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Nash Equilibria of n-Player Repeated Games With
Semi-Standard Information

By E. Lehrer!

Abstract: The folk theorem is extended here to the case where after each stage of the repeated game
each player is informed only about the equivalence classes of the pure actions which were used by
the other players. The sets of upper equilibrium payoffs and of lower equilibrium payoffs are
characterized here, and they are found to be different.

1 Introduction

In this paper we deal with n-player repeated games with imperfect monitoring, i.e.,
games in which a player is not informed necessarily about all other players’ actions.
Such situations are most often found in economic repetitive conflicts. For example,
consider a repetitive interaction between firms practicing two sorts of actions: exter-
nal, which are observable, and internal, which are nonobservable by other firms.

The objective of a player is to maximize the long run outcome of the game, and
he may rely on the information he has collected previously during the game, when
he decides what to do at a current turn. However, this information does not contain
necessarily the payoffs during the game. For instance, in a case where interactions
are frequently repeated and firms are large and spread out, the decision makers in
the firms are not up-to-date with the financial state of their own firms. A player has
to consider the payoffs during the game, because they affect the long run outcome
(which will become known after the game terminates) but he cannot rely on them
when he makes a decision.

At each stage of the game a player cannot observe his opponent’s actions or
their effects. This leads to a situation by which certain contracts become non-en-
forceable, and as a result certain efficient interactions may become excluded. Facing
such a situation, one may look for the outcomes that can be sustained by self-enforc-
ing agreements, and in particular for the most efficient ones. For this purpose we
are looking at the model of n-player undiscounted repeated games, with imperfect
monitoring, where the information structure is the following.
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Let X; be player i’s set of actions and let f,- be a partition of it. In case player
itakes action a of I;, all other players are informed about the correspondent class a,
which is interpreted in our former example as the set of all the pairs (external-inter-
nal actions of the firm) that involve the same external action as does a. We call this
information structure a semi-standard information.

It is worth mentioning that the above information structure covers also the case
in which the payoffs are observable and the internal actions of a firm have no effect
upon other firms. In particular, it includes as a special case the two-sided moral
hazard, where each of the players is informed about the set that includes his oppo-
nent’s action, but not about the action itself.

The well-known folk theorem (see Aumann [A2]) deals with undiscounted
repeated games with standard information, which means that at every stage of the
game each player is informed about the actions that took place at that stage. Radner
[R1] and Rubinstein-Yaari [RY] have studied undiscounted repeated one-sided
moral hazard games. In these games the principal cannot observe the action or a
part of the action taken by the agent. The agent is fully informed, while the principal
is informed only about the outcome, which is stochastically determined by the
agent’s action. In other words, the outcome is picked according to a distribution
that depends on that action.

Fudenberg-Maskin [FM1, FM2], Radner [R2], Green-Porter [GP], and Abreu-
Pearce-Stachetti [APS]have investigated games in which all the players are informed
only about an outcome that depends (stochastically) on their actions. In these
models the payoff of a player depends on this outcome and on the player’s action.

Considering Nash equilibria, we are investigating the set of all the payoffs that
can be sustained by equilibrium strategies. In particular, we get a full description
of all the efficient outcomes in terms of the one-shot game.

Unilateral deviation from a prescribed strategy may cause the sequence of
average payoffs of a player to be a divergent sequence, and the question is how to
define a profitable deviation. Three ways to treat this problem are found in the
literature. The first one (see [A2]) defines the profitability by the liminf. In other
words, a player would be willing to deviate only if from a certain period the sequence
(of the averages) is greater than the prescribed payoff. Using this pessimistic notion
of profitability we define the lower equilibrium. The second way to address this pro-
blem (see [A2], [R1], [RY], [S1]) uses the limsup instead of the liminf. By this defini-
tion it is enough for the deviator to achieve from time to time, but infinitely many
times, an average payoff above the prescribed payoff. Using this optimistic notion,
we define the upper equilibrium.

The third way evaluates any bounded sequence by an extended limit notion,
called a Banach limit. Using the Banach limit we can relate to any bounded sequence
of average payoffs as if it has a limit and define the profitability notion in the natural
way. Hart [H] uses the Banach limit in his characterization of the Nash equilibrium
payoffs in repeated games with one-sided incomplete information.

We explore the Nash equilibrium payoffs that are correspondent to all these
alternative definitions. We find, in contrast to Aumann [A2], that the set of lower
equilibrium payoffs differs from the set of upper equilibrium payoffs. Furthermore,
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the latter coincides with the set of the Banach-equilibrium payoffs. The characteri-
zations of these sets are given in Section 3 in terms of the sets Dy,D,,...,D,,. D; is
the set of all the one-shot game joint actions (py,...,p,), where p; is player i’s best
response versus the other players’ actions, among all his actions that preserve the
distribution over player i’s classes, that are induced by p;. In other words, if
(p15-+-Py) is played repeatedly, player j can profit only by detectable strategies.

The folk theorem characterizes the set of equilibrium payoffs as the set of all
payoffs that own two properties: first, they are individually rational and second,
they are feasible. Our characterizations have a similar formulation: the set of the
upper equilibrium payoffs is the set of payoffs that are first, individually rational
and second, sustained by joint actions that are members in all the DJ- simultaneously
(i.e., no player can profit by a nondetectable deviation).

The set of lower equilibrium payoffs is characterized as the individually rational
payoffs that can be sustained by » (possibly different) joint actions, where the i-th
joint action is contained in D; and not necessarily in other Dj’s. In other words,
playing the i-th joint action, player i cannot deviate to a nondetectable action and
still gain, but all other players may have profitable and nondetectable deviations.

Section 6 is devoted to concluding remarks. We refer to the Banach equilibrium
and we state that the proof concerning upper equilibria holds also for Banach
equilibria. The notion of uniform equilibrium is defined in that section (see [S2] for
more extensive study). It turns out that the set of all uniform equilibrium payoffs
coincides with the upper equilibrium payoff set. We refer also to the possibility of
extending our results to a game in which the payoffs are stochastically dependent
on the actions. Finally, other results of the author in related topics are mentioned,
and the paper terminates with a few open questions.

