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Abstract We study market games derived from an exchange economy with a con-
tinuum of agents, each having one of finitely many possible types. The type of agent
determines his initial endowment and utility function. It is shown that, unlike the
well-known Shapley–Shubik theorem on market games (Shapley and Shubik in J
Econ Theory 1:9–25, 1969), there might be a (fuzzy) game in which each of its
sub-games has a non-empty core and, nevertheless, it is not a market game. It turns
out that, in order to be a market game, a game needs also to be homogeneous.

We also study investment games – which are fuzzy games obtained from an
economy with a finite number of agents cooperating in one or more joint projects.
It is argued that the usual definition of the core is inappropriate for such a model.
We therefore introduce and analyze the new notion of comprehensive core. This
solution concept seems to be more suitable for such a scenario. We finally refer to
the notion of feasibility of an allocation in games with a large number of players.

Keywords Market games · Cooperative fuzzy games · Investment games · Core

JEL Classification Numbers C71 · D51

1 Introduction

We study two different economic models of cooperation. The first is an exchange
economy that consists of a finite number of types of agents, each consisting of a
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large number of agents. The second model deals with a finite number of agents,
each endowed with his own resource, who cooperate in one or more joint projects.
The reason for combining these models into one paper is that the mathematical
tool used for the analysis is the same.

In their seminal paper Shapley and Shubik (1969) characterize the set of those
n-person TU cooperative games that can arise from an exchange economy where
the agents have concave monetary utility functions. They write

“. . . In reaching these conclusions, however, we were led to a positive re-
sult: a surprisingly simple mathematical criterion that tells precisely which
games can arise from economic models of exchange (with money).”

Our first result is in this spirit. However, our setup differs from theirs in the
cardinality of the set of agents involved. Here, we deal with an economy with a
large number of agents divided into a finite number of types. It is assumed that
agents of the same type are identical both in terms of their utility functions and
their initial endowments. This assumption enables us to simplify the mathematics
significantly. The reason is that, in order to describe a coalition, we only need to
specify how many agents of each type are participating. Thus, we can identify every
coalition with a point c ∈ IRn such that1 0 ≤ c ≤ Q, where Q ∈ IRn+ specifies the
total number of agents from each type (n is the number of types).

Every exchange economy will be defined by the vector Q ∈ IRn+ of the total
number of agents from each type, and by the initial endowment and utility function
of the agents of every type i (1 ≤ i ≤ n). The worth of a coalition will be the
maximal total utility that its members can achieve by reallocating their endow-
ments. Thus, every such economy generates a characteristic function defined over
the (compact polyhedral) set F(Q) = {c ∈ IRn; 0 ≤ c ≤ Q}. We call it the market
game generated by the economy. The following question is addressed: What are
the necessary and sufficient conditions that a characteristic function over F(Q)
should satisfy in order for it to be a market game?

There is quite a vast literature on such characteristic functions. In cooperative
games theory such a model is usually referred to as a fuzzy game (Aubin 1979,
1981). The idea is that the set of n players can choose their “level of participa-
tion” in a coalition. Thus, fuzzy coalitions composed of fractions of players can
be formed. In this case, the domain of the characteristic function is extended from
the vertices of the n-dimensional unit cube to the entire cube.

Another area where a similar model is studied is that of the pricing of a multi-
product monopoly (Sharkey and Telser 1978; Moulin 1988). Here, a monopoly pro-
duces n perfectly divisible goods. The cost of producing the bundle
c = (c1, . . . , cn), where ci is the amount of the i-th good being produced (1 ≤ i
≤ n), is given by the number v(c).

The first step towards answering the question just posed is to show that every
market game has a non-empty core. Aubin (1979, 1981) defined the core of a fuzzy
game to be the set of all vectors x = (

x1, . . . , xn
) ∈ IRn which are feasible in the

sense that
∑n

i=1 xi = v(1, . . . , 1) and satisfy2 xc ≥ v(c) for all fuzzy coalition
c = (

c1, . . . , cn
)
. The logic behind this definition is that when xi is perceived as

1 For two vectors z, w in IRn, z ≤ w means that zi ≤ wi for i = 1, . . . , n.
2 for two vectors z, w ∈ IRn, zw denotes the inner product zw = ∑n

i=1 zi wi .
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a per-unit reward of agent i , then a core element x is resistant to claims of any
(fuzzy) coalition3.

Telser (1978, Chap. 4) makes a thorough study of the core of such characteris-
tic functions. He considers a situation where, as in our case, a large population is
composed of a finite number of types. His definition of the core does not enforce
agents of the same type to be treated as equals and receive the same allocation.
However, an important result he obtains is that, if the core is not empty, it must
contain an allocation which gives identical shares to players of the same type.

