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Nash Equilibria of n-Player Repeated Games With 
Semi-Standard Information 

By E. Lehrer 1 

Abstract: The folk theorem is extended here to the case where after each stage of the repeated game 
each player is informed only about the equivalence classes of the pure actions which were used by 
the other players. The sets of upper equilibrium payoffs and of lower equilibrium payoffs are 
characterized here, and they are found to be different. 

1 Introduction 

In this paper we deal with n-player repeated games with imperfect monitoring, i.e., 
games in which a player is not informed necessarily about all other players' actions. 
Such situations are most often found in economic repetitive conflicts. For example, 
consider a repetitive interaction between firms practicing two sorts of  actions: exter- 
nal, which are observable, and internal, which are nonobservable by other firms. 

The objective of  a player is to maximize the long run outcome of the game, and 
he may rely on the information he has collected previously during the game, when 
he decides what to do at a current turn. However, this information does not contain 
necessarily the payoffs during the game. For instance, in a case where interactions 
are frequently repeated and firms are large and spread out, the decision makers in 
the firms are not up-to-date with the financial state of  their own firms. A player has 
to consider the payoffs during the game, because they affect the long run outcome 
(which will become known after the game terminates) but he cannot rely on them 
when he makes a decision. 

At each stage of  the game a player cannot observe his opponent 's  actions or 
their effects. This leads to a situation by which certain contracts become non-en- 
forceable, and as a result certain efficient interactions may become excluded. Facing 
such a situation, one may look for the outcomes that can be sustained by self-enforc- 
ing agreements, and in particular for the most efficient ones. For this purpose we 
are looking at the model of  n-player undiscounted repeated games, with imperfect 
monitoring, where the information structure is the following. 
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Let ~i be player i's set of actions and let ~i be a partition of it. In case player 
/takes action a of Ei, all other players are informed about the correspondent class ~, 
which is interpreted in our former example as the set of all the pairs (external-inter- 
nal actions of the firm) that involve the same external action as does a. We call this 
information structure a semi-standard information. 

It is worth mentioning that the above information structure covers also the case 
in which the payoffs are observable and the internal actions of a firm have no effect 
upon other firms. In particular, it includes as a special case the two-sided moral 
hazard, where each of the players is informed about the set that includes his oppo- 
nent's action, but not about the action itself. 

The well-known folk theorem (see Aumann [A2]) deals with undiscounted 
repeated games with standard information, which means that at every stage of the 
game each player is informed about the actions that took place at that stage. Radner 
JR1] and Rubinstein-Yaari [RY] have studied undiscounted repeated one-sided 
moral hazard games. In these games the principal cannot observe the action or a 
part of the action taken by the agent. The agent is fully informed, while the principal 
is informed only about the outcome, which is stochastically determined by the 
agent's action. In other words, the outcome is picked according to a distribution 
that depends on that action. 

Fudenberg-Maskin [FM1, FM2], Radner JR2], Green-Porter [GP], and Abreu- 
Pearce-Stachetti lAPS]have investigated games in which all the players are informed 
only about an outcome that depends (stochastically) on their actions. In these 
models the payoff of a player depends on this outcome and on the player's action. 

Considering Nash equilibria, we are investigating the set of all the payoffs that 
can be sustained by equilibrium strategies. In particular, we get a full description 
of all the efficient outcomes in terms of the one-shot game. 

Unilateral deviation from a prescribed strategy may cause the sequence of 
average payoffs of a player to be a divergent sequence, and the question is how to 
define a profitable deviation. Three ways to treat this problem are found in the 
literature. The first one (see [A2]) defines the profitability by the liminf. In other 
words, a player would be willing to deviate only if from a certain period the sequence 
(of the averages) is greater than the prescribed payoff. Using this pessimistic notion 
of profitability we define the lower equilibrium. The second way to address this pro- 
blem (see [A2], [R1], [RY], IS1]) uses the limsup instead of the liminf. By this defini- 
tion it is enough for the deviator to achieve from time to time, but infinitely many 
times, an average payoff above the prescribed payoff. Using this optimistic notion, 
we define the upper equilibrium. 

The third way evaluates any bounded sequence by an extended limit notion, 
called a Banach limit. Using the Banach limit we can relate to any bounded sequence 
of average payoffs as if it has alimit and define the profitability notion in the natural 
way. Hart [H] uses the Banach limit in his characterization of the Nash equilibrium 
payoffs in repeated games with one-sided incomplete information. 

We explore the Nash equilibrium payoffs that are correspondent to all these 
alternative definitions. We find, in contrast to Aumann [A2], that the set of lower 
equilibrium payoffs differs from the set of upper equilibrium payoffs. Furthermore, 
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the latter coincides with the set of the Banach-equilibrium payoffs. The characteri- 
zations of these sets are given in Section 3 in terms of the sets D 1,D 2 ..... D n. D i is 
the set of all the one-shot game joint actions (Pl .... ,Pn), wherePi is player i 's best 
response versus the other players' actions, among all his actions that preserve the 
distribution over player i 's classes, that are induced by Pi" In other words, if 
(Pl .... ,Pn) is played repeatedly, player j can profit only by detectable strategies. 

The folk theorem characterizes the set of equilibrium payoffs as the set of  all 
payoffs that own two properties: first, they are individually rational and second, 
they are feasible. Our characterizations have a similar formulation: the set of the 
upper equilibrium payoffs is the set of payoffs that are first, individually rational 
and second, sustained by joint actions that are members in all the D j  simultaneously 
(i.e., no player can profit by a nondetectable deviation). 

The set of lower equilibrium payoffs is characterized as the individually rational 
payoffs that can be sustained by n (possibly different) joint actions, where the i-th 
joint action is contained in D i and not necessarily in other Dj's .  In other words, 
playing the i-th joint action, player i cannot deviate to a nondetectable action and 
still gain, but all other players may have profitable and nondetectable deviations. 

Section 6 is devoted to concluding remarks. We refer to the Banach equilibrium 
and we state that the proof concerning upper equilibria holds also for Banach 
equilibria. The notion of  uniform equilibrium is defined in that section (see [$2] for 
more extensive study). It turns out that the set of all uniform equilibrium payoffs 
coincides with the upper equilibrium payoff set. We refer also to the possibility of 
extending our results to a game in which the payoffs are stochastically dependent 
on the actions. Finally, other results of the author in related topics are mentioned, 
and the paper terminates with a few open questions. 

2 T h e  M o d e l  

Def in i t ion  2 . k  An n-player repeated game with nonobservable actions consists of." 

(i) n finite sets of actions: E 1,~2 ..... ]2n" 

(ii) n payoff functions h 1 ..... hn, where h i : X nj=l ~ j  - -  IR, 
i = 1,...,n. 

(iii) n information functions kl ..... kn, and n information sets 
L 1 ..... L n, where X i : X n j= l  Z j  --.*. Li ,  i = 1 ..... n. 