2 The Model

Definition 2.1: An n-player repeated game with nonobservable actions consists of:

() ~ finite sets of actions: £{,X,,...,5,.

(ii) n payoff functions #;,...,k,, where A; : X}’zl EJ- - IR,
i=1,..,n.

(iii) »# information functions Aq,...,A,, and n information sets
Ll’""Ln’ where )\i : X_;?:l Ej nd Li’ i = 1,...,1’!.

We constrain ourselves to a special kind of information function.

Definition 2.2: The information is semi-standard if for every 1 < i < nthereis a par-

tition of X; : X; s.t. for every (xq,...,x;,) € X;Ll Ej

)\i(xl,...,xn) = (EI,...,)—CI'_I,XZ', )_Ci_,_l,...,fn).

where )?j is the class in f,- which includes Xj,J = L..,n.
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In the case of semi-standard information

Li=Y; XX T X ;X i XX I,

In other words, in the case where player j acted Xj =) jat the previous stage, player
i (i # j)isinformed about the equivalence class of X, which is X; .

Definition 2.3: The set of pure strategies of player i in the repeated game is:

¥ = {(f},ft?,f?,...); foreachn € IN, f#: L - 1;}

where L% s a singleton.

A mixed strategy of player i is a probability measure p; on I*. The sets of mixed
strategies of player i in the one-shot game (henceforth, mixed actions) and in the
repeated game will be denoted by A(XZ;) and A(Z?), respectively. An n-tuple of
strategies is called a joint strategy.

Every joint pure strategy f induces two strings:

S (s SENG | and (@ (S),-- 0l (fN)52 | s where sE(f) and al(f) are, respec-
tively, the signal and the payoff that player i receives at stage ¢.

Definition 2.4: Let p = (pq,82,--0n) € XT_; AXY) and T € N

@ HY(w = Bxp,(/TET_ dl(f), i = L,...n.

H{( ) is the expectation of the average payoff of player / at the first 7 stages
when p j is the mixed strategy played by player j, j = 1,...,n.

i) aTw = Exp,@l(/).
Definition 2.5: Let p = (pq,eestty) € X;’___l A(E’;).
(i) H’;f(;u) = limTHl.T(p.) if the limit exists, i = 1,...,x.
() H*(p) = Hi(p),... K} () if all H}(p) are defined.
Definition 2.6: Let p € XT_; A(Z%).

(i) pis an upper equilibrium if

(a) H*(u) is defined, and
(b) for every 1 < i < nand i; € A(XY)

limsupT H?(Mla---,ﬂ-i-l,ﬁi, Bip1seees ﬂn) = III*(M')
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(ii) uis a lower equilibrium if
(a) H*(y) is defined, and
(b)forevery 1 <i < nandp; € A(XY)
Honinf  H e i1 B > i 15eees i) < FEF(R).
Notation 2.7: (1) UEP = {H*(u)|x is an upper equilibrium};

(2) LEP = {H*(w)|u is a lower equilibrium}.

Our main task is to characterize UEP and LEP.

Remark 2.8: A repeated game with semi-standard information has a perfect recall.
Therefore, by the Kuhn Theorem ([Al], {K]) we can consider behavior strategies,
whenever this is convenient.

Notation 2.9: Let 1 <i < n,p € A(L;)and X € I;then p(%) = £, e3P,

We can relate to the classes of fi as equivalence classes. We will say that
x,y € L;are equivalent (x~;y)if X = y. This equivalence relation can be extended
to A(X;) in the following way:

Definition 2.10: Let p,q € A(E;) for some 1 < i < n, thenp ~; g if for every class
% € T, p(X) = ¢(@).

The equivalence relations will play an important role in the characterization of
UEP and of LEP.

3 The Main Theorems

The characterizations of LEP and of UEP are done by the sets D; of joint mixed
actions. For denoting the tuple (ay,...,20;1,8,0; 4 1 ---,0¢,) We Will use the notation

(a-j sﬁ) .
Notation 3.1

D; = {(p1,--Pn) € X1 { AZ)) |1 (Djsensb)
= Maxp~ipi hi(pppl, i = 1,..,n.
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In words, the set D; contains all the joint mixed actions in which player i plays
his best response among all the mixed actions which preserve the same distribution
of other players’ signals. The intuition is that if player / wants to increase his payoff
by deviating to another mixed action he can do that solely by a detectable way-name-
ly, by changing the probability distribution of his opponents’ signals.

Notation 3.2: Let i € {1,...,n).

(1) di = Min(pj)jiie‘xj¢i A(Ej) MaXPiEA(Ei) hi(p_i,pi).
(ii) a} is one of player j’s mixed actions (j # i) that satisfies
di = MaxPEA(Ei) hi (O'_ii,p).

i) IR = {(rpnry) E R 2 dj,J = 1.1}

= the individually rational payoffs.
Theorem 3.3: In an n-player repeated game with semi-standard information
LEP = ﬂ;?zl conv i(D;) N IR.
Theorem 3.4: In an n-player repeated game with semi-standard information
UEP = conv h(ﬁ;.’=1 D;) N IR.

Example 3.5: Standard information.
The partition X; is discrete:

Ei = {{S}IS S Ei}, i = 1,...,7’1.

Hence, foreveryl <si<n D; = X ;’21 A(X;) and, therefore,

UEP = LEP = conv A(XT_; AZ;)) N IR,

which is the content of the folk theorem.

Example 3.6: Composed prisoner’s dilemma.

