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Abstract

We introduce a two-player game where at each period one player,
say, Player 2, chooses a distribution and the other player, Player 1,
a realization. Player 1 wins the game if the sequence of realized out-
comes is normal with respect to the sequence of distributions. We
present a pure winning strategy of Player 1 and thereby provide a
universal algorithm that generates a normal sequence for any discrete
stochastic process. It turns out that to select the nth digit, the algo-
rithm conducts O(n2) calculations. The proof uses approachability in
infinite-dimensional spaces (Lehrer 2002).
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1 Introduction

Consider the binary expansion of a number in the interval [0,1]. A number is

called normal with respect to the binary expansion, if the relative frequency

of any finite string of n zeros and ones converges to 2−n.

The notion of a normal number can easily be extended to any stationary

process. A normal number with respect to a stationary process is such that

the frequency of any finite string of symbols converges to the corresponding

probability.

Borel (1909) concluded from the strong law of large numbers that a num-

ber (with respect to any given basis1) is normal with probability 1 with

respect to the Lebesgue distribution. Nevertheless, the construction of a

specific normal number with respect to a specific basis, is not trivial. Cham-

pernowne (1933) showed that if one writes down the decimal numbers suc-

cessively: 1 2 3 4 5 6 7 8 9 10 11... , the result is a decimal normal number.

This result follows from the weak law of large numbers. Copeland and Erdős

(1946) and Davenport and Erdős (1952) generalized this result.

Another way to define a normal number with respect to the binary ex-

pansion is by relative conditional frequencies. A number is normal if for any

finite string of zeros and ones, say xn, the relative frequency of the zeros that

appear immediately after xn is asymptotically 1
2
.

Here we extend the notion of a normal number beyond stationary pro-

cesses, using relative conditional frequencies. For any discrete stochastic

process we define a normal sequence as follows. A sequence is normal if

for any finite string, say xn, the difference between the relative frequency of

the appearances of any symbol, say x, after xn, and the average conditional

probability of x diminishes to zero.

1That is, with respect to any i.i.d. uniform distribution over a finite set.
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Consider, for instance, a Markov chain with two states: 0 and 1. Suppose

that the transition probability from 0 to 1 is 2
3

and from 1 to 0 is 1
4
. In a

normal sequence the asymptotic frequency of ones that appear after every

history which terminates with 0 is 2
3

and after every history which terminates

with 1 is 3
4
. Although there are many normal numbers (in fact, the prob-

ability of the normal numbers, with respect to the distribution induced by

the Markov Chain, is 1), the construction of a specific number is not trivial.

Smorodinsky and Weiss (1987) gave an explicit construction for the case of

ergodic Markov chains which was inspired by Champernowne (1933). Adler,

Keane and Smorodinsky (1981) constructed a normal number for another

specific distribution.

The notion of normal numbers is strongly related to the notion of cali-

bration (Dawid, 1982). The latter became central to the subject of learning

to play equilibrium due to the important paper of Foster and Vohra (1997).

Given a distribution over infinite sequences, a calibration test (see Kalai,

Lehrer and Smorodinsky, 1999) compares the empirical distribution of a cer-

tain event, along an infinite sequence, with its expected value. A sequence

passes a calibration test if the empirical distribution and the expected value

of the event under consideration are asymptotically equal. Using this termi-

nology, a normal number may be defined as a sequence that passes countably

many calibration tests, one for each finite string of digits.

Sandroni and Smorodinsky (2002) were inspired by the notion of normal

numbers when they introduced belief-based equilibrium. In a belief-based

equilibrium, players optimize against subjective beliefs. Moreover, the real-

ized sequences of actions pass calibration tests like those used to determine

whether a number is normal or not.

We introduce a two-player game played over a discrete set of periods. In

each period, Player 2 chooses a distribution over a finite or countable set X.

After being informed of Player 2’s choice, Player 1 selects an element in X (a

realization). Player 1 wins the game if the sequence of realizations is normal
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with respect to the sequence of distributions chosen by Player 2.