We constrain ourselves to a special kind of information function. 

Def in i t ion  2.2." The information is semi - s tandard i f  for every 1 _< i _< n there is a par- 
tition of ~ i  : ~ i  s.t. fo r  every (X 1 ... . .  Xn) E X~= 1 ~ j  

Xi(X1 ..... Xn) = (~'1 ... . .  Xi-l,Xi , ~'i+1 .... .  Xn)" 

b 

where ~j is the class in ~i which includes x j ,  j = 1 ..... n. 
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In the case of semi-standard information 

Li = ~i X . . . X  ~i-1 X ]~i X ~i+1 X . . . X  ~n" 

In other words, in the case where playerj  acted xj E Ej at the previous stage, player 
i (i r j )  is informed about the equivalence class of xj, which is x j .  

Definition 2.3: The set of  pure strategies of  player i in the repeated game is: 

~* = [(fi l ' f i ' f i2 3 .... ),. for each n E lN, f n :  Ln-1 -- Zi} 

where L 0 is a singleton. 

A mixed strategy of  player iis a probability measure/~i o n  ~ .  The sets of  mixed 
strategies of  player i in the one-shot game (henceforth, mixed actions) and in the 
repeated game will be denoted by A(E i) and A(E~), respectively. An n-tuple of  
strategies is called a joint strategy. 

Every joint pure strategy f induces two strings: 

t t oo a t t oo , s~(f)  and a~(f)  are, (s l ( f ) , . . . ,Sn( f ) ) t=l  and ( l ( f) , . . . ,aln(f)) t=l where respec- 

tively, the signal and the payoff that player i receives at stage t. 

Definition 2.4: Let/z = ( /Z l , /Z  2 . . . .  , / ~n )  E X n A(E*) and T E IN i=1 

(i) HT(/~) = Exp~(1/TEtT=I ~ ( f ) ) ,  i = l ..... n. 

HT(/~) is the expectation of  the average payoff of  player i at the first T stages 
when/zj is the mixed strategy played by player j ,  j = 1 ..... n. 

(ii) a T ( ~ ) =  Exp~(aT(f)) .  

Definition 2.5: Let/z = (/zl ..... t~n) E Xi=ln A(E*). 

(i) H*(/z) = limTHT(t~) if the limit exists, i = 1 ..... n. 

(ii) H*(tz) = (/-arl(tZ) ..... Hn*(#)) if all H/*(#) are defined. 

Definition 2.6: Let t~ E Xi= I n  A ( ~ ) .  

(i) t~ is an upper equilibrium if 

(a) H*(~) is defined, and 
(b) for every 1 ___ i _< n and gi E A(E*) 

limsuPTHT(/zl ..... IXi.1,-fii, lXi+ 1 ..... IXn) <~ Hi*(ix ). 
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(ii) /z is a lower equilibrium if 

(a) H*(/z) is defined, and 

(b) for every 1 < i < n and gi E A(Z*) 
liminfT HT(IXi ..... #i-l,-gi, Ixi+ 1 ..... I~n ) < Hi*(IX) �9 

Notat ion  2.7." (1) UEP = {H*(IX) [/~ is an upper equilibrium}; 

(2) LEP = [H*(IX)[# is a lower equilibrium}. 

195 

Our main task is to characterize UEP and LER 

R e m a r k  2.8." A repeated game with semi-standard information has a perfect recall. 
Therefore, by the Kuhn Theorem ([A1], [K]) we can consider behavior strategies, 
whenever this is convenient. 

Notat ion2 .9:  Let 1 < i < n , p  E A(~i)andze  E ~i thenpC~) = ~ w E 2 P w .  

We can relate to the classes of Z i as equivalence classes. We will say that 
x , y  E Zi  are equivalent ( x - i Y )  i f~  = .~. This equivalence relation can be extended 
to A(Zi) in the following way: 

Defini t ion 2.10: Let p, q E A(•i) for some 1 _< i --< n, then p - i q if for every class 
E ~ i , P ( 2 )  = q(2). 

The equivalence relations will play an important role in the characterization of 
UEP and of  LEE  

3 The Main Theorems 

The characterizations of  LEP and of  UEP are done by the sets D i of  joint mixed 
actions. For denoting the tuple (~1 ..... c~i-1,/3,cei+l ..... C~n) we will use the notation 
(ot_i,/~). 

Notat ion 3.1: 

Di  = {(Pl .... ,Pn) E Xn=l A ( ~ i ) l h i ( P i  .... ,Pn) 

= M a x p _ i p  i hi(P_i,p)}, i = 1 ..... n. 
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In words, the set D i contains all the joint mixed actions in which player i plays 
his best response among all the mixed actions which preserve the same distribution 
of other players' signals. The intuition is that if player i wants to increase his payoff 
by deviating to another mixed action he can do that solely by a detectable way-name- 
ly, by changing the probability distribution of his opponents' signals. 

Notation 3.2: Let i E {1 ..... n}. 

(i) d i = Min(pj) j , iEXj~i  A(~j) MaxpiEA(Ei) hi(P-i ,Pi  ). 

(ii) ajis  one of player j ' s  mixed actions ( j  :g i) that satisfies 

d i = MaxpEa(si ) hi (ai.i,p). 

(iii) IR = {(r 1 .... ,rn) E IRnlrj >_ d j , j  = 1 ..... n} 

= the individually rational payoffs. 

Theorem 3.3: In an n-player repeated game with semi-standard information 

LEP = f')jn__ 1 conv h(Dj) (3 IR. 

Theorem 3.4: In an n-player repeated game with semi-standard information 

UEP = cony h (My= 1 Dj)  M IR. 

Example 3.5: Standard information. 
The partition ~i is discrete: 

~ i =  {{s][ s E  E i ] , i =  1 .... ,n. 

Hence, for every 1 < i < n, D i = X n A(~ i) and, therefore, 
- - / = 1  

UEP = LEP = cony h(Xn=l A(~i)) fq IR, 

which is the content of the folk theorem. 

Example 3.6: Composed prisoner's dilemma. 
Each one of the two players has three actions: A 1 ,A 2 and B. A 1,A 2 are two ac- 

tions of cooperation. A 1 is a strong cooperation and A 2 is a weak one. A player can- 
not distinguish between A 1 and A 2 of his opponent. Let the payoff matrix be: 
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B A 1 A 2 
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A I 

A 2 

1, 1 

0.4 3.3 

-1.6 2.5 

4.0 6.-I 

5.2 

4.4 

Here E 1 = ~ 2  = [{]3 }, [A1,A2} }. By direct computation we get: 

UEP = LEP = C o n v  [(1,1),(1,11/3), (11/3,1),(3,3)}. 

The weak cooperation payoff (3,3) is an equilibrium payoff, but the strong coopera- 
tion payoff (4,4) is not. 