Each one of the two players has three actions: A|,A, and B. A;,A, are two ac-
tions of cooperation. A, is a strong cooperation and A, is a weak one. A player can-
not distinguish between A; and A, of his opponent. Let the payoff matrix be:
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B l\1 A2

| | | |

! I [ |
B | L1 | 40 |  6.,-1 |

| ] { I

I | | |

| | I I
Ay 0.4 | 3.3 | 5,2 |

I | | |

| | |

| | I !
A, | -16 | 25 | 4.4 |

| | |

Here T; = T, = {{B},{A,A;}}. By direct computation we get:

UEP = LEP = Conv {(1,1),(1,11/3), (11/3,1),(3,3)}.

The weak cooperation payoff (3,3) is an equilibrium payoff, but the strong coopera-
tion payoff (4,4) is not.

Example 3.7: The repeated game of:

A A, B
} ] | ]
] | | |
A 0.0 I 1,0 | 3,0 |
! I | |
| | | |
| I | |
A, | 0.1 | 1,1 i 2,2 I
{ | ! A
] | | f
I ! | |
B | 0.3 | 2,2 { 1.75,1.75 |
| | | |

where £y = T, = {{BL{A[,A ).

conv A(D;) N conv h(D,) = conv {(0,0),(3,0),(0,3),(2,2)} and
conv A(D; N Dy) = conv {(0,0),(3,0),(0,3),(1.75,1.75)}.

Thus, UEP % LEP (see Figure 1).
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0,3

(0,0)

(3,0)

Fig. 1.

Corollary 3.8: Let G% = ((Z;, i, ZHL ) and G} = ((E,-,h,-,fl.z)l’.’zl) be two
n-player repeated games with semi-standard information, where X2 refines T for
every i = 1,...,n. Then

@ LEP(GY) S LEP(G});
(i) UEP(G}) S UEP(G}).

Proof: flz refines f} means that Di(Gf) c D (G;) for each i = 1,...,n. Therefore
the proof is clear. /

The intuitive meaning of Corollary 3.8 is that the players, by knowing more
about their opponents, can enlarge the sets of equilibrium payoffs since there are
less non-detectable deviations.

4 Proof of Theorem 3.3

Step I: LEP < IR.

If LEP & IR, then thereis @ = (ay,...,t;) € LEP s.t. o; < d; for some i. W.lo.g.
i =t Lletf=(f],..f,) bealower equilibrium strategy with H*(f) = . We will
define a deviation strategy g; of player 1 which increases his payoff. By Remark 2.8
we can relate to (f,...,.f,) as joint bebavior strategy.
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Notation 4.1 If x* = (x! seXl) € X1 Ei’ forsomel < i < nand# € NN then
xf = &, x},..%) = {(z’i,...,zé)}zj?: xjf,j = 1,...,1.

Lemma 4.2: Fix a joint strategy 0 € X7, A(E;"). For every
xt = (xf,..x) € XP_ £L. -

G pr’) = pri*) 7, prx; |x%1).
() pref) = prx) I, prixf [x7),
where all the probabilities are those induced by o.
Proof: (i) Denote by yj’ the last coordinate of xjf and the first 7—1 ones by xj"l.
pr(x') = Tyteyt pr®th) priwt | X0
= pr@) = Tyteypt 7 priwf| x*)
= pr®@) = T Tyytept priwf| x5
= pr@HI7_, pr(sf| .
(ii) By induction on ¢.
By the definition of the probabilities,

prd) = pre"H I pr(y! | x™), M

By the induction hypothesis,

prx®) = pret) 7 pr(xft| x4Y), 2

Combine (1) and (2) to get:
prx’) = pret) IV pr(ctxH) 17 pr(y!]xt). 3
Since the information is semi-standard,
flytly = tgtl ytl
pr(yfxty = prOyfIxi, X

for every 1 < j =< n. By (3) and (i):
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prd') = pr(xt) 17 prxf |x*1)
= pr@) L pr(xt x5, x0)

— +1 n It
= pr(% )Hj=1pr(xj [x?). /

Now the deviation g; = (g .82 1s---) can be defined by induction. g} is the mixed ac-
tion in A(X) which ensures player 1 his minmax payoff. Namely, 1(g1, f1 e f 1y
> dl

Notation 4.3: Let t € N and x! € XXland 1 </ < n, then

Fi+l () = t |yt t+1 (yt !
F{UEh = Sgexs prb X0 £ G, ).

Assume that gzl,g31,...,g’i have been defined in a way that for every x5-1 € XZ§'1
(2 = s < 1) the following holds:

By (7S, 5, g5 xsh) = dy.

Letx! € XEI’ Define g} +1 ()‘ct ,x!) to be a certain mixed action in A(Z;) which
ensures at least d; for player 1, when each player j # 1 plays f I+1(x?). Note that
t+1(xt) = g“‘l()?f x’ ) for all xt

We will prove that meH (f1.81) = d;. The expected payoff of player 1 at
stage t + 1is

Trexn xf prixt) byt & xt), FEF1 XL, xh),..., fEFL(xE XL )).
By Lemma 4.2 (ii) this is equal to

Exexn w prOOI_ prixf[x)

X hy(git @y X8, AP Yy D), f FL R X))

= Lyt [ prx’) LyexIl} lpr(xt |x%)

X hy(gh*1 (xfl,xp,f;“ (% h ) f EHLGRE X D)),

Since £, is multilinear this is equal to

Ty prixt) iy (f @D, 2T )

(recall Notation 4.3).
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By the definition of g/*1, this is greater or equal to

Ly pr(xt)d; = d.

Thus, H](f1,8)) = dy forall T € IN.

Step 2: LEP < ﬂl’.’z | conv h(D;).
If LEP < ﬂ?zl conv A(D;), then w.l.o.g. there is some lower equilibrium

strategy (fi,-....S,) s:t. H*(fq,....,) = (ay,...,a,) € conv A(Dy).
Define a strategy g1 = (g} ,g%,...) by induction. g} is 2 mixed action 7 in A(Z,)
which satisfies

@) f1~;pand
@) h(f5P) = Maxp_ p1hy(FY,p).