The core is also important in the context of multi-products pricing. For a given
production level Q ∈ IRn+, the question being asked is whether there is a prices
vector p ∈ IRn such that the monopoly exactly covers its cost (pQ = v(Q)) and,
moreover, pc ≤ v(c) for any c ∈ F(Q). This last requirement means that no subset
of consumers subsidizes the rest of the population. Indeed, if pc > v(c) for some
c ∈ F(Q), then a set of consumers who buy exactly the bundle c is subsidizing the
rest of the economy. If p satisfies these conditions, then −p is in the core of the
fuzzy game defined by the function −v. Thus, existence of such a prices vector is
equivalent to non-emptiness of the core of the fuzzy game defined by −v. Sharkey
and Telser (1978) call the function v supportable if there is such a prices vector at
every level of production Q ∈ IRn+.

Unlike the Shapley-Shubik theorem (Shapley and Shubik 1969), non-emptiness
of the core of every sub-game of a given fuzzy game doesn’t imply that this is a
market game. It is shown that a necessary condition for market games is homogene-
ity of the function v. It turns out that homogeneity together with total balancedness
is what characterizes market games in our setup.

In the second model we discuss, n agents can cooperate in a joint project.
Each one of the agents is endowed with an individual resource or ability. An agent
may choose to invest any part of it in the joint project. If agent i’s (1 ≤ i ≤ n)
level of investment (effort) is ci ≥ 0, then the worth of the investment profile
c = (

c1, . . . , cn
)

is the maximum total utility that the agents can derive from it
by (optimally) splitting it among them. If Qi > 0 is the total amount of agent i’s
resource, and Q = (

Q1, . . . , Qn
)
, then for any investment profile c ∈ F(Q), v(c)

is the worth of c. Thus, every such economy defines a fuzzy game over F(Q),
called an investment game.

We argue that the standard definition of the core is inappropriate for investment
games. Indeed, assume that the allocation x is blocked by the investment profile
c = (

c1, . . . , cn
)
. That is, xc < v(c). In this case, each agent i is left with amount

Qi −ci of his resource uninvested. It might be that, no matter how the agents invest
this remainder, the total worth of their investment is smaller than that guaranteed
by x . Thus, from a comprehensive perspective on the entire investment, x is a stable
allocation.

The above argument suggests that in investment games a core allocation should
take into account the total value of investing the entire resources, and not only a
fraction of it. The notion of the comprehensive core we introduce captures this
idea. An allocation x is in the comprehensive core if no subset of agents can do
better than what is obtained by x , no matter how they choose to invest their entire

3 Other papers discussing cores of fuzzy games include (Butnariu 1980) where a different
definition of the core appears, and (Branzei et al. 2003) where cores of convex fuzzy games are
studied.
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resources. We prove that the comprehensive core always contains the standard core
but not vise versa. We obtain a characterization of games whose comprehensive
core is non-empty.

We also consider the case where the agents have “equal tastes” (identical utility
functions) and the case of super-additive utility functions (not necessarily identi-
cal). It is shown that in both these cases the characteristic function obtained is
super-additive on F(Q). The converse is also true. That is, if v is a super-additive4

characteristic function on F(Q) then it is an investment game of agents with equal
tastes and of agents with super-additive utility functions.

Finally, we comment on the feasibility of an allocation in the context of coop-
erative games with a large set of players. It is assumed in many economic models
that the characteristic function is super-additive. However, if the population is very
large, then it sometimes seems reasonable to assume that by splitting into several
smaller coalitions the total payoff to the entire society will increase. Thus, an allo-
cation that is not feasible by the usual definition of feasibility may become feasible
if we allow the grand coalition to split.

We therefore introduce another core-like solution concept: the split core. The
split core of a fuzzy game consists of those allocations which are feasible in this
broader sense and, as in the standard core, no coalition can improve upon. It is
obvious that the split core of a game contains its core and that the opposite direc-
tion need not be true. Conditions for non-emptiness of the split core are obtained
from the conditions for the standard core.

In section 2 we formally define fuzzy games, market games and investment
games. Section 3 contains the main result of the paper – characterization of market
games. In section 4 we discuss investment games and in section 5 the split core is
introduced. Some of the proofs appear in the Appendix.