Example 3. 7." The repeated game of: 

A 1 A 2 B 

A 1 

A 2 

000 

0 .1  

0 ,3  

1 .0  

1.1 

2 .2  

3 .0  

2 .2  

1 . 7 5 , 1 . 7 5  

where ~21 = s  = [[B},[A1,A2}}. 

conv h(D 1) n cony h(D2) = c o n v  {(0,0),(3,0),(0,3),(2,2)} and 
conv h(D 1 n D2) = cony [(0,0),(3,0),(0,3),(1.75,1.75)]. 

Thus, UEP _~ LEP (see Figure 1). 
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(0,3) 

(o,o3 

(i 

UEP 

(2,2) 

(3,o) 

Fig. 1. 

= h i 'Hi  )i=1 ) be two h t , ~ i ) i = l )  and G~ ((Zi, Corollary 3.8: Let G* 1 = ((H i , . --1 n --2 n 

n-player repeated games with semi-standard information, where ~-/2 refines ~} for 
every i = 1,...,n. Then 

(i) LEP(G~) _q LEP(G~); 

(ii) UEP(G~) c_ UEP(G~). 

Proof." ~ii refines ~)  means that Di(G'{) c_ Di(G~) for each i = l,...,n. Therefore 

the proof is clear. / /  
The intuitive meaning of Corollary 3.8 is that the players, by knowing more 

about their opponents, can enlarge the sets of equilibrium payoffs since there are 
less non-detectable deviations. 

4 Proof of Theorem 3.3 

Step I: LEP c_ IR. 

If  LEP ~ IR, then there is a = (cq ..... C~n) E LEP s.t. a i < d i for some i. W.l.o.g. 
i = t.  L e t f  = ( f l  .... , fn )  be a lower equilibrium strategy with H * ( f )  = a. We will 
define a deviation strategy gl of player 1 which increases his payoff. By Remark 2.8 
we can relate to ( f l  .... , fn )  as joint behavior strategy. 
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Notation 4.1: If  x t t t = (x 1 ..... Xn) E Xn=l E[ for some 1 < i _ n and t E IN then 

3e' = (Xlt, 3e j ..... :~n t)  = {(z~ ..... Znt)t~jt = ~ ' , j  = 1 ..... n}. 

Lemma 4.2: Fix a joint  strategy a E x n = l  a(Z*). For every 
X t (X t ~.t = ,  Xn=l 

(i) pr(~ t) = pr(~ t-l) I~n=l prUr [xt-1). 

(ii) pr(x t) = pr(X t) Hjn 1 pr (~  t 13rt), 

where all the probabilities are those induced by a. 

Proof" ( i)  Denote  by yjt the last coordinate of  ~t  and the first t - 1  ones by ~t-1. 

pr(X t) = ~wtGyt pr(xt-1) pr(wt  l y(t'l) 

= pr(.~ t-1 ) = S,. t=~.t V,_ej II]=l Pr(wjt l X -t-l) 

= pr(~ t-l) = I~n=l ~wtEyt  pr(rstlx-t-1) 

= pr(~ t-l) 1-Iff=~ pr(yf.] xt-1). 

(ii) By induction on t. 

By the definition of  the probabilities, 

pr(x t) = pr(x t-l) Ilff= 1 pr(y} I xt-1) �9 (1) 

By the induction hypothesis,  

pr(x t-l) = pr(X t'l) YI]= 1 pr(~t-ll xt-1). (2) 

Combine  (1) and (2) to get: 

pr(xt)  = Pr(xt-1) IInj=l pr(xtj "11xt-1) 1-Inj=l pr(yj  t [xt-1)" (3) 

Since the informat ion is semi-standard, 

prCyJlx  t-l) = pr(~tlx~-l, ~ t-l) 

for every 1 _< j _< n. By (3) and (i): 
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pr(x t) = pr(xt-1) I-In pr(~ t Ix t-l) 
j= l  

= pr(yct)iiy= 1 pr(~t[~-l ,  ~t) 

= pr(M) II~= 1 pr(~  t [xt). / /  

Now the deviation ga --- (g~ ,g2 .... ) can be defined by induction, g~ is the mixed ac- 
tion in A(E1) which ensures player 1 his minmax payoff. Namely,'hl(g ~ , f l  ..... fn 1) 
>_ d 1. 

Notation 4.3: Let t E IN and x t E XE. t and 1 _ j _ n ,  then 
l 

' t + l  Cgt) = pr(z  Iyct) f t+l (X!j, t j , j ,_, j  _ j  _ Z)). 

3 t Assume that g]l,gl ..... gl have been defined in a way that for every x s-1 E X]2 s-I 
l 

(2 ___ s _< t ) t he  following holds: 

h Fes (xs-l~,gS(xs-l,xs-1)) > dl" 1~-1 ~ J 1 ~ -1 1 - 

Let x t E X ~ .  Define g~+ 1 (3~t 1,x~ ) to be a certain mixed action in A(E 1) which 
ensures at least d 1 for player 1, wren each player j :~ 1 plays f t+ l  (xt). Note that 
- t + l  t _ t+l t t t gl  ( x )  - gl (3~-l 'Xl)f~ 1. 

We will prove that inf T HT(f_l,gl) >- dl. The expected payoff of player 1 at 
s taget  + l i s  

Ext e Xn=l r~ pr(x t ) hl(g] +1 'OCt-l' xtl ),ft+l(yct2 -2 ,x~,,...,~nft+l (yC!n,xt)).. 

By Lemma 4.2 (ii) this is equal to 

l~xtEXn=a r~ Pr(xt)rF]= 1 prO~ t [ ?et) 

• hl(g]+l(jrt xt  ~+1 ~t~ ft+l(YC!n,Xt)) ' -1' 1 ) ' f  (?~-t2 '~2' ..... a n - 

= E~t[pr(X t) Extext II~= 1Pr(~  t IX t) 

x h lU;l"t+l ,(xt_l, xtl''-'2' r t+l (je!2,x~)_ ..... f nt+l (~n,Xnt t ))]. 

Since h 1 is multilinear this is equal to 

IF,2 t pr(yct) hl(~'!~-I (xt) ,~]+l  (:~t)) 

(recall Notation 4.3). 



Nash Equilibria of n-Player Repeated Games With Semi-Standard Information 201 

By the definition of  g~+i, this is greater or equal to 

l~, U pr(jct)dl >_ d 1. 

Thus, HT(f_l,gl) >- d 1 for all T E IN. 

Step 2: LEP _ f3 n= 1 cony h(D i). 

If LEP _c On=l conv h(Di) , then w.l.o.g, there is some lower equilibrium 

strategy (f l  ..... fn) s.t. H * ( f l , . . . , f  n ) = (a I ..... C~n) r conv h(D1). 
Define a strategy gl = (gl,g2,...) by induction, gl is a mixed actionfi in A(I~I) 

which satisfies 

(i) f l - l f i a n d  

(ii) hl(f.ll,]O) = Maxp_ l f  I h l ( f  !l,p). 