Assume that g’1+1 had been defined for all » < 7 in such a way that for all
xr € X;.’zl LI the following holds:

g, xh) ~ fIHLET) &)
and

g’l‘"1 (%7, x{) is the best response versus )

(f5H D), FEHLED,..., f 1)

among all the mixed actions in A(X) which are equivalent to the right side of (5).

Now define gi“ to be the strategy which satisfies (5) and (6) for all
xt e X Z.;.’. Define g to be (f,8))-

It will be shown (in Lemma 4.4) that by playing g1, player 1 does not affect the
probability of signals that the other players get during the game. Therefore, the mix-
ed actions played by other players after every history are also retained. In other
words, the deviation of player 1 is not detectable. Furthermore, we will prove at Lem-
ma 4.10, using the previous Lemmata, that at all the stages in a relatively big set of
stages player 1 profits at least by e > 0 with probability of at least § > 0, which pro-
vides the desired proof.

Lemma 44: Foranyj # 1,1 € Nand x! € Xj’.’=l Ejt,
() prg") = pry (x").

@) prolxf [x7) = pry (5 [%9).
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Proof: By (i) of Lemma 4.2,
rg(®!) = pro®) IV pro(xf [x*1).
The induction hypothesis will be both that pr, (xf‘l [x*1) = pry (xt -I[x1), and that

Pry (xt-ly = pry &), for every j = 2,...,n and xt L e xztl In order to prove (i)
we have to prove that forevery 1 < j < n, pr (th |xtly = pry (xj’ |xt1y,

Letting yjf be the last coordinate of xJ’. , we obtain
sty — tpt-1
pro&f X = proyf|xF

=Y JH ez P, (z"llx"l)p (yflxt' ,z"l) = ().

By the induction hypothesis and because the strategy of player j (j > 1)in g
is j; , namely, because

pry(f 18, 28y = pry (3] %11, 20D,

whenever j > 1, we can write (*) also substituting g by f. If j = 1 then, by (5),
prg(yj’ |xtly = prf(jﬂ x*1), This concludes the proof of (i).

(ii) remains to be proven. By direct computation of conditional probabilities we
get for every strategy 0 € X7_; A(Z}), and x! € X%, Tlthe following:

pro(x} |x1) = pro(f | %51, x0)
= pr, (yl‘|xt-1 xt-l) or, (xt-l |32’"1)/

/prg(Jg.t |x#1) provided that pr, (%! ! ,xj’ ) > 0.

Combine this and the following three equalities in order to get the proof of (ii). The
first one,

twtl yt-ly = t -1 i-1
prg(yj ‘X_j 5xj ) prf(.)f] I(x_J ’xj ),

holds because the strategies of player j (j # 1) in g and in f are equal. The second
one has already been shown, pr (yt |xtly = prf(y | x*-1), and the third follows

from the induction hypothesis, pr, (xt‘1 |x#1) = pry (x"1 [y, v/
Lemma 4.5: H'(g) € conv h(D,) for all ¢.

Proof: 1t is ensured by (5) and (6). //
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Let L be a hyperplane in R” dividing it into two parts, L™ and LT, and
separating (ay,...,ot,) and conv #(D;) in such a way that:2

(@ dist((ag,...,0), L) = dist (conv A(Dy), L) = v > 0 and
®) (pe0y) € L7,

Lemma 4.6: There is an € > 0 s.t. if (py,p9,....0,) € Xj’?zl A(Ej) and A(py,....0p)
€ L~ then there is a gy ~ p; which satisfies 4(p_1,q1) > "1, P2 Py + €

Proof: Otherwise there is a sequence {( 14 pzs ,pS) i € X}L 1 A(Z j) s.t. for every

a ~ 105 m(B5,.B5) + 1/s > hy(gf,p5,....p3) and hl(pls,...,p;) € L~. By com-
pactness there is an accumulation point of the sequence. Denote this point by
(D15--Pp)- Now, h(py,....p,) € L™ and for every q; ~1 py, h1(q1,D3s--Pp) <

hi(P1>Dy;---Py)- This means that (py,...,p,) € Dy and A(p,,....p,) € conv i(D|)
L7, acontradiction. //
Definition 4.7: A set M € IN has a (upper) (lower) density 7 if

lim, [ MN{l,..t}|/t =19

(limsup|M N {1,...t}|/t = 3)

(liminf|M N {1,...,. }|/t = n)

Remark 4.8: The set M = {t|(a] (f),....a’, (f)) € L™ and dist((a{(f),....¢(f)),
L) > ~/2} has a positive lower density 7.

Lemma 4.9: There is a positive constant § > 0 s.t. for every t € M,

pry & AT (@), FAEH),., T L) € L7 > 6.

Proof: The lemma holds because the set of feasible payoffs is bounded, and because
of the definition of M. //

Lemma 4.10: liminf H () > H} ().
Proof: For every integer ¢, Expg (h(y! +ly) =

= Dytexzt Py &) b T XD, 757 (&Y x ), UL X D).

2 Forx € R"and K € R”, dist(x,K) = inf ,ex |x = ¥];.
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By (ii) of Lemma 4.2 this is equal to
Lxext Lulex! Py &) Iy pre (W} %)
Ry (SN, FEFL(l, wh),, f EEL(RE W)
hy is multilinear; therefore, this is equal to
Tytext pre (&) iy (FiFLxY), F AP, fLFL (D).

However, by (ii) of Lemma 4.4, for every j > 1, 7 it1(%?) remains unchanged
both when it is defined by pry () or by prg(-). Thus, by (6) player 1, by playing g;,
can achieve in each stage at least what he could achieve by playing f]. Furthermore,
according to Lemmata 4.6, 4.9, and Remark 4.8, player 1, by playing g;, profits at
least by € > 0 with probability of at least § > 0 at each stage of a set M, which has
a lower density 7 > 0. Thus

liminfy H](g) > H{(f) + nes. //

Step 3: ﬂ;’z 1 conv h(Dj) N IR < LEP.