2 The models

2.1 Fuzzy games

For every vector Q ∈ IRn with Q ≥ 0, let F(Q) be the box F(Q) = {c ∈ IRn;
0 ≤ c ≤ Q}. The point Q is interpreted as the “grand coalition”. The characteristic
function is defined on the entire box F(Q). Formally,

Definition 1 A fuzzy game is a pair (v, Q) such that

(i) Q ∈ R
n and Q ≥ 0;

(ii) v : F(Q) → R is bounded and satisfies v(0) = 0.

We will also be interested in sub-games of a given fuzzy game. These are
naturally defined as in the theory of classic cooperative games.

Definition 2 Let (v, Q) be a fuzzy game and fix some c ∈ F(Q). The sub-game of
(v, Q) with respect to c is (vc, c), where for every d ∈ F(c), vc(d) = v(d).

4 That is, the worth of a coalition is not smaller than the sum of the worths of the coalitions in
any partition of it.
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2.2 Market games

Let N = {1, 2, . . . , n} be the set of types of agents in a large economy. The set
of type i agents (1 ≤ i ≤ n) is identified with the closed interval

[
0, Qi

]
, where

Qi ≥ 0 is some measurement of the number of type i agents. A coalition is any
product of measurable sets C1 × · · · × Cn where Ci ⊆ [

0, Qi
]
, i = 1, . . . , n. if

C = C1 × · · · × Cn ⊆ F(Q) is a coalition and ci is the measure of Ci then C can
be identified (for our purposes) with the vector c = (

c1, . . . , cn
) ∈ F(Q). That is,

we are only concerned with the number of agents of each type in the coalition and
not with their identity. Therefore, from now on, a coalition is a point c ∈ F(Q),
and the set of all possible coalitions is F(Q).

Each type of agent in the economy is characterized by an initial endowment and
a utility function. The initial endowment of agents of type i is a bundle of goods
which is represented by the point wi ∈ IR�+. The utility function of type i agents is
ui : IR�+ → IR. We assume that, for every 1 ≤ i ≤ n, ui satisfies: (1) ui (0) = 0;
and (2) there is a constant Mi such that for every c ∈ F(Q) either ui (c) ≤ Mi or
ui (c) ≤ |c|Mi , where |c| = ∑n

i=1 ci is the l1 norm of c. Nothing like monotonicity
or concavity is required.

Assume that the coalition c ∈ F(Q) is formed. The entire endowment of c
is wc = ∑n

i=1 ciwi . The members in c can split wc into bundles yi
k ∈ IRl+(1 ≤

i ≤ n, 1 ≤ k ≤ Ki ), where
∑n

i=1
∑Ki

k=1 γ i
k yi

k = wc and
∑Ki

k=1 γ i
k = ci for every

i = 1, . . . , n. This means that type-i agents are split into Ki groups, such that group
k is of size γ i

k , and each agent in group k receives the bundle yi
k . All together, the

utility of the entire coalition with such allocation is
∑n

i=1
∑Ki

k=1 γ i
k ui

(
yi

k

)
.

Every economy
(
Q, {wi , ui }n

i=1

)
naturally defines a fuzzy game. If c ∈ F(Q)

is a coalition then v(c) is the maximum achievable utility of the coalition c on its
own. Formally,

Definition 3 The market game induced by
(
Q, {wi , ui }n

i=1

)
is the fuzzy game

(v, Q) where for every c ∈ F(Q),

v(c) = sup

⎧
⎨

⎩

n∑

i=1

Ki∑

k=1

γ i
k ui (yi

k);
n∑

i=1

Ki∑

k=1

γ i
k yi

k ≤ wc,

Ki∑

k=1

γ i
k = ci , i = 1, . . . , n

⎫
⎬

⎭
.

(The obvious constraints γ i
k ≥ 0 and yi

k ∈ IR�+ are omitted.)

Remark 1 (1)v is bounded over F(Q). Indeed, for c ∈ F(Q) if
∑n

i=1
∑Ki

k=1 γ i
k yi

k ≤
wc and

∑Ki
k=1 γ i

k = ci , i = 1, . . . , n, then
∑n

i=1
∑Ki

k=1 γ i
k ui (yi

k) ≤ ∑n
i=1

∑Ki
k=1 γ i

k(
Mi + ∣∣yi

k

∣∣ Mi
) ≤ (|c| + |wc|)M , where M = ∑n

i=1 Mi . Thus, v(c) ≤ (|c| +
|wc|)M ≤ (|Q| + |wQ |)M for every c ∈ F(Q).
(2) If ui is continuous and concave, there is a constant Mi such that for every c either
ui (c) ≤ Mi or ui (c) ≤ |c|Mi . Indeed, when ui is continuous, there is M1

i such
that ui (c) ≤ M1

i when |c| ≤ 1. Let M2
i be the maximum of ui over �. Then, by

concavity, if |c| ≥ 1, ui (c) ≤ |c|M2
i −ui (0). Set, Mi = max

(
M1

i , M2
i + |ui (0)|) .