Assume that g~+l had been defined for all r < t in such a way that for all 

x r ~ X~= 1 Zj r the following holds: 

g~+l (XfI,X~) --1 )"]+1 (Jrr) (5)' 

and 

g~+l (X_], X() is the best response versus 

- r + l  r - r + l  r - r + l  ( f 2  ( J r ) ' f 3  (Jr)  ..... f n  )) 

(6) 

among all the mixed actions in A(~I) which are equivalent to the right side of  (5). 
Now define g~+l to be the strategy which satisfies (5) and (6) for all 

x t E X~= 1 ~t .  Define g to be (f-l ,gl) .  

It will be shown (in Lemma 4.4) that by playing gl, player 1 does not affect the 
probability of  signals that the other players get during the game. Therefore, the mix- 
ed actions played by other players after every history are also retained. In other 
words, the deviation of  player 1 is not detectable. Furthermore, we will prove at Lem- 
ma 4.10, using the previous Lemmata, that at all the stages in a relatively big set of  
stages player 1 profits at least by e > 0 with probability of  at least 6 > 0, which pro- 
vides the desired proof. 

Lemma 4.4: For a n y j  ~e 1, t E IN and x t E X~= 1 Ej t, 

(i) prg(jCt) = pr f  UCt). 

(ii) prg(~ t Ix t) = prf  O~ t l i t) .  
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Proof." By (i) of Lemma 4.2, 

prg(X t) = prg(X t-1 ) IIy=l prg(~ t [xt-1). 

The induction hypothesis will be both that prg(xt.-l[~r t'l) = prf  (x~ -1 [ ~t-1), and that  
J 

pr~(~r t-l) = prf  (~t-1), for everyj  = 2 ..... n and x t-1 E X ~  -1 . In order to prove (i) 
wehave to prove that for every 1 <_ j <_ n, prg(~ t ]xf t-l) = prf  (yjt Ixt-1). 

Letting y~ be the last coordinate of x t , we obtain 

prg(~ t Ix "t-I) = prg(yj t Ix t-l) 

= ]~ . t - I  , '-~t-1 prg(Z~ "1 IX t'l) prg(J~ t IX!) 1 ,z~ -1) = (*). ~j ,-~j 

By the induction hypothesis and because the strategy of player j ( j  > 1) in g 
is j~ ,  namely, because 

prg(yj t 13~t) 1 , z t ' l)  = p r f  (yjt xt~lq, ~-1), 

whenever j > 1, we can write (*) also substituting g by f.  If j = 1 then, by (5), 
prg(yJ ]:~t-1) = prf(yJ] yt-1 ). This concludes the proof of (i). 

(ii) remains to be proven. By direct computat ion of conditional probabilities we 
n A(E~), and x t E n E~the following: get for every strategy a E X i= 1 X i= 1 

prg(~ t Ix t) = pr~(xjt ix_it-1 ,~t) 

= pra(yt ]xt)l,x~-l) pro(xt-1 [ j~t-1)/ 

/pro(yjt ]xt-l) provided that  pre(x t j ,~  t ) > O. 

Combine this and the following three equalities in order to get the proof of (ii). The 
first one, 

prg(yJ IX!j1 ,x~-l) = prf  (yjt [(y!j1, x~-l), 

holds because the strategies of player j ( j  4: 1) in g and in f a r e  equal. The second 
one has already been shown, prg(yj t Ix t-l) = prf(yJ] xt-x ), and the third follows 

from the induction hypothesis, prg(X t'l IX t-l) = prf  (x t-1 [yt-1). / /  

Lemma 4.5: Ht(g) E conv h(D1) for all t. 

Proof" It is ensured by (5) and (6). / /  
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Let L be a hyperplane in 1R n dividing it into two parts, L -  and L + ,  and 
separating (or 1 .... , an)  and cony h(D1) in such a way that: 2 

(a) dist((oq .... ,Otn), L)  = dist (conv h(D1), L) = 3' > 0 and 

(b) (cx 1 ..... O~n) E L - .  

Lemma 4.6: There is an e > 0 s.t. if (Pl ,P2 .... ,Pn) E X~= 1 z~(Zj) and h(Pl,...,pn) 

E L -  then there is a ql  - 1P l  which satisfies hl(P_l,ql ) > hl(pt,p2 .... ,Pn) + e. 

Proof" Otherwise there is a sequence [(p{,/~,...,pnS)}~=l E X~= 1 A(Ej) s.t. for  every 

h s s s q~l - lP~,hl ( /~l , -" , /~n ) + 1/s > l( ql,p~,... ,Pn)andhl(P{, .... l~n) E L - .  B y c o m -  

pactness there is an accumulat ion point  o f  the sequence. Denote  this point  by 
(Pl .... ,Pn)" Now, h(p 1 .... ,Pn) E L -  and for  every ql - 1  P l ,  hl(ql,P2 .... ,Pn) <- 
hl(Pl,P2 .... ,Pn)" This means that  (Pl,...,Pn) E D 1 and h(Pl,...,pn) E conv h(D1) ___ 
L + ,  a contradict ion.  / /  

Definition 4. 7." A set M c IN has a (upper) (lower) density 0 if 

limt [ M M {1 .... ,t}l/t = 0 

(limsup I M r {1 ..... t } ] / t  = 0) 

0 i m i n f l M  M {1 ..... t ] I / t  = o) 

Remark 4.8: The set M = {t l (a[  ( f )  ..... a t ( f ) )  E L -  and dist((a~(f),...,atn(f)), 
L) > 3"/2} has a positive lower density 0. 

Lemma 4.9: There is a positive constant  6 > 0 s.t. for  every t E M, 

prf{Yr t-1 Ih(f~(Yet-1),f~(Y~t-1) ..... j'tn(3et-1)) E L - ]  > 6. 

Proof" The  lemma holds because the set o f  feasible payoffs is bounded ,  and because 
o f  the defini t ion o f  M. / /  

Lemma 4.10: liminfT HT  (g ) > H t ( f ) .  

Proof" For every integer t, Expf  (hl(yt+l)) = 

= ~xtEXSt  Prf(x t )  hl( f~+l(X!l ,X~), f t2+l(xt  x t~ f t+lo~t  x t ~  - '- -2' 2 j ' ' ' ' ' a  n " -n' n jj" 

2 For x E IR n and K __. ~n, dist(x,K) = inf yCK Ilx -- yll 1" 
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By (ii) of I_emma 4.2 this is equal to 

Eyct E ~,t E ,t ~'~t ~J'-'~ prf  (ytt) ylj>_l prf  (~t Ixt) 

�9 h l ( t ' t+l tv t  wt~ ft+ltyct wt~ f t + l o c t  w t ~  
a l  V ' - l '  l " a 2  ~ - 2 '  2 ' " ' " a n  ~ - n '  n " "  

h 1 is multilinear; therefore, this is equal to 

~,~tE ~.t prf (~t) hl (~ ~+ l (yct), ~f t2+l (xt),...,~f tn+ l (yt) ). 