From here on we assume that #; = 0 for all i. W will denote the greatest payoff
appearing in the game.

Lemma 4.11: The extreme points of conv A(D;) are of the form A(p;,...,p,), where
Dj is a pure strategy.

Proof: Let p = (py,-..ky) € Dj. p € A(E;) means that3 p; = Tsex, s
However, p € D; implies that (p. 9 € D; for every s with ag > 0. Thus, A(p) =
Lee £, % h(p_j,65) € conv A(D;). 7/

In order to define a lower equilibrium strategy f, it is enough to ensure that for
each player there are infinitely many stages in which his average payoff cannot ex-
ceed his prescribed payoff. For this purpose we divide the set of stages into con-
secutive blocks. The first one will be devoted to player 1, the second to player 2, the
n-th block to player n, the n + 1-th block to player 1, and so on. A block devoted
to player { is called an i-block. In the stages of the i-blocks player i will play a pure
action which is a best response without being detected. In other words, in these
blocks player i will not be able to increase his average payoff without being
discovered by other players. This means that a player is forced, by the threat of
punishment, not to deviate in the blocks that are devoted to him.

3 8 is the mixed action that assigns probability 1 to the action s.
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The blocks will be defined in such a way that the number of stages preceding
a block is very small compared to its length. Therefore, the average payoff of player
i immediately after an i-block terminates cannot exceed by much his prescribed
payoff.

A punishment of player / is executed by all other players when they observe, at
a stage of an i-block, that a signal of player i differs from the signal they expected
to observe (recall that at these stages player i plays only pure strategies). In this case
the players can be sure that player i had deviated and they punish him from the
moment of deviation on forever.

We remark here that such “‘grim” strategy could not be defined at the next sec-
tion, since there, when players come to a conclusion that a player had deviated they
may, with a positive probability, be wrong.

Let a = (ay,...,0,) € ﬂ}’zl conv h(Dj) N IR. By Lemma 4.11 and by the

Caratheodory theorem, for each 1 < j < n there are n + 1 joint mixed actions
qj’." = (qjl"(l),...,qjm(n)), m = l,..,n + 1in D; (where q;"(j) € Lj)andn + 1
positive constants (y " yi+1 with total sum 1 s.t. a = Eg;lﬂjmh(qu.").

Divide IN, the set of stages, into blocks: By,B,,..., with the following proper-
ties:

By =1 (7a)
|Bj | =JZicj|Bil (7b)
Max Bj + 1 = Min Bj+1 (7c)

Each one of the blocks Bj is divided into n + 1 subsets, B} ,BJZ,...,B’J’.“, in such a
way that

|| B O TV G = oa | < 174 @

for every segment T of Bj with length j, and foreveryl = m < n + 1.

Denote j(mod n) by j(n). The strategy f will be defined as follows, At all the
stages of BJm , Dlayer i will play the strategy qj’.'(‘n)(i) unless he gets in some stage
of B}” a signal which points out that player j(n) did not play the pure strategy he
should have played; to be precise, unless player i does not get a signal from the set?

(. X)) |x; € ;% € Ty, £ # jn), and X; (y = 77, (G ().

In this case player i will play 0'{ @) from that stage on forever (recall Notation 3.2(ii)).

4 For simplicity, if j is divided by # (n |/) then j (mod n) will denote 7 and not zero as usual.

5§ = j@mod n)if j — i is divided by ~.
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Lemma 4.12: H*(f) = (al,az,...,an).

Proof: Denote @ = (a!,..., ’) = (@(f)s. ,a’( ) (recall Definition 2.4(ii)). Let
te Bm By the definition of feach player i plays g’ ) (i), thus a’ hi(g K n)) The
average of the expectations on a segment 7 of length Jjin B is:

Vj%ep nrd = /i Lol | B 0 Tlh(gl, ).

By (8):

11/j Ze TNB, d—ale = WHW. ®
Hence,

[V/1B;] Ziep @' = ale = (V)W. (10)

(9), (10) and (7b) give the desired proof. //
Lemma 4.13: fis a lower equilibrium strategy.

Proof: Let g; be a behavior strategy of player £ in the repeated game. Let £ be a stage
in Bé where k = s(mod n), and denote by A, the event in which player £ does not
play an action from the class ?11'cn (k) at stage #. Denote By = A; \ U j<s A s Cs =
1<SAJ , by = pr(By), and ¢, = pr(Cy).
By the definition of f, the expected payoff of player k at stage ¢ is less than

¢t dk + btW + (1 - Ct+1)hk (ql’cn) 11).

The first term is the probability of & to be detected, multiplied by his minmax payoff
d;, - The second term is the probability of player & to defect at stage ¢ for the first
t1me5 multiplied by the bound of its profit W. The third term is the probability not
to act outside the set of actions gJ*(k) which is 1 — ¢, ;, multiplied by the maxi-

mum payoff of player k (because q,'c" € Dy) when he is playing an action in gy m(k)
and all the rest are playing gj'(}), i # &, which is A (q")-
By (11), whenever k£ = s(n)

1/|B;nl EtEBIZ]a;C =

1/ |B| Tyepm lepdy + bW + (U —cpy D@l (12)

6 Without including defections outside blocks in which player & is checked up, namely, outside
S k=w(n) B w*
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Since ¢,y | = ¢ + byand hy(g]") = dy, the right side of (12) is less or equal to

1/|B"| Zepm [ = cohelg) + bW 1, (13)

for every m = 1,...,n + 1. Because of (8) and since b, — 0,

1/|Bs| £+ Zye g [0 = e)hidgl!) + D] < oy + <09, (14)

where e(s) —4_ o 0. (14) and (7b) imply that whenever k = s(n)

I/Max B M Bs af < W/(s + 1) + o + ) — o, (15)
= 5=

which concludes the proof. //

5 Proof of Theorem 3.4

We know that LEP < IR. Since UEP < LEP we get UEP < IR.
Step 2: UEP < conv A( ﬂj”z 1 Dj).