Note that, in the definition of a market game (Definition 3),
∑n

i=1
∑Ki

k=1 γ i
k yi

k
is required to be not larger than, but not necessarily equal to wc. Thus, we allow



332 Y. Azrieli and E. Lehrer

for free disposal of excessive quantity. It is therefore clear that v(0) = 0 and that
v is monotonically non-decreasing.

This construction of a cooperative game from a market is in the spirit of Shapley
and Shubik (1969). In their paper, they deal with an exchange economy that consists
of a finite number of agents and, therefore, the resulting game is a (TU) cooperative
game in its classical form. Here, in contrast, the resulting game is a fuzzy game.

2.3 Investment games

Consider a situation where a finite number of agents are involved in a joint project.
Assume that each one of the agents contributes his own special ability or resource
to the project. Moreover, assume that for every agent i ∈ N (where N is the set of
agents, |N | = n) Qi ≥ 0 is a measurement of the amount of the special resource
that agent i has. However, an agent is not restricted to invest his entire quantity in
the project, and can choose any participation level ci

(
0 ≤ ci ≤ Qi

)
.

Each agent i ∈ N is endowed with a utility function ui : F(Q) → IR. That is,
if c = (

c1, . . . , cn
)

is the investments profile of the various agents then the utility
of agent i from the joint project is ui (c). Such a model naturally gives rise to a
fuzzy game.

Definition 4 The investment game induced by
(
Q, {ui }n

i=1

)
is the fuzzy game

(v, Q) where, for every c ∈ F(Q),

v(c) = sup

{
n∑

i=1

ui (di );
n∑

i=1

di = c, di ∈ F(c), i = 1, . . . , n

}

.

3 Characterizing market games

This section contains the main result of the paper – a characterization of market
games derived from large economies with a finite number of types of agents. In
subsections 3.1 and 3.2 we introduce two necessary conditions for market games,
namely, totally balancedness and homogeneity. Subsection 3.3 shows that these
conditions (together) are also sufficient.

3.1 Totally balanced fuzzy games

Definition 5 The core of the fuzzy game (v, Q), denoted core(v, Q), is the set of
vectors x = (

x1, . . . , xn
)

such that

(i) x Q = v(Q); and
(ii) xd ≥ v(d) for any coalition d ∈ F(Q).

To remain consistent with the terminology of classical cooperative games, we
say that the fuzzy game (v, Q) is balanced, if core(v, Q) �= ∅. If each one of the
sub-games of (v, Q) is balanced we say that (v, Q) is totally balanced.

Our first task is to find conditions on the function v itself which are equiva-
lent to non-emptiness of core(v, Q). Such conditions were given by Aubin (1979,
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1981) for the case of a homogeneous v. Telser (1978) called a totally balanced
characteristic function kind and provided necessary and sufficient conditions even
for the case of a continuum number of different types. Sharkey and Telser (1978)
deal with a similar problem in the context of natural monopolies. For completeness,
and since we think that our proof is interesting on its own, we bring here the proof
in its full. We first need the following definition.

Definition 6 Fix Q ∈ IRn, Q ≥ 0 and let v : F(Q) → IR.

(i) The Strong Super-Additive cover of v is the function SSav : F(Q) → IR
defined by

SSav(d) = sup

⎧
⎨

⎩

L∑

j=1

λ j v(c j ); L ∈ N,

L∑

j=1

λ j c j = d, λ j ≥ 0, c j ∈ F(d), j = 1, . . . , L

⎫
⎬

⎭
.

(ii) v is called Strongly Super-Additive (SSA) if v = SSav on F(Q).

For some properties of the SSa operator the reader is referred to section 6.2 in
the Appendix.

Proposition 1 (i) The fuzzy game (v, Q) is balanced iff SSav(Q) = v(Q).
(ii) The fuzzy game (v, Q) is totally balanced iff v is SSA.

The proof of Proposition 1 appears in the Appendix. The next step is to use it
in order to show that every market game is balanced. This is done in the following
proposition.

Proposition 2 Every market game has a non-empty core.