It is shown that Player 1 has a pure winning strategy, that is, for every

strategy of Player 2, Player 1 can construct a normal sequence with respect

to Player 2’s choices. A winning strategy of Player 1 provides a univer-

sal algorithm that generates a normal sequence for any discrete stochastic

process.

It turns out that to select the nth digit, the algorithm conducts a quadratic

(in n) number of calculations. The proof relies on Lehrer (2002) which

extends Blackwell’s approachability theorem (1956) to infinite-dimensional

spaces.

2 Extended Normal Numbers

Let X be a finite or countable set of digits and let θ be a probability distribu-

tion over XIN , the Cartesian product of X with itself countably many times.2

For any xIN ∈ XIN , n and ` ∈ IN , where ` < n, denote x`,n = (x`, x`+1, ..., xn)

and xn = x1,n. The probability with respect to θ that z ∈ X will appear

after xn is denoted by θ(z|xn).

For any k = 1, 2, ... , zk = (z1, ..., zk) ∈ Xk, xIN ∈ XIN and n ∈ IN , let

I(xn−1, zk) be 1 if xn−k,n−1 = zk and 0 otherwise. In other words, I(zk, xn−1)

attains the value 1 if the tail of the word xn−1 coincides with the string zk

(i.e., xn−k,n−1 = zk) and the value 0 otherwise. If k = 0, set I(xn−1, zk) = 1.

For any integer 0 ≤ k < n denote I(xn−1, zk) =
∑n−1

s=k I(xs, zk). When

0 < k, I(xn−1, zk) is the number of times the string zk appears in the word

xn−1. Let z ∈ X and set

Yθ(x
n; zk, z) =

(
1l(xn = z)− θ

(
z|xn−1

))
I(xn−1, zk),

where 1l denotes the characteristic function. That is, 1l(xn = z) = 1 if xn = z

and 0 otherwise. Yθ(x
n; zk, z) may attain one of three values: 0 if the word

2As usual IN denotes the set of natural numbers.
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xn−1 does not end with the string zk; 1−θ
(
z|xn−1

)
if the word xn−1 ends with

the string zk and the last letter of the word xn is z; and lastly, −θ
(
z|xn−1

)
if the word xn−1 ends with the string zk and the last letter of the word xn is

not z.

Denote,

(1) Y θ(x
n; zk, z) =

∑n
s=k+1 Yθ(x

s; zk, z)

I(xn−1), zk
,

where 0
0

is defined as 0. Y θ(x
n; zk, z) is the difference between

∑n
s=k+1 1l(xn=z)I(xn−1,zk)

I(xn−1,zk)

and
∑n

s=k+1 θ
(

z|xn−1
)

I(xn−1,zk)

I(xn−1,zk)
. The first item is the relative frequency of z after

histories that end with zk; the second item is the average probability that

θ assigns to z after histories that end with zk. Thus, restricting attention

only to the histories that end with zk, Y θ(x
n; zk, z) conveys the difference

between the empirical distribution of z and the average of its probabilities.

Definition 1 A sequence xIN = (x1, x2, ...) ∈ XIN is called θ-normal (or a

θ-extended normal number or normal with respect to θ) if

(a) for any n = 0, 1, ... , θ(xn) > 0; and

(b) for any k = 0, 1, ... , zk = (z1, ..., zk) ∈ Xk and every x ∈ X

lim
n→∞

Y θ(x
n; zk, z) = 0,

whenever I(xn, zk) →∞ with n.

Condition (a) states that in order for a sequence xIN to be normal, any

prefix of xIN should have a positive probability according to θ.