Proof: Let o ¢ conv A( njn=1 = Dj). We will show that « € UEP, by showing that

if f= (f1s S a0 Sp) € XA(E;“) and H*(f) = «, then fis not an upper equilibrium
strategy.

Let L be a hyper-plan that separates conv A( ﬂj”=1 D J-) and o with the following
properties:

dist(ee,L) = dist(conv h(ﬁj"= | Dj), Ly=v>0, (16a)
where dist(+,-) is the distance induced by the L; norm and,
a € L™, (16b)

By Remark 4.8 there is a set of stages M, with a positive lower density, such that
at each stage ¢ € M, (a{(f ),...,afz( ) € L™ Furthermore, like in Lemma 4.9 we
can find @ § > 0 such that

prix n(fiE,.. fixr) € L7} > 6

for every t € M.
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By (16a) and (16b), and since 4 is multilinear, there is 3; > 0 for which’

pr (X [dist((f{(x),..., F1 (xF1)), conv Nr.,D;) > g1} > 6.
Lemma 5.1: For any 31 > 0 there is 8, > 0 such that if dist((py,...,p,), conv ﬂjﬂzl
D;) > By then there is a dist((py,...,Pp),D;) > B for at least one i (1 < i < n).
Proof: Clear. //

Define now a partition of M into n subsets, MM, ,....M,, as follows: t € M;
if and only if.

@ te¢M,forallm <.
(i) pr{x"|dist((f{x*1),D;) > B, 1 = &/n.
Lemma 5.2: {M,...,M,,} is a partition of M.

Proof: M; N M; = @for all j # i, this is implied by (i). The fact that {My,...M,}
is not a partition of M means that there is some t € M \ U M;, namely:

pr xFdisq((fix ™), D;) > 85} < &/n. an

foralll = j < n. By Lemma 5.1
{x1|dist(fi(x*1), conv N D;) > By} €

S UL, e |dist(f 1), D)) > 6 ).

Thus, the probability of the first set is less than {(5/n)n = 6. This is in contradiction
to the fact thatt € M. //

Lemma 5.3: 1f M € N is of positive lower density and {Mj,...,M,} is a partition of
M, then there is some MJ with a positive upper density.

Proof M N {1,....m} = an=1 M; N {1,...,m} for all m € IN.

Denote 8 = | M N {1,...,m}| andﬁ}" = |A/IJ N{L,....m}|,pmM = Z}jﬁzlﬁj’ﬂ.Now
we have Ef:l limsup,, (8 Jm /m) =z limsup,, Ejnzl (B}” /m) = limsup,, (8™/m) =
liminf,, (8™/m) > 0. //

7 Here also dist(5, A) where § € X7_; AZ;) and A € X7 | AZ;) is the distance induced by
the Ly norm.

8 FiEh = G, D, P& x).
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W.Lo.g., M has a positive upper density, say, 7 > 0. Define g;, the deviation
of player 1, as it was defined at Step 2 of Section 4, and denote g = (g1,./2 »..» Sfy)-
Dy is closed. Thus, by a similar argument to that of Lemma 4.6, we can prove that
there is a positive constant v > 0 such that whenever, dist((f {(x*), Dy) > B, there
is a mixed action g;(x*1) ~; f {(7"1), which satisfies

r(FIED) <A@, f o F ) &) — .

The left side of the inequality is equal to Ef (h(yH) IDZ"I) because of the multi-
linearity of 4 and by Lemma 4.2(ii). We come to the conclusion that, by the deviation
g1» player 1 can profit at least by v > 0 at each stage of the set M}, which has an
upper positive density 5’, with probability of at least §/n. We already know that
at(f) = al(g) for every ¢ ¢ M;. Thus,

limsup, Hi(gl,fz,...,f,,) > HY(f) + (/myyn’.

Step 3: IR N conv A( ﬂj"=1 Dj) ¢ UEP.

In order to define an upper equilibrium fit is necessary to ensure that any player
will be able to profit by a deviation only at finitely many stages. Thus the strategy
f will be defined in such a way that all the times all the players will play their best
response among their nondetectable actions (which are not necessarily their best
response.) In other words, it is possible for a certain player to deviate and to gain
(only at the long run). However, this deviation is detectable. A repeated deviation
will be reflected (with high probability) in the frequency of the appearance of the
various signals. So, the players have to check all the time the relative frequency of
the various signals they previously got. In case where this relative frequency is far
from the expected one, the players punish the player responsible for these ‘“bad-
behaving” signals (if there are several such players, punish the one whose index is
smallest). However, even if all the players do not deviate and play according to the
prescribed mixed strategies, there is a positive probability that the frequency of a si-
gnal will be ““bad-behaving”. For this reason the players cannot punish the deviator
(or the player who is referred to as the deviator) from the deviation moment on
forever. They have to punish the deviator for a while, and then return to the master
plan.

Let o € IR N conv A( ﬂj”z 1 Dj)._We will show that o € UEP, by defining an

upper equilibrium strategy f's.t. H*(f) = o. o« € conv A(N j”= 1 Dj), so there are
n + 1 strategies, (qf”,...,qf’f) =g € ﬂj’;l Dj,m=1,..,n+ l,andn + 1 con-
stants v > 0, (m = 1,...,n + 1) with total sum 1 which satisfy:

a = T+l ym p(gm), 18)
m=1
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Divide N into blocks: By,B,,..., and divide each block B into n + 1 parts:
Bl ,....Bptlst

Min By, = Max By + 1, |By| = k10, k = 2,3,... (19b)
For every segment S © By, of length k (19¢c)

||BP N S|/k=ym|< Vk,m = 1,.,n + 1.

Unless he finds a deviation at the previous block, player i has to play at stage
t e B,’{" the strategy qll". If player i finds a deviation at block By, , he has to punish
atblocks By, 1, By 3 »..,Bg2 and from B2 | he has to play again ¢/, and so on.