Proof Let (v, Q) be the market game induced by
(
Q, {wi , ui }n

i=1

)
. By Proposi-

tion 1 it is sufficient to show that SSav(Q) = v(Q). Fix ε > 0 and suppose
that SSav(Q) ≤ ∑L

j=1 λ jv(c j ) + ε for some integer L ,
∑L

j=1 λ j c j = Q, λ j >

0, c j ∈ F(Q), j = 1, . . . , L . Furthermore, suppose that, for every j = 1, . . . , L ,

the bundles
(

yi
j,k

)n

i=1
in IRl+ satisfy

∑n
i=1

∑Ki j
k=1 γ i

j,k yi
j,k ≤ wc j ,

∑Ki j
k=1 γ i

j,k = ci
j ,

γ i
j,k ≥ 0 and v(c j ) ≤ ∑n

i=1
∑Ki j

k=1 γ i
j,kui

(
yi

j,k

)
+ ε

Lλ j
. Then,

SSav(Q) ≤
L∑

j=1

λ j

⎛

⎝
n∑

i=1

Ki j∑

k=1

γ i
j,kui

(
yi

j,k

)
+ ε

Lλ j

⎞

⎠ + ε

=
n∑

i=1

L∑

j=1

Ki j∑

k=1

λ jγ
i
j,kui

(
yi

j,k

)
+ 2ε ≤ v(Q) + 2ε.

The last inequality is due to Qi = ∑L
j=1 λ j ci

j = ∑L
j=1

∑Ki j
k=1 γ i

j,k (i = 1, . . . , n)

and to wQ = ∑L
j=1 λ jwc j ≥ ∑L

j=1 λ j
∑n

i=1
∑Ki j

k=1 γ i
j,k yi

j,k = ∑L
j=1

∑n
i=1

∑Ki j
k=1 λ jγ

i
j,k yi

j,k .
It follows that SSav(Q) ≤ v(Q)+2ε for any ε > 0, and therefore, SSav(Q) =

v(Q). This shows that the core of (v, Q) is not empty. 	
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Corollary 1 If (v, Q) is a market game then it is totally balanced.

Proof It is clear that any sub-game of a market game is itself a market game.
Therefore, (v, Q) is totally balanced. 	


3.2 Homogeneous fuzzy games

In contrast of Shapley and Shubik (1969), not every totally balanced fuzzy game
is a market game. To see this, consider the following example.

Example 1 Let n = 1, Q = 1 and v(t) = t2 for every 0 ≤ t ≤ Q. Clearly, v
is SSA. Therefore, the core of any sub-game of v is not empty. If v is a market
game, the coalition Q can reallocate the initial endowments of its members so as
to derive a total utility of 1. The coalition Q/2, which has half of the resources
that Q has, can reallocate these resources in precisely the same proportions as
Q did. By so doing, coalition Q/2 may derive half of the utility of Q, which is
1/2 > v(Q/2) = 1/4. Thus, v cannot be a market game.

It follows that more conditions should be added in order to characterize market
games. The above example suggests that a homogeneity condition is missing.

Definition 7 The fuzzy game (v, Q) is homogeneous if v is a homogeneous (of
degree 1) function on F(Q). That is v(λc) = λv(c) whenever c, λc ∈ F(Q).

When the game is homogeneous, the worth of any coalition c is |c|v(c/|c|),
which is the worth of a coalition whose size is 1 and its internal distribution is
(c/|c|) multiplied by the size of c.

Proposition 3 Every market game is homogeneous.

Proof Since (v, Q) is a market game, by Proposition 2 and by Corollary 1, v is
SSA on F(Q). Therefore, if c ∈ F(Q) and 0 ≤ λ ≤ 1, then v(λc) ≤ λv(c). To
obtain the inverse inequality, fix ε > 0 and let

{
γ i

k , yi
k

}
1≤i≤n,1≤k≤Ki

be such that
∑n

i=1
∑Ki

k=1 γ i
k yi

k ≤ wc,
∑Ki

k=1 γ i
k = ci , i =1, . . . , n and

∑n
i=1

∑Ki
k=1γ

i
k ui

(
yi

k

) ≥
v(c)− (ε/λ). The collection

{
λγ i

k , yi
k

}
1≤i≤n,1≤k≤Ki

is possible in the definition of

v(λc), and therefore v(λc) ≥ ∑n
i=1

∑Ki
k=1 λγ i

k ui (yi
k) ≥ λv(c) − ε. Since this is

true for every ε > 0, we get that v(λc) ≥ λv(c) and therefore v is homogeneous.
	