However, by (ii) of  Lemma 4.4, for every j > i, J"~+ l(xt) remains unchanged 
both when it is defined byprf (') or byprg('). Thus, by (6) player 1, by playing gl, 
can achieve in each stage at least what he could achieve by playingf  1. Furthermore, 
according to Lemmata 4.6, 4.9, and Remark 4.8, player 1, by playing g l ,  profits at 
least by e > 0 with probability of at least 6 > 0 at each stage of a set M, which has 
a lower density ~ > 0. Thus 

liminfTH~l(g ) > H~(f) + ~e6. / /  

Step 3: njn=l conv h(Dj) t] IR c_ LEE 

From here on we assume that h i > 0 for all i. Wwill denote the greatest payoff 
appearing in the game. 

Lemma 4.11: The extreme points of  conv h(Dj) are of  the form h(p 1 .... ,Pn), where 
pj is a pure strategy. 

Proof." Let p = (Pl . . . .  ,Pn) E Dj. p E A(Ej) means that 3 pj = EsEr 7 %Ss" 
However, p E Dj implies that (P4 ,~s) E Dj for every s with a s > 0. Thus, h(p) = 
Es~Yj a s h(pq,6s) E cony h(Dj). / /  

In order to define a lower equilibrium strategy f,  it is enough to ensure that for 
each player there are infinitely many stages in which his average payoff cannot ex- 
ceed his prescribed payoff. For this purpose we divide the set of stages into con- 
secutive blocks. The first one will be devoted to player 1, the second to player 2, the 
n-th block to player n, the n + 1-th block to player 1, and so on. A block devoted 
to player i is called an/-block. In the stages of the/-blocks player i will play apure 
action which is a best response without being detected. In other words, in these 
blocks player i will not be able to increase his average payoff without being 
discovered by other players. This means that a player is forced, by the threat of 
punishment, not to deviate in the blocks that are devoted to him. 

3 6 s is the  mixed act ion that  assigns probabil i ty 1 to the act ion s. 
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The blocks will be defined in such a way that the number of  stages preceding 
a block is very small compared to its length. Therefore, the average payoff of player 
i immediately after an/ -b lock terminates cannot exceed by much his prescribed 
payoff. 

A punishment of  player i is executed by all other players when they observe, at 
a stage of  an/-block, that a signal of  player i differs from the signal they expected 
to observe (recall that at these stages player i plays only pure strategies). In this case 
the players can be sure that player i had deviated and they punish him from the 
moment  of deviation on forever. 

We remark here that such "grim" strategy could not be defined at the next sec- 
tion, since there, when players come to a conclusion that a player had deviated they 
may, with a positive probability, be wrong. 

Let a = ( c q , . . . , a n )  E A n c o n v  h(Dj) f3 IR. By Lemma 4.11 and by the j= l  
Caratheodory theorem, for each 1 __< j < n there are n + 1 joint mixed actions 
qjm = (qjm(1) .... ,q)n(n)), m = 1,...,n + l in Dj (where qjm(j) E Zj)  and n + 1 

,~ _ ]~n+l ~,mht,.Trn~ positive constants (3,jm)n+_llwith total sum 1 s.t. - rn = l lj I "  

Divide IN, the set of  stages, into blocks: B 1 ,B 2 ..... with the following proper- 
ties: 

lOll = 1 (7a) 

IBj I = J ~i<j IBi] (7b) 

Max Bj + 1 = Min Bj+ 1 (7c) 

B 1 B 2. Bn+l  Each one of  the blocks Bj is divided into n + 1 subsets, ~j, ~j ..... j , in such a 
way that 

][ B~ n (3 TI/ j - m l< l / j  (8) 4 3')" (rood n) 

for every segment T of  Bj with length j,  and for every 1 < m ___ n + 1. 

Denote j (mod n) by j(n). The strategy f will be defined as follows. At all the 
stages of /~m,  player i will play the strategy q~(n)(i) unless he gets in some stage 

of  B~ n a signal which points out that player j(n) did not play the pure strategy he 

should have played; to be precise, unless player i does not get a signal from the set 5 

{(x-i ,xi)[xi E ]2i, 3e e E ~e ,  e ~ j(n), a n d x j  (n) = i77(n ) (j(n))}. 

In this case player/will play ~(n) from that stage on forever (recall Notation 3.2(ii)). 

4 For simplicity, i f j  is divided by n (n ]j) then j (mod n) will denote n and not zero as usual. 

5 i = j(mod n) if j -  iis divided by n. 
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Lemma 4.12: H*( f )  = (Otl,Ot 2 .. . . .  O~n). 

Proof" Denote a t = "tatl'""atn' ~ = (a~(f) ..... a t ( f ) )  (recall Definition 2.4(ii)). Let 

t E B~ n . By the definition of f each player i plays q~(n) (i), thus a~ = hi(q~(n) ). The 

average of  the expectations on a segment T of  length j in Bj is: 

1 / J E t e B j A T  a t =  1/ jEn+I ] B~ n Tlh(q~(n)). 

By (8): 

[L1/J ~ t ~ T n e j a  t - o~lL o~ <- (1/j)W. (9) 

Hence, 

[[1/IBj] E t e B j a t -  o~ll ao _< (1/j)W. (lO) 

(9), (10) and (7b) give the desired proof. / /  

Lemma 4.13: f is a lower equilibrium strategy. 

Proof" Let gk be a behavior strategy of  player k in the repeated game. Let t be a stage 
in B t where k --- s(mod n), and denote by A t the event in which player k does not 

play an action from the class ~n(k)  at stage t. Denote B s = A s \ U j < s A j ,  C s = 

U]< s A j  , b s = pr(Bs), and c s = pr(Cs). 
By the definition o f f ,  the expected payoff of player k at stage t is less than 

c t d  k + b tW + (1 - Ct+l)hk(qr~) (11). 

The first term is the probability of k to be detected, multiplied by his minmax payoff 
d k . The second term is the probability of  player k to defect at stage t for the first 
time 6, multiplied by the bound of  its profit W. The third term is the probability not 
to act outside the set of  actions z/~n(k) which is 1 - ct+ 1, multiplied by the maxi- 

mum payoff of  player k (because q~n E Dk) when he is playing an action in z/~n (k) 

and all the rest are playing m �9 qk (t), i :# k, which is hk(q~ ). 