How does a player recognize a deviation and who does he punish? Player i
counts the number of times he got the signal ¥ from player j on the part Bm of By.
Denote this number of times by OB}c" (x,/). Note that this number is common
knowledge. Then he checks the relative frequency of X in Bm to see whether it is far
from the expected number or not. Namely, whether

|OB]T(X,j)/|BIT| - qu”(x) | > 172k (20

or not (recall Notation 2.9). In a case where player i finds that (20) holds for some
l=j=<nandx &€ fj , he comes to the conclusion that player j has deviated at
block By,. Player i will punish the player with the smallest index who has deviated
at block By,. Again, if j is the player with the smallest index who was found to be
a deviator, then player i will play aJ in the blocks By {,...,B2, where a’ is any
action.

Lemma 5.4: H*(f) = o.

Proof: Let t € IN, and denote a’(f) by a’. At stage ¢t € BT either player i plays
ql.m or he punishes someone. The probability that player i will punish someone is the
probability that he has found a deviation at one of the [Vk] + 1 previous blocks.?
Foreveryl = j < nandx € E OB”’ (%,J) is common knowledge. So, by the
definition of f, whenever one player punlshes player i, all the players punish him as
well. Furthermore, f is defined in such a way that whenever player j punishes
someone at block By, he does not check whether some other player defects in that
block or not. For these reasons, coming to the conclusion that player j deviated at
block By, is equivalent to finding X € E and B’" such that (20) holds, while player

J was actually playing q at Bm (and not arf for some f). The probability to find
such a thing is, by the Chebyshev 1nequahty

9 Itis convenient to define [x] = Max { n € N|n < x} for every x € R.
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pr{[OB,’c” (x,j)/|B]’C"| - qjm ™| > 1/2k} < ij x) (2k)2/|B,’c"| 1)

where VJ’" (%) is the corresponding variance. However, by (19b) and (19¢), whenever
k is big enough we have,

vm ®(2k)2 v (®)(2k)? v 1
(22)

< < < —
| B"| (v — VkklO VPKS K

Hence, the probability of finding a deviation at block By is less than Max;
T nn + 1)/k (Max; |Z;|n(n + 1) stands for all the possibilities of X,/ and m)
when k is big enough. Thus, the probability of finding a deviation at one of the
blocks Bpz)+1»---»Bk-1 is less than

k-1 — — —_
T Max |5j|n(n + 1)/05 < (k= )/NE* Max |E;|n(n + 1) < Vk.
f=[Vk]+1

So, ift € B and ¢ is big enough, then

la’ = h(g™)]o < Wik. (23)

(18), (19) and (23) give the desired result. //
Lemma 5.5: f = (f1,....f,) is an upper equilibrium strategy.

Proof: We refer now to ¢ J’ ,1 =j=n,t € INasrandom variables. Let & be a mixed
strategy of playerj. g = (f_ j:&j) defines a measure u on Xi"= R We will show that

limsup, (a} + ..+ ajf.)/t < o p-a.s.,
and this implies

: 1 [4 .
limsup; Eﬂ(aj + ..+ a )/t = ;.

For this purpose we need the following probabilistic statement.

Lemma 5.6: let Ry,...,R,, be a sequence of identically distributed Bernoulli random
variables, with parameter p. Let Y7,...,Y, be a sequence of Bernoulli random
variables such that foreach1 < m < n, R,,isindependent of Ry,...,R,, {,Y],...,Y ;.
Then
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R1Y1+...+Rnyn Y1+...+ Yn

1
pri] - -p - |= ¢ =< —r (25)

for every € > 0.

Proof: Define 7, to be the field generated by R;,...,R,, 1,Y,....Y,, and define Z,,
=R, Y,, = DY,,. E(Z,,| %) = 0a.s. for every s < m. Furthermore, if s < ¢ then

E(Z,Z,) = E(B(Z,Z,| %)) = E(Z,E(Z,| %)) = E(Z0) = 0.

Denote S, = E;”: 1 Z;. By Chebyshev inequality,

pri|Syl = net < E(S2)/(ne)* = (S, E(Z?))/n2e? < 1/ne?.  //

Fixkandm(l < m < n + 1), and define foreachx € I, w € X, ; L;and
e B,’C” , R;(w) = lif each player i (i # j) plays w;at stage f and 0 otherwise. Y;(x)
= 1 if player j plays x at stage ¢ and 0 otherwise. Define also u(x) = (1/ ]B/Q" )]
EIEBZ' Y[(x)s u(x) = wxEX u(X), ém = (QIﬂ seeny ‘]I.’n_l,qﬂl,”_,qu;ﬂ )’ Q(S) =Hi;&j
g™(w;) = the probability that w will be acted. Let ajlf (wx) = Ry(W)Y,()h;(w,x;).

Notice that ajt = L,, x @'(W,x). By Lemma 5.6, with probability of at least 1 —
(k%/|BI|) | X;; Z;] |Z;| the following holds,

(/|BE) Eepm af = VIBP Eepm Ty Ty ¢f (0,%)

= L, L, /|8 EtGB’,’: c{it(w,x) < Iy Iyex Dylh(wm0u(x)Qmw) +
2914

= Lz Lyex [ (™0 u() + [X;p; 5| WVROW]

< Iy [(maxyex A (™)) u @ + [X| [X;; T;| VOW] = (*5).

In a case where player j will not be punished after By, namely, when |u(X) ~ qjm ®|
< 1/2k, we get,

(**) = ;@™ + 2| X 5| VRW = hi(@™) + c/k,

where c is a constant. The inequality holds because g™ € D; .
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Denote by A,}C the event that 1/ By | ;¢ B, a&f > a; + 2¢/k will occur without

player j being punished at By j,...,B;2 . Because of (19c), whenever k is big
enough, we get

prA}) =< E”millk2/|B,’g1t | X;Z;| < k2¢/|BP, (26)

for a certain constant ¢. By (19b), L7 | e/ |BJ!| < oo. By the Borel-Cantelli
lemma ([B], p. 412), the probability that A}c will occur for infinitely many £’s is zero.
Fix an » > 0. We claim that the probability that limsups 1/T Eth 1 aj’ > a; +

7 is included in the event { A% occurs infinitely often}, where 4 ristheevent 1/|By|
Ye B, aj’ >a; + 7/2, and the average payoff of player jat B, U ... U Bj2is also

greater than /2.