3.3 Constructing a market from a game

We now show that if a fuzzy game is non-decreasing, homogeneous and totally
balanced then it is a market game. The idea of the proof is similar to that of Shapley
and Shubik (1969). That is, given a fuzzy game (v, Q) we identify the set of (l)
goods with the set of (n) types of agents and the initial endowment of type i agents
(wi ) with the i-th standard vector of IRn . The utility functions of all the agents
are identified with v itself. In the terminology of Shapley-Shubik (1969) this is the
“direct market” generated by the fuzzy game (v, Q).
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Theorem 1 A fuzzy game (v, Q) is a market game if and only if:

(i) v is monotonically non-decreasing on F(Q);
(ii) (v, Q) is homogeneous; and

(iii) (v, Q) is totally balanced.

Proof The claim, that if (v, Q) is a market game then it is totally balanced is due
to Corollary 1. The homogeneity of v is due to Proposition 3. It is also clear by the
definition of a market game that v is non-decreasing on F(Q).

Now suppose that (v, Q) is totally balanced and that v is a homogeneous non-
decreasing function on F(Q). We show that (v, Q) is a market game. Let wi be
the i-th standard basis vector of IRn , and ui = v, i = 1, . . . , n (notice that we take
� = n).

Denote by (r, Q) the market game induced by
(
Q, {wi , v}n

i=1

)
. It remains to

prove that r = v on F(Q). By the monotonicity of v and since wc = c, we have,

r(c)=sup

⎧
⎨

⎩

n∑

i=1

Ki∑

k=1

γ i
k v

(
yi

k

)
;

n∑

i=1

Ki∑

k=1

γ i
k yi

k = c,
Ki∑

k=1

γ i
k = ci , i = 1, . . . , n

⎫
⎬

⎭

(notice that the monotonicity of v enables us to replace the inequality in the defini-
tion of a market game with equality). Since every such partition of c is possible also
in the definition of SSav(c), we have that r ≤ SSav. However, by Proposition 1,
and since (v, Q) is totally balanced, v is SSA. Therefore, r ≤ SSav = v.

To show that r ≥ v, recall that r is homogeneous because (r, Q) is a mar-
ket game and that v is homogeneous by assumption. Therefore we can assume
w.l.o.g. that � ⊆ F(Q), where � is the unit simplex of IRn . Fix c ∈ � and for
i = 1, . . . , n take Ki = 1, γ i = ci and yi = c. Then by the definition of r ,
r(c) ≥ ∑n

i=1 civ(c) = v(c). It follows that r = v on � and by homogeneity r = v
on F(Q). Therefore, (v, Q) = (r, Q) is a market game. 	


As a last remark in this section, we note that if (v, Q) satisfies conditions (i),
(ii) and (iii) of Theorem 1 then we can say more than that (v, Q) is a market game.
Indeed, the proof of Theorem 1 implies that (v, Q) is a market game where the
utility functions of all the agents in the economy are homogeneous and SSA. In
the following lemma we show that a homogeneous SSA function is also concave.
Thus, the utility functions in the economy can always be taken to be concave.
Before proving the lemma we define the super-additive cover of a fuzzy game.

Definition 8 Fix Q ∈ IRn, Q ≥ 0 and let v : F(Q) → IR.

(i) The Super-Additive cover of v is the function Sav : F(Q) → IR defined by

Sav(d) = sup

⎧
⎨

⎩

L∑

j=1

v(c j ); L ∈ N,

L∑

j=1

c j = d, c j ∈ F(d), j = 1, . . . , L

⎫
⎬

⎭
.

(ii) v is called Super-Additive (SA) if v = Sav on F(Q).

Some properties of the Sa operator appear in section 6.2 in the Appendix.



336 Y. Azrieli and E. Lehrer

Lemma 1 Let (v, Q) be a homogeneous fuzzy game. The following are equivalent:

(i) v is SSA on F(Q).
(ii) v is SA on F(Q).

(iii) v is concave on F(Q).

Proof It is straightforward that under homogeneity (i) and (ii) are equivalent.
(i i) ⇒ (i i i) If c, d ∈ F(Q) and α ∈ (0, 1) then v(αc + (1 − α)d) ≥ v(αc) +
v((1 − α)d) = αv(c) + (1 − α)v(d) so v is concave.
(i i i) ⇒ (i i) For c, d ∈ F(Q) with c + d ∈ F(Q), by concavity and homogeneity
of v we have, 1

2v(c + d) = v
( c+d

2

) ≥ 1
2v(c) + 1

2v(d) so v is SA. 	