There exists a normality test that corresponds to every pair (zk, z). The

one corresponding to (zk, z) examines the difference between the relative fre-

quency of the letter z after the appearances of the word zk and the average

probabilities that θ assigns to z after histories that end with zk. If the differ-

ence is asymptotically zero, then xIN passes the test corresponding to (zk, z).
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Formally, if limn→∞ Y θ(x
n; zk, z) = 0 whenever the word zk appears infinitely

often in xIN , then xIN passes the test corresponding to (zk, z). Condition (b)

states that in order to be normal xIN should pass all the tests that correspond

to all (zk, z).

Remark 1 When θ is induced by an i.i.d. process, where all the digits in X

are equally likely, a θ-normal sequence is known as a normal number of basis

|X|.

3 The Game

We define a game played by two players over a sequence of periods. Player

1’s stage-action set is always X and Player 2’s stage-action set is always

∆(X), the set of distributions over X. At any stage, Player 2 chooses an

action and announces it. Then, Player 1 chooses an action. Both players

may condition their choices on the previous actions of their opponents. In

other words, Player 1’s strategy is a function defined on his set of histories,

∪∞n=0

(
(∆(X)×X)n×∆(X)

)
that takes its values in his set of actions. Player

2’s strategy, on the other hand, is a function defined on his set of histories,

∪∞n=0(∆(X) × X)n that takes its values in his set of actions. Note that a

strategy of Player 2 in this sequential game provides a distribution over X

after every history of Player 1’s moves. Thus, it induces a stochastic process

with states in X.

Denote Player 2’s strategy in the sequential game by θ. Thus, θ indicates

the distribution over X that Player 2 chooses after every history of Player

1’s moves. The distribution θ(xn) can be considered as the conditional dis-

tribution over the (n + 1)th state of the process, given the history xn. By

the Kolmogorov extension theorem, θ induces a probability distribution over

XIN . Call this distribution also θ.

Note that any strategy of Player 1 constructs an infinite sequence of states

from X, xIN = (x1, x2, ...), while Player 2’s strategy induces a distribution
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θ over XIN . If the sequence xIN is normal with respect to θ, then Player 1

wins; otherwise Player 2 wins. This game is denoted as GIN .

4 The Corresponding Random Variable Pay-

off Game

Let (Ω, µ) be a discrete probability space defined as follows: Ω = ∪∞k=0(X
k ×

X) and µ(zk, z) = (2|X|)−(k+1) for every (zk, z) ∈ Ω.3 Note that∑
(zk,z)∈Ω µ(zk, z)= 1. The space (Ω, µ) can be viewed as the space of the

normality tests. Each pair (zk, z) corresponds to one normality test whose

probability is µ(zk, z).

The game GIN , defined in the previous section, is converted into another

game, ΓIN , with payoffs which are random variables defined over (Ω, µ). The

actions of the players in ΓIN are identical to those in GIN .

The stage payoffs of ΓIN depend on the players’ actions as follows. Sup-

pose that the history of Player 1’s actions at time n − 1 is xn−1, Player 1’s

choice at time n is xn and Player 2’s action is θ(·|xn−1) (recall, Player 2’s

action is a distribution over X). Denote, xn = (xn−1, xn). Then, the payoff is

defined as the random variable Yθ(x
n; ·, ·) which attains the value Yθ(x

n; zk, z)

at the point (zk, z) ∈ Ω. Thus, the random variable payoff attains the value

0 at the point (zk, z) if the word xn−1 does not end with the string zk. Oth-

erwise, it attains the value 1− θ
(
z|xn−1

)
if xn = z and the value −θ

(
z|xn−1

)
if xn 6= z. Note that the stage payoffs not only depend on the stage actions

but also on the history of Player 1’s actions.

Define Y θ(x
n; zk, z) as in Section 2 (see (1)); Y θ(x

n) = Y θ(x
n; ·, ·) is

the average (random variable) payoff along the history xn. Player 1 wins the

game ΓIN if Y θ(x
n) converges to 0 (the identically 0 variable)4 and, moreover,

3The set X0 is a singleton whose element represents the null history.
4Since the underlying probability space, (Ω, µ), is discrete, convergence in probability

implies convergence in the “almost surely” sense. Thus, when we say that Y
n

θ converges
to 0, we mean it in both senses.
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every history, xn, of his actions has a positive probability according to θ. Note

that if Y θ(x
n) converges to 0, then the sequence of Player 1’s actions (called

the play path of Player 1) is a normal number with respect to the distribution

induced by Player 2’s strategy. In other words, if Player 1 wins ΓIN , he also

wins GIN .