Define A,% to be the event where player j is punished after B;, and the average
of his payoffsat By ; U...U By2is greater than a; + 7/2. The event {Aj, infinitely
often} is included in the union of {A}C infinitely often} and { A,% infinitely often}. As
was shown before, the first event has probability zero and the second one, by similar
arguments, has also probability zero.

To recapitulate, limsup, 1/ TEth I ajt > a; + 7 will occur with probability zero

for any n > 0. This finishes the proof of Step 3. /

Remark 5.6: We actually proved more than what is required by the definitions; we
proved a pointwise version. For the joint strategy fin Step 3, the payoff for player
i is almost surely «; . Moreover, any deviation will lead almost surely to an average
payoff that is less than o; .

Remark 5.7: The method of Step 3 can be generalized to any information structure.
Define D to be the set of all the joint mixed actions, p, which satisfy:

(i) if player / has a profitable deviation p;, then all other players can detect
it. Player j can detect the deviation if he has an action a (not necessarily
in the support of pj) s.t. ((p—;»pf). j»@)and (p_ s a) induce two different
distributions over the signals of player j.

(ii)) Two players do not have deviations (from p) that affect in the same way
the signals’ distributions.

6 Concluding Remarks

6.1 The Banach Equilibrium

The liminf and the limsup are two ways of evaluating a sequence of average payoffs
that does not converge. Using these evaluations we have two notions of equilibria.
We could take another approach of evaluating nonconverging sequences. A Banach
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limit, L, is a linear functional defined on bounded sequences and gives any converg-
ing sequence its limit as a value. In other words, the Banach limit is an extension
of the usual limit to all the bounded sequences. There are many Banach limits and
for each Banach limit L we can define the notion of L-equilibrium.

Definition 6.I: (f},-..,f,) is an L-equilibrium if for any player i/ and a strategy f;

L(Hg(fls"‘sfn))t = L(H,{(fla---’—j‘i s--wfn)){'

For any L we get the set of payoffs that are associated with L-equilibria. Denote this
set by EP; . By going along the outline of the proof of the previous section we get
as a result that

UEP = EPy for all L.

(We parenthetically remark that the previous statement does not imply UEP =
LEP.) From this point of view the upper equilibrium is more appealing than the
lower equilibrium.

6.2 Uniform Equilibriam

We will introduce here another equilibrium notion which connects the long run
game with the finitely repeated games, that is, the uniform equilibrium (see [S2]).

Definition 6.2: f = (f1,-.-»fy) is a uniform equilibrium if

(i) H*(f) is well defined and,

(i) for every ¢ > O there exists N such that for alli and g; € A(E;.") itn >
N then HI'(f) = HP/_p8) = ¢

The connection to finite games is suggested by the following (Proposition 3.2
in [S2]): fis a uniform equilibrium if H*(f) is well defined and if there exist a se-
quence e, decreasing to 0, and a sequence Ny, such that f induces an e,,-equili-
brium in the N,,-fold repeated game.

We claim that the set of all the uniform equilibrium payoffs coincides with UEP.
Step 2 in Section 5 proves that the set of all uniform equilibrium payoffs is contained
in conv A(N Dj).
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In order to show that the strategy f, defined in Step 3 of that section, is also a
uniform equilibrium, notice the two following facts:

(i) The length of any block relative to the length of its predecessors goes to
Z€r0;

(ii) pr(A,% ), the probability of earning something tangible, (2¢/k), at block
By, without being punished afterwards is less than k%/|By| (see (26)).

6.3 Stochastic Payoff

One can define a modification of our model in which the signal is deterministic but
the payoffs are random. Providing that the signal is the same, the stochastic payoff
can be replaced by its expectation and then all the results go through.

6.4 Other Related Results

The semi-standard information case is the only n-player case in which there is a full
characterization of UEP. The semi-standard information has two characteristics
which make the characterization possible:

(i) There is a common signal which is a function of the joint action.

(ii) By knowing his own action, a player cannot extract any further informa-
tion about other players’ actions. Formally,

if )‘i(a-—i s a,~) = )\,-(ai_,- ,a,-) = )\,-(a_i ,d'i) then

M@l ah) = Na—; ,a)).

These two features enable a player to compute the expected strategies of his op-
ponent and, furthermore, no correlation can emerge from the histories. Under a
general information case it could be the case where even LEP is not contained in
IR. It happens because some players can use their private information as a correla-
tion device and push the payoff of one of the others down below his minmax level.

Another point that differentiates between semi-standard information and a
general information structure is that in the former, if one player discovers a devia-
tion, all other players discover it as well, while in the latter case, this is not so. This
means that a player is not required to transmit his private information about the
alleged deviation to others in order to cooperate with them in the punishment. If
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such a transmission is necessary in a general information structure, it may give room
for some players to transmit false messages about deviations and thereby to gain by
other players’ punishments.

In two player games with observable payoffs it is known (see [1.2]) that UEP
= LEP and it is characterized completely by using a similar formula of the payoffs
set to that which appeared above, exchanging D; with another set.

The characterization of LEP is easier. It is characterized in all the two-player
repeated games with nonobservable actions (see [L1]). A recent result is a
characterization of the correlated equilibrium (lower and upper) payoffs in all the
two-player games [L3].

6.5 Open Problems

1. Find a characterization of UEP in a general two-player repeated game with
nonobservable actions.

2. Give another nontrivial condition on the information functions that enable to
characterize completely UEP in n-player games.
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