4 Cooperative investment games

4.1 The comprehensive core

The first issue we wish to address is the relevance of the core as a notion of stability
in investment games. Recall Definition 5. An allocation x might not be in the core
if there is a blocking investment profile c ∈ F(Q) such that v(c) > xc. This means
that the investment profile c yields a higher total utility than the share guaranteed
by x . However, there is no reference to what remains after investing c. That is,
every agent i ∈ N is left with an excess amount of Qi − ci unused resources. It
might be that the yield of this remainder is so low that the total yield is less than
the share guaranteed by x .

For every S ⊆ N , let QS be the n-dimensional vector which coincides with Q
on the coordinates that belong to S, and is equal to zero otherwise. If a coalition S is
not satisfied with the allocation x , it means that it has a comprehensive investment
(rather than a partial one, as suggested by the core) of its entire resources, QS , that
yields a higher total utility than x QS . By a comprehensive investment we mean
investments ci ∈ F(QS), i = 1, . . . , L , that satisfy

∑L
i=1 ci = QS . The coalition

S of players has a justified claim against x using such a comprehensive investment
if x QS <

∑L
i=1 v(ci ). A stable allocation in the context of investment games is,

therefore, an allocation where none of the coalitions has a justified claim against
using any comprehensive investment.

By Definition 8, for any coalition S ⊆ N , Sav(QS) is the maximal achievable
payoff of the coalition S using a comprehensive investment. The comprehensive
core consists of all those allocations which there is no justified claim against using
a comprehensive investment. Formally,

Definition 9 The comprehensive core of a fuzzy game (v, Q), denoted
C − core(v, Q), is the set of vectors x = (

x1, . . . , xn
)

such that

(i) x Q = Sav(Q);
(ii) x QS ≥ Sav(QS) for any coalition S ⊆ N.

The first observation we make is that any core allocation of a fuzzy game is
also in the comprehensive core, while the converse is wrong.

Proposition 4 (i) For any fuzzy game (v, Q), core(v, Q) ⊆ C − core(v, Q).
(ii) There might be x ∈ C − core(v, Q) such that x /∈ core(v, Q).
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Proof (i) Let x ∈ core(v, Q). Since obviously SSav(Q) ≥ Sav(Q) ≥ v(Q) and
by Proposition 1 (i), we have v(Q) = SSav(Q) ≥ Sav(Q) ≥ v(Q). This implies
x Q = Sav(Q). Next, fix ε > 0, S ⊆ N and let ci ∈ F(QS), 1 ≤ i ≤ L be
such that Sav(QS) − ε ≤ ∑L

i=1 v(Ci ). Then x QS = ∑L
i=1 xci ≥ ∑L

i=1 v(ci ) ≥
Sav(QS) − ε. This implies x QS ≥ Sav(QS) so x ∈ C − core(v, Q).
(ii) The following is an example of a fuzzy game with empty core and non-
empty comprehensive core. Let n = 2, Q = (1, 1), v(Q) = 2, v((1, 1/2)) = 3,
v((0, t)) = −2t for 0 ≤ t ≤ 1/2 and v(c) = 0 otherwise. We have that
Q = (1, 1/2) + (1/2)(0, 1) but v(Q) = 2 < 3 = v((1, 1/2)) + (1/2)v((0, 1)),
so by Proposition 1 (i) the core of (v, Q) is empty. On the other hand, x = (1, 1)
is in C − core(v, Q). When players 1 and 2 consider forming the mixed coalition
(1, 1/2), player 2 is left with an excess amount of 1/2. Any way he might cut this
amount into pieces yields −1. Thus, the net value is 2, which is what is given to
this coalition by x . 	


A condition characterizing fuzzy games with a non-empty comprehensive core
can easily be obtained using the Bondareva–Shapley theorem (Bondareva 1962;
Shapley 1967).

Proposition 5 C − core(v, Q) is not empty if and only if
∑

S⊆N δS QS = Q where
δS ≥ 0, S ⊆ N implies Sav(Q) ≥ ∑

S⊆N δSSav(QS).

Proof Define the auxiliary (classical) cooperative game (N , vN ) by vN (S) =
Sav(QS) for any S ⊆ N . This game has a non-empty core iff

∑
S⊆N δSIS =

IN where δS ≥ 0 for every S ⊆ N implies
∑

S⊆N δSvN (S) ≤ vN (N ). Since
∑

S⊆N δSIS = IN is equivalent to
∑

S⊆N δS QS = Q, and x = (
x1, . . . , xn

) ∈
C − core(v, Q) iff y = (

Q1x1, . . . , Qnxn
)

is in the core of (N , vN ), the proof is
complete. 	