The result of this paper is the following

Theorem 1 Player 1 has a strategy5 such that for any strategy θ of Player 2

the sequence of Player 1’s actions, (x1, x2, ...), is a θ-normal number. More-

over,

a. the only information about θ needed to generate the nth digit, xn, is

θ(·|x1, ..., xs), s < n− 1, and the support of θ(·|x1, ..., xn−1); and

b. the algorithm is quadratic (i.e., the number of calculations it requires

to compute the nth digit is O(n2)).

5 The Intuition behind the Construction

Suppose that Player 2 plays the strategy θ and that the actions that have been

chosen by Player 1 up to time n are (x1, x2, ..., xn−1). Furthermore, suppose

that the action of Player 1 at time n is xn. Denote xn = (x1, x2, ..., xn). The

payoff is the random variable that attains the value
(
1−θ

(
z|xn−1

))
I(xn−1, zk)

at point (zk, z) ∈ Ω if xn = z, and the value −θ
(
z|xn−1

)
I(xn−1, zk), other-

wise. The average payoff up to time n is the random variable that attains

the value Y θ(x
n; zk, z) at point (zk, z).

If the value of Y θ(x
n; ·, ·) at point (zk, z) is positive it means that along

xn, z appears too frequently immediately after the string zk. In other words,

according to θ, z appears more often than expected after zk. On the other

hand, if Y θ(x
n; ·, ·) at point (zk, z) is negative, it means that z appears too

5In the game ΓIN Player 1 is not allowed to randomize, and thus his winning strategy
is pure.
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rarely after zk. Thus, the cumulative error that corresponds to the normality

test associated with the pair (zk, z) at time n is expressed by Y θ(x
n; zk, z).

The goal of Player 1, who wants to minimize the cumulative error related

to (zk, z), is to bring Y θ(x
n; zk, z) to 0. Since the same goal is common to

all pairs (zk, z) ∈ Ω, the cumulative error at time n is expressed by the ran-

dom variable Y θ(x
n; ·, ·). Roughly speaking, the random variable Y θ(x

n; ·, ·)
expresses the extent to which xn is normal.

Suppose that xn+1 is the choice of Player 1 at time n + 1. The payoff

at time n + 1 is then Yθ(x
n+1; zk, z), where xn+1 = (x1, x2, ..., xn+1). The

contribution of this payoff to the cumulative error at time n+1, Y θ(x
n+1; ·, ·),

is Yθ(xn+1;·,·)
I(xn,·) .

The essence of the construction is to find an action at time n+1, say, xn+1,

that “corrects” the cumulative error at time n in the sense that the inner

product of Yθ(xn+1;·,·)
I(xn,·) (recall that this is the contribution of the resulting payoff

to the cumulative error) with the cumulative error up to time n, Y θ(x
n+1; ·, ·),

is less than or equal to zero. Geometrically, it means that Yθ(xn+1;·,·)
I(xn,·) lies in

the half space opposing Y θ(x
n+1; ·, ·).

It turns out that if Player 1 at any time chooses an action that corrects

the cumulative error in this way, then the cumulative error diminishes to

zero. This makes his infinite sequence of choices normal with respect to the

strategy of Player 2.

6 A Winning Strategy of Player 1: Construct-

ing Normal Numbers

Proof of Theorem 1. We define the strategy of Player 1 inductively. Recall

that the choice of Player 1 at any stage may depend on the previous, as well

as the current, choices of Player 2. In what follows, θ is a strategy of Player

2.