By (11), whenever k = s(n) 

1/Inml <- 

1/IBml F, teBm s [ctd k + b tW + (1 -Ct+l)hk(qr~)]. (12) 

6 Without including defections outside blocks in which player k is checked up, namely, outside 

U k=w(n) Bw �9 
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Since ct+ I = c t + b t and hk(q~) >_ d k, the right side of  (12) is less or equal to 

1/IBsm I EtEB m [ ( 1 -  ct)hk(qtff) + b tW] ,  (13) 

for every m = 1 ..... n + 1. Because of  (8) and since b t -- O, 

1/iBs[ ] ~ n + l  ]~ m - -  m = l  tEBs [(1 ct)hk(q~) + btW] < ot k + t-(s), (14) 

where e(s) - - s - ~  0. (14) and (7b) imply that whenever k = s(n) 

1/Max B s S~ Max Bs at k <_ W/(s + 1) + a k + t-(s) s - 0  - -  o~ k , (15) 
t--1 

which concludes the proof. / /  

5 P r o o f  o f  T h e o r e m  3 . 4  

We know that LEP c IR. Since UEP ___ LEP we get UEP _ IR. 

Step 2: UEP c cony h( Mjn= 1 Dj). 

Proof: Let o~ r conv h(Mjn= 1 = Dj). We will show that o~ ~ UEP, by showing that 

i f f  = ( f l ,  f2,"-,  fn)  E X A(ZT) and H * ( f )  = o~, t h en f i s  not an upper equilibrium 
strategy. 

Let L be a hyper-plan that separates conv h( Aj n 1 Dj)  and ~ with the following 
properties: 

dist(a,L) = dist(conv h(O/= 1 Oj), L) = 7/ > O, (16a) 

where dist(',-) is the distance induced by the L 1 norm and, 

a E L - .  (16b) 

By Remark 4.8 there is a set of  stages M, with a positive lower density, such that 
at each stage t E M, (a~(f) ..... a t ( f ) )  E L - .  Furthermore, like in Lemma 4.9 we 
can find a 6 > 0 such that 

p r { x t l l h ( f ~ ( ~ t l  ) ..... j 't(xt-1)) E L - }  > 6 

for every t E M. 



208 E. Lehrer 

By (16a) and (16b), and since h is multilinear, there is 131 > 0 for which 7 

pr{yctlldist(Cfl~(y~ t-l) ..... ftn(Xt-1)), conv [Tjn=lDj)> 131] > 6. 

l_emma 5.1." For any 131 > 0 there is 132 > 0 such that  if dist((Pl .... ,Pn), c~ Mjn=l 

Dj) > 131 then there is a dist((p 1 ..... Pn),Di) > 132 for at least one i (1 _ i _< n). 

Proof" Clear. / /  

Define now a par t i t ion of  M into n subsets, M1M 2 ..... Mn, as follows: t E Mj 
if  and only if. 

(i) t f~ M m for all m < j .  

(ii) 8 pr {x t'l I dist((ft(x t-1),Dj) > 132 } >- 6/n. 

Lemma 5.2: {M1,...,M n} is a part i t ion o f  M. 

Proof" l ~  M M i = 0 for a l l j  ~ i, this is implied by (i). The  fact that  { M 1 ..... Mn} 
is not  a par t i t ion of  M means that  there is some t E M \ tO M j ,  namely: 

pr {X t-1 tdist((~ft(xt-l), Dj) > 132 } < ~/n. (17) 

for all 1 <__ j _ n. By Lemma 5.1 

{X t-1 [dist(ft(xt-1),  cony N Dj) > 131 } c 

c k.J/= 1 {~t-11dist(~-t(xt-1), Dj) > t32 }. 

Thus,  the probabil i ty o f  the first set is less than  (Mn)n = 6. This is in contradict ion 
to the fact that  t E M. / /  

Lemma 5.3: I f M  c_ IN is o f  positive lower density and {3//1 .... ,M n} is a par t i t ion o f  
M, then there is some Mj  with a positive upper  density. 

Proof" M (7 {1 ..... m} = ujn=l Mj  (7 [1 ..... m} for all m E IN. 

Denote13 m = [ M f 7  {1 ..... m]l and13j m = [Mj f7 {1 .... ,m}1,13m = Zdn=l/3jm. Now 

we have ~jn 1 limsup m (13jm/m) >_ limsuPm ~jn 1 (137/m) = limsup m (13m/m) >_ 
l iminf  m (13m/m) > O. / /  

7 Here also dist(/5,A) where/~ E Xn=l A(]~i) and A c Xn=t A(Ei) is the distance induced by 
the L 1 norm. 

8 f t  (~r = ( f  ~ (X~I'I ,'""~n~t-l'~,'"',.'n-~/(~-1 ..... X.tn-1)). 
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W.l.o.g., M 1 has a positive upper density, say, n '  > 0. Define gl, the deviation 
of player 1, as it was defined at Step 2 of Section 4, and denote g = (gl, f2 ..... fn)" 
D 1 is closed. Thus, by a similar argument to that of Lemma 4.6, we can prove that 
there is a positive constant 3" > 0 such that whenever, dist((J" t (xtl) ,  D1) >/~2 there 
is a mixed action ql(x t-l) - 1 f ~(xt-1), which satisfies 

h t  - t  hl(ft(xt-1)) < hl((ql , f  2 ..... f n ) (xt-1)) _ 3'. 

The left side of the inequality is equal to Ef (hl(Y t) ]~t-1) because of the multi- 
linearity of h and by Lemma 4.2(ii). We come to the conclusion that, by the deviation 
gl, player 1 can profit at least by 3' > 0 at each stage of the set M 1, which has an 
upper positive density ~ ', with probability of at least Mn. We already know that 
a~(f) <- a~(g) for every t ~ M 1. Thus, 

limsuPt H~(gl,f2 .... ,fn) > H~ ( f)  + (6/n)3"~'. 

Step 3: IR (7 conv h(Mjn 1 Dj ) c UER 

In order to define an upper equilibrium f i t  is necessary to ensure that any player 
will be able to profit by a deviation only at finitely many stages. Thus the strategy 
fwi l l  be defined in such a way that all the times all the players will play their best 
response among their nondetectable actions (which are not necessarily their best 
response.) In other words, it is possible for a certain player to deviate and to gain 
(only at the long run). However, this deviation is detectable. A repeated deviation 
will be reflected (with high probability) in the frequency of the appearance of the 
various signals. So, the players have to check all the time the relative frequency of 
the various signals they previously got. In case where this relative frequency is far 
from the expected one, the players punish the player responsible for these "bad- 
behaving" signals (if there are several such players, punish the one whose index is 
smallest). However, even if all the players do not deviate and play according to the 
prescribed mixed strategies, there is a positive probability that the frequency of a si- 
gnal will be "bad-behaving". For this reason the players cannot punish the deviator 
(or the player who is referred to as the deviator) from the deviation moment on 
forever. They have to punish the deviator for a while, and then return to the master 
plan. 

