wn = 1. As S^=?^? = oo we deduce by the Borei-Cantelli Lemma that
 ?-a.e. the set ?(?) is an infinite set of indices. For any ? let {nJ((j)}^=1 be
 the set ? (?). Now take kj such that the set

 Bj = {?\??+?(?) - ??(?) < kj}

 satisfies ?(Bj) > 1 - \3.
 Now define a sequence {cnJ^Lx with the following properties:

 ii) \ ( 2^ J n n \ is a decreasing sequence which converges to zero.

 We define ? in a similar way to ?. At stage ? a coin with the probability
 Cn of getting the outcome 1 is used. As Cn -* 0 and dn ?? 0 it is clear that

 ? ?? ?, and therefore ? ?? ?. On the other hand, we shall show that

 V ?(??(?0)
 ? ? a.e.

 By the construction of BCj we deduce that ?-a.e 3jo(w) s.t. w G nj>?0(w).B?.
 Denote j0 = ?o(w) and n,0 = nj0(w)(w) and take m > Uj0. There exists

 j(m) > jo which satisfies n?(m) < ra < n?(m)+i. So:

 /A(PmM)V
 ^(PmH)y

 rnj(m)-l

 ? (f^)-r^- ?
 < ?^Hm) 2"?\ m < /'Cni(m)'\ m . 2 <

 < /^(m) \ ?i(m)+l . 2 < 2 ? f Cw^<m) \ *??

 (**)1

 T*i  lj(m)  0.
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