Let x1, the action in period 1, be an arbitrary element of X that sat-
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isfies θ(x) > 0. Suppose that xn = (x1, x2, ..., xn), the actions up to pe-

riod n, have been defined so that θ(x1, x2, ..., xn) > 0. Let X̂ = {z ∈
X; θ(z|x1, x2, ..., xn) > 0}. Denote m = |X̂|. Thus, there are m objects in

X assigned positive probability by the distribution θ(·|x1, x2, ..., xn).

Suppose that the history of Player 1’s actions up to time n is xn. For

every zk ∈ Xk and z ∈ X̂ define the matrix A(zk, z), with dimension m×m,

as follows. The entry in the row corresponding to x′ ∈ X̂ and the column

corresponding to x′′ ∈ X̂ is denoted ax′,x′′ and is defined by,

ax′,x′′ = I(xn, zk)
(
1l(x′ = z)− 1l(x′′ = z)

)
.

In other words, the entries of the matrix A(zk, z) are all 0 if xn does not end

with zk. If xn ends with zk, then the entries in the row corresponding to z are

1 (except for the entry in the diagonal), those in the column corresponding

to z are −1 (except for the entry in the diagonal), and all the rest are 0

(including the diagonal entries). Note that A(zk, z) is, in particular, a matrix

of the form (bi − bj)ij for some (b1, ..., bm) ∈ IRm.

Denote by A(zk, z)x′ the row of A(zk, z) corresponding to x′. That is,

A(zk, z)x′ may be one of three types: identically 0 (in the case where xn does

not end with zk); identically 1 except for the coordinate corresponding to x′,

which is 0 (in the case where xn ends with zk and x′ = z); or identically 0

except for the coordinate corresponding to z, which is −1 (in the case where

xn ends with zk and x′ 6= z).

Recall that Yθ((x
n, x′); ·, ·) is the payoff after the history (xn, x′). The

matrix A(zk, z) is defined so that for every pair (zk, z),

(2) Yθ((x
n, x′); zk, z) = A(zk, z)x′ • θ(·|x1, x2, ..., xn),

where • denotes the inner product in IRm.

Define the matrix A as follows:

(3) A =
∑

(zk,z)∈Ω and z∈X̂

µ(zk, z)
Y θ(x

n; zk, z)

I(xn, zk)
A(zk, z).
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The matrix A is a linear combination of the matrices A(zk, z). Recall

that A(zk, z) = 0 if xn does not end with zk. Thus, only n of the matrices

A(zk, z) are not identically zero. The coefficient of the matrix A(zk, z) in (3)

is the probability of the pair (zk, z), µ(zk, z), multiplied by the cumulative

error that corresponds to it, Y θ(x
n; zk, z), divided by the number of times zk

appears in the history, I(xn, zk). Note that the greater (in absolute value)

the cumulative error the greater the coefficient, and the smaller the number

of appearances of zk the greater the coefficient.

The matrix A = (ax′,x′′) is also of the form (bi−bj)ij, as a linear combina-

tion of matrices of the same kind. Thus, there is a row in A whose entries are

all non-positive6. Define Player 1’s action at time n + 1, xn+1, to be an ele-

ment in X̂ that corresponds to such a row. That is, axn+1,x′′ ≤ 0 for every x′′.

In particular, θ(xn, xn+1) > 0 (since xn+1 ∈ X̂). Therefore, any convex com-

bination of the entries in the row corresponding to xn+1 (i.e., a combination

of axn+1,x′′ , x′′ ∈ X̂) is also non-positive. Specifically, a convex combination

taken with respect to θ(x′′|x1, x2, ..., xn) is non-positive. Formally,∑
x′′∈X̂

axn+1,x′′θ(x
′′|x1, x2, ..., xn) =

(4)∑
x′′∈X̂

[ ∑
(zk,z)∈Ω

µ(zk, z)
Y θ(x

n; zk, z)

I(xn, zk)
axn+1,x′′(z

k, z)
]
θ(x′′|x1, x2, ..., xn) ≤ 0,

where axn+1,x′′(z
k, z) is the axn+1,x′′ entry of the matrix A(zk, z). Using (2)

we derive from (4) that

(5)
∑

(zk,z)∈Ω

µ(zk, z)
Y θ(x

n; zk, z)

I(xn, zk)
Yθ(z

k, z, (xn, xn+1)) ≤ 0.