Let a E IR M conv h(Mjn= 1 Dj).  We will show that o~ E UEP, by defining an 

upper equilibrium strategyfs. t .  H*(f) = a. ot E conv h(Ojn__ 1 Dj), so there are 

n + 1 strategies, (q~ n ..... qm) = qm E (~n~lDj,m = 1 ..... n + 1, a n d n  + lcon-  

stants 3, m > 0, (m = 1 ..... n + 1) with total sum 1 which satisfy: 

ce = ~n+l  3"m h(qm). (18) 
m=l 
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Divide 1N into blocks: B1,B 2 .... , and divide each block B k into n + 1 parts: 
B1 Bn + l ' " "  k s.t 

IBll  = 1. (19a) 

M i n B  k =  MaXBkq + 1, [Bkl = k 1 0 , k =  2,3 .... (19b) 

For every segment S c B k of length k (19c) 

I n Silk- ,yml < 1 / k ,  m = 1 . . . . .  n + 1. 

Unless he finds a deviation at the previous block, player i has to play at stage 
t E B~ n the strategy qm. If  player i finds a deviation at block Bk ,  he has to punish 
at blocks Bk+ 1, Bk+2 ..... Bk2 and from Bk2 + 1 he has to play again qm, and so on. 

How does a player recognize a deviation and who does he punish? Player i 
counts the number of times he got the signal X from player j on the part B~ n of B k. 
Denote this number of times by OBr~ (X,j). Note that this number is common 
knowledge. Then he checks the relative frequency of X in B~ to see whether it is far 
from the expected number or not. Namely, whether 

IOO~(~,j)/lO~l- q~n(~) I > 1/2k (20) 

or not (recall Notation 2.9). In a case where player i finds that (20) holds for some 
1 _ j <__ n and x E Z j ,  he comes to the conclusion that player j has deviated at 
block B k. Player i will punish the player with the smallest index who has deviated 
at block B k. Again, i f j  is the player with the smallest index who was found to be 
a deviator, then player i will play a/  in the blocks Bk+ 1 ..... Bk2, where a./t is any 
action. 

Lemma 5.4: H * ( f )  = o~. 

Proof." Let t E IN, and denote a t ( f )  by a t. At stage t E B~ n either player i plays 
qm or he punishes someone. The probability that player i will punish someone is the 
t 9 probability that he has found a deviation at one of the Ix/k] + 1 previous blocks. 

For every 1 _ j _< n and ~ E E j ,  OBr~ (x , j )  is common knowledge. So, by the 
definition of f ,  whenever one player punishes player i, all the players punish him as 
well. Furthermore, f is defined in such a way that whenever player j punishes 
someone at block B k he does not check whether some other player defects in that 
block or not. For these reasons, coming to the conclusion that player j deviated at 
block B k is equivalent to finding :~ ~ Ej and B~ n such that (20) holds, while player 
j was actually playing qjm at B~ (and not ~rj e. for some e). The probability to find 

such a thing is, by the Chebyshev inequality. 

9 It is convenient to define [x] = Max { n E N[ n < x } for every x E R. 
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p r { f O B ~ ( ~ , j ) / l B r ~ ]  - qjm (X) I > 1/2k} < I~m(x) ( 2 k ) 2 / l B ~ l  (21) 

where Vj m (:e) is the corresponding variance. However, by (19b) and (19c), whenever 

k is big enough we have. 

V mJ (X)(2k) 2 I~ m (~)(2k) 2 5 m (X') 1 
< < - - < - -  

-- 1 / k ) k  10 3'~ k6 k s 
(22) 

Hence, the probability of finding a deviation at block B k is less than Maxj 

I~j] n(n + 1)/k 5 (Maxj I jl n(n + 1) stands for all the possibilities o f x , j  and m) 
when k is big enough. Thus, the probability of finding a deviation at one of the 
blocks B[~,I-~] + 1 ..... Bk_ 1 is less than 

k-1 
E 

e= [,//d+l 
Max I jl n(n + 1)/g 5 < ( k -  1)/x/k 5 Max I jl n(n + 1) < 1/k. 

So, if t E B~ n and t is big enough, then 

[1 at - h(q m)[[oo < W/k.  (23) 

(18), (19) and (23) give the desired result. # 

L e m m a  5 . 5 : f  = (f l  ..... fn)  is an upper equilibrium strategy. 

Proof" We refer now to a t , 1 _< j _.< n, t E IN as random variables. Let gj be a mixed 

strategy of player j .  g = ( f _ j  ,gj) defines a measure/~ on x /n  1 ~Y. We will show that 

limsuPt (a) + ... + aJ) / t  <_ o~j #-a.s., 

and this implies 

limsuPt E~(a) + ... + c r  <_ a j .  

For this purpose we need the following probabilistic statement. 

L e m m a  5.6." let R 1,...,R n be a sequence of identically distributed Bernoulli random 
variables, with parameter p. Let Y1 ..... Yn be a sequence of Bernoulli random 
variables such that for each i < m < n, R m is independent of R 1 ..... Rm-I,Y1 ..... Ym" 
Then 
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R 1 Y ,  + ... + R , Y ,  Y1 + ... + r ,  1 
prll n - P  n 1> e] _< ~ (25) 

for  every e > 0. 

Proof" Define Jm to be the field generated by R 1 .... ,Rm_I,Y1,...,Ym and define Z m 
= Rm Ym - PYm" E(Zm [ ~ss) = 0 a.s. for  every s < m. Fur thermore,  if s < t then 

e(z~z  t) = E(E(Z~Zt[ ~ ) )  = E(Z~E(Zt[ ~ ) )  = E(Z~0) = 0. 

Denote  S n = En=l Z i. By Chebyshev inequality, 

pr{[Sn[ >_ ne] <_ E(S2n)/(ne)2 = (~/n 1E(Z2) ) /n2e  2 <_ 1/ne 2 . # 

Fix k and m (1 < m <_ n + 1), and define for e a c h x  E ~j, W E X i r  Ei and 
t E  m B~,  R t (w) = 1 if each player i (i 4: j )  plays w i at stage t and 0 otherwise. Yt (x) 
= 1 if player j plays x at stage t and 0 otherwise. Define also u(x) = (1/]B~ n 1) 

= (ql ..... qj 1' m m ]StEBr~ Yt(x), U(Yr = ~xEYc U(X), ~]rn m m - q ) + l  .... 'qn )' Q(s) =IIi.-/: j 
qm(w i) = the probabil i ty that  w will be acted. Let aJ(w,x) = Rt(w) Yt(x)hj(w, xj). 
Notice that  ~t = Ew, x~t(w,x) .  By Lemma 5.6, with probabil i ty o f  at least 1 - 

(k2/iBr~[) IXi• j F, il [Ej] the following holds, 

(1 / IBm)  ~tEB~ ~= 1/In'hi ~tEBr~ ~ x ~ w ~ ( W , X )  

= ~x ~-w 0/[B~I) ~tEBrff ~t(w,x) <-- ~ ~xE~ ~w[hj(w'x)u(x)Q(w) + 

(1/k) W] 

= ~2 ~xE~ [hj (qm,x)u(x)  + [Xi.-/: j Zi[ (i /k)W] 

<- Zy:[(maxxEychj(qm,x))u(30 + Ixl ]X i . jE i l  (1/k)W] = (**). 

In a case where player j will not  be punished after B k, namely, when I u (x) - qjm (:~) I 
< 1/2k, we get, 

(**) - hj(q m) + 2[Xi Zi[ (1/k)W = hj(q m) + c/k, 

where c is a constant .  The  inequality holds because qm E Dj .  
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Denote by A 1 the event that 1/[Bkl ~t~B k ~t > o~j + 2c/k will occur without 

player j being punished at Bk+ 1 .... ,Bk2 . Because of (19c), whenever k is big 
enough, we get 

B m pr(A~) < ~n+llk2/ lB~[ [Si~i[ <- k2e/] k [' (26) 

for a certain constant ~. By (19b), C~~ k 2e/IBr~] < oo. By the Borel-Cantelli 

lemma ([B], p. 412), the probability that A 1will occur for infinitely many k's is zero. 

Fix an ~ > 0. We claim that the probability that limsup T 1/T ctT = 1 ~t > oLj + 

~/is included in the event {A k occurs infinitely often}, where A k is the event 1/IBk[ 
ZteBk  ~ t > oLj + 7/2, and the average payoff of  player j at B k U ... U Bk2is also 

greater than 7/2. 
Define A 2 to be the event where player j is punished after B k and the average 

of his payoffs at Bk+ 1 U... U Bk2 is greater than o~j + ~//2. The event {A k infinitely 
often] is included in the union of [A]c infinitely often} and {A 2 infinitely often]. As 
was shown before, the first event has probability zero and the second one, by similar 
arguments, has also probability zero. 

To recapitulate, limsuPT 1/T cT= 1 ~t > o~j + ~ will occur with probability zero 

for any ~ > 0. This finishes the proof of Step 3. / /  

Remark 5.6." We actually proved more than what is required by the definitions; we 
proved a pointwise version. For the joint strategy f i n  Step 3, the payoff for player 
i is almost surely ot i . Moreover, any deviation will lead almost surely to an average 
payoff that is less than ot i . 

Remark 5. 7." The method of Step 3 can be generalized to any information structure. 
Define D to be the set of all the joint mixed actions, p, which satisfy: 

(i) if player i has a profitable deviation p[, then all other players can detect 
it. Player j can detect the deviation if he has an action a (not necessarily 

' a in the support ofpj  ) s.t. ( ( P - i , P i ) - j , )  and (p_ j ,  a) induce two different 
distributions over the signals of  player j.  

(ii) Two players do not have deviations (from p) that affect in the same way 
the signals' distributions. 

6 Concluding Remarks 

6.1 The Banach Equilibrium 

The liminf and the limsup are two ways of evaluating a sequence of average payoffs 
that does not converge. Using these evaluations we have two notions of equilibria. 
We could take another approach of evaluating nonconverging sequences. A Banach 
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limit, L, is a linear functional defined on bounded sequences and gives any converg- 
ing sequence its limit as a value. In other words, the Banach limit is an extension 
of  the usual limit to all the bounded sequences. There are many Banach limits and 
for each Banach limit L we can define the notion of L-equilibrium. 

Definition 6.1: ( f l  ..... fn) is an L-equilibrium if for any player i and a strategy f i  

>- L ( H f ( A  ..... Yi ..... fn))t .  

For any L we get the set of  payoffs that are associated with L-equilibria. Denote this 
set by EP L. By going along the outline of the proof  of  the previous section we get 
as a result that 

UEP = EP L for all L. 

(We parenthetically remark that the previous statement does not imply UEP = 
LEE)  From this point of  view the upper equilibrium is more appealing than the 
lower equilibrium. 

6.2 Uniform Equilibrium 

We will introduce here another equilibrium notion which connects the long run 
game with the finitely repeated games, that is, the uniform equilibrium (see [$2]). 

Definition 6.2: f = ( f l , ' " , fn)  is a uniform equilibrium if 

(i) H*( f )  is well defined and, 

(ii) for every e > 0 there exists N such that for all i and gi E A(E*) if n > 
N t h e n  Hin(f) >- nin(f_i ,  gi) - e. 

The connection to finite games is suggested by the following (Proposition 3.2 
in [$2]): f i s  a uniform equilibrium if H*( f )  is well defined and if there exist a se- 
quence e m decreasing to 0, and a sequence N m such that f induces an cm-equili- 
brium in the Nm-fold repeated game. 

We claim that the set of  all the uniform equilibrium payoffs coincides with UEP. 
Step 2 in Section 5 proves that the set of  all uniform equilibrium payoffs is contained 
in conv h( A Dj ). 
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In order to show that the strategy f ,  defined in Step 3 of  that section, is also a 
uniform equilibrium, notice the two following facts: 

(i) The length of  any block relative to the length of  its predecessors goes to 
zero; 

(ii) p r ( A ~ ) ,  the probability of  earning something tangible, (2c /k ) ,  at block 

B k without being punished afterwards is less than k2e/ln~l (see (26)). 

6.3 Stochastic Payoff 

One can define a modification of  our model in which the signal is deterministic but 
the payoffs are random. Providing that the signal is the same, the stochastic payoff 
can be replaced by its expectation and then all the results go through. 

6.4 Other Related Results 

The semi-standard information case is the only n-player case in which there is a full 
characterization of  UEP. The semi-standard information has two characteristics 
which make the characterization possible: 

(i) There is a common signal which is a function of  the joint action. 

(ii) By knowing his own action, a player cannot extract any further informa- 
tion about other players' actions. Formally, 

if k i (a_ i  , ai ) = ki(a'_, i ,ai ) = k i (a_  i ,a~ ) then 

),i(a'._i,  a~) = k i (a_  i , a~). 

These two features enable a player to compute the expected strategies of  his op- 
ponent and, furthermore, no correlation can emerge from the histories. Under a 
general information case it could be the case where even LEP is not contained in 
IR. It happens because some players can use their private information as a correla- 
tion device and push the payoff of  one of  the others down below his minmax level. 

Another  point that differentiates between semi-standard information and a 
general information structure is that in the former, if one player discovers a devia- 
tion, all other players discover it as well, while in the latter case, this is not so. This 
means that a player is not required to transmit his private information about the 
alleged deviation to others in order to cooperate with them in the punishment. If  
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such a transmission is necessary in a general information structure, it may give room 
for some players to transmit false messages about deviations and thereby to gain by 
other players' punishments. 

In two player games with observable payoffs it is known (see [L2]) that UEP 
= LEP and it is characterized completely by using a similar formula of  the payoffs 
set to that which appeared above, exchanging D i with another set. 

The characterization of  LEP is easier. It is characterized in all the two-player 
repeated games with nonobservable actions (see [L1]). A recent result is a 
characterization of  the correlated equilibrium (lower and upper) payoffs in all the 
two-player games [L3]. 

6.5 Open Problems 

1. Find a characterization of  UEP in a general two-player repeated game with 
nonobservable actions. 
2. Give another nontrivial condition on the information functions that enable to 
characterize completely UEP in n-player games. 
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