6In game theoretical terminology A is a zero-sum game whose value is 0. Furthermore,
A has a pure optimal strategy. That is, there is a row in A such that by playing it, Player
1 (considered in this context as a minimizer) ensures a non-positive payoff.
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To simplify notation, let Y n+1 = Y ((xn, xn+1); z
k, z), Y

n
= Y θ(x

n; zk, z)

and I
n

= I(xn, zk). (Recall that all are random variables defined on (Ω, µ).)

Note that Y n+1
θ is bounded between -1 and 1. From (5) we obtain7

E
(Y

n

θ

I
n Y n+1

θ

)
≤ 0,

where the expectation is taken with respect to µ.

Continuing inductively we obtain two sequences, Y 1, Y 2, ... and I
1
, I

2
, ...

of random variables, defined over Ω, that possess the following properties:

a. Set I
0

= 0. Then, I
n−I

n−1
is either 0 or 1 and moreover, I

n−I
n−1

= 0

implies Y n+1 = 0;

b. Y 1, Y 2, ... are uniformly bounded;

c. Y
n+1

= I
n−1

Y
n
+Y n+1

I
n ;

d. E
(

Y
n

I
n Y n+1

)
≤ 0.

By Theorem 1 of Lehrer (2002), Y
n → 0 with θ-probability 1 on the

event {In → ∞}. Since µ(zk, z) > 0 for every (zk, z), it follows that Y
n

=

Y θ(x
n; zk, z) → 0 whenever I

n
= I(xn, zk) → ∞. Thus, we have defined a

strategy of Player 1 that guarantees a win against any strategy of Player 2.

We therefore conclude that if Player 2 uses θ, then (x1, x2, ...) is θ-normal.

Note that to determine the nth digit the knowledge about θ needed was

the actions of Player 2 up to stage n−1 (that is, θ(·|x1, ..., xs) s < n−1) and

the support of θ(·|x1, ..., xn−1). If this support is always full (i.e., X̂ = X),

Player 1 does not need to know the precise action of Player 2 at time n.

During the inductive process we defined the matrix A(zk, z). This matrix

is identically zero unless the word zk appears at the end of the actual history.

7Note that in the following inequality the expectation operator plays the role of the
inner product. This inequality expresses the fact that Y n+1

I
n corrects the error Y

n
, as

explained in the previous section.
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Thus, the number of matrices that satisfy A(zk, z) 6= 0 is linear in n. More-

over, for every pair (zk, z) such that A(zk, z) 6= 0 the number of calculations

needed to find the respective values of Y n+1
θ , I

n
and Y

n+1

θ is also linear in n.

It means that the number of calculations needed at time n+1 is O(n2) which

implies that the total number of calculations needed to calculate (x1, ..., xn)

is O(n3).

7 Final Remarks

7.1 Constructing a sequence that satisfies more condi-
tions

The proof method employed can be used to deal with countably many con-

straints. One, for instance, may use this method to construct a normal

number, with respect to any given basis, so that its restriction to any pre-

specified sequence of times generated by a recursive function is normal. In

other words, in addition to the countably many constraints imposed by nor-

mality, one may use the proof method to construct a sequence that satisfies

more constraints, provided that the total number of constraints is countable.

7.2 About the speed of convergence

The fact that Y
n

θ is bounded by 1 implies, by Lehrer (2002), that
∑∞

n=1
‖Y n

θ ‖2
n

≤∑∞
n=1

1
n2 . This provides information about the speed at which ‖Y n

θ‖ con-

verges to zero.
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