4.2 Investment games with “equal tastes”

In this subsection we consider the special case where all the agents have the same
utility functions. That is, ui = u, 1 ≤ i ≤ n. In this case we say that the agents
have equal tastes. We are interested in a characterization of investment games in
this simple case. It turns out that super additivity is all what needed.

Proposition 6 The fuzzy game (v, Q) is an investment game of agents with equal
tastes if and only if v is SA on F(Q).

Proof Assume first that (v, Q) is the investment game generated by(
Q, {ui = u}n

i=1

)
. Then, by definition (recall Definition 4), v = Sau. By Lemma 4

(3) in the Appendix v is SA.
Conversely, assume that v is SA on F(Q). Consider the investment game gen-

erated by the utility functions ui = v, 1 ≤ i ≤ n. By definition, this investment
game is (Sav, Q). Since v is SA, v = Sav and we are done. 	


4.3 Investment games with super-additive utility functions

Another case which can be easily analyzed is when the utility functions are all
SA. This case reflects a scenario where, for every agent, the utility from any two
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separated investments is smaller than the utility of their union. If this is the situation
then the resulting investment game must also be SA. Formally,

Proposition 7 The fuzzy game (v, Q) is an investment game of agents with super-
additive utility functions if and only if v is SA on F(Q).

Proof Assume that (v, Q) is the investment game generated by
(
Q, {ui }n

i=1

)
where

ui is SA for every 1 ≤ i ≤ n. Fix c ∈ F(Q) and assume that
∑L

j=1 d j = c, where
d j ∈ F(c) for 1 ≤ j ≤ L . Let ε > 0. For every 1 ≤ j ≤ L there are vec-

tors
{

di
j

}n

i=1
such that

∑n
i=1 di

j = d j and v(d j ) − (ε/L) ≤ ∑n
i=1 ui

(
di

j

)
. Since

∑n
i=1

∑L
j=1 di

j = c and by the super additivity of the utility functions, we have

v(c) ≥ ∑n
i=1 ui

(∑L
j=1 di

j

)
≥ ∑n

i=1
∑L

j=1 ui

(
di

j

)
≥ ∑L

j=1(v(d j ) − (ε/L)) =
∑L

j=1 v(d j ) − ε. This implies that v is SA.
Conversely, if v is SA then, similarly to the proof of Proposition 6, one can

construct an investment game which equals v on F(Q). 	


5 On the feasibility of an allocation

What does it mean that the allocation x ∈ IRn is feasible for the grand coali-
tion Q in a fuzzy game (v, Q)? The standard answer is, as in Definition 5, that
x Q = v(Q). An assumption underlying this definition is that the characteristic
function v is super-additive and, thus, if the grand coalition will split into several
smaller coalitions, the total worth will decrease. However, if the set of agents is
very large, it might be the case that splitting is beneficial. That is, the standard
assumption of v being super-additive seems doubtful.

If a fuzzy game (v, Q) is interpreted as a cooperative game with a continuum
of players from a finite number of types (as in Telser 1978, for instance), then it
seems reasonable that Sav(Q) > v(Q). That is, there is a collection of coalitions
c1, . . . , cL with

∑L
i=1 ci = Q such that

∑L
i=1 v(ci ) > v(Q). A notion of feasibility

of an allocation x ∈ IRn that better fits this scenario is, therefore, x Q = Sav(Q).

Definition 10 The split core of a fuzzy game (v, Q), denoted S − core(v, Q), is
the set of vectors x = (

x1, . . . , xn
)

such that

(i) x Q = Sav(Q);
(ii) xc ≥ v(c) for any coalition c ∈ F(Q).

Here, the split-core allocation x is resistent to any blocking coalition, as in the
core. However, it might be that x Q > v(Q), meaning that x is not available if
the grand coalition is formed. When the entire population splits, the total worth is
increased and the allocation x becomes available.

It is important to note that, if x ∈ S − core(v, Q) then, for any c ∈ F(Q), xc ≥
Sav(c). It implies that the allocation x is resistant to claims of any coalition c, even
if c is allowed to split into smaller coalitions.

It is easy to see that core(v, Q) ⊆ S − core(v, Q). The following proposition
characterizes fuzzy games with non-empty split core.
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Proposition 8 S − core(v, Q) is non-empty if and only if SSav(Q) = Sav(Q).

Proof Consider the auxiliary fuzzy game (v′, Q) defined by v′(c) = v(c) if
c �= Q and v′(Q) = Sav(Q). By the definition of the split core we have that
S − core(v, Q) = core(v′, Q). By Proposition 1, core(v′, Q) is not empty if and
only if v′(Q) = SSav′(Q). However, v′(Q) = Sav(Q) by definition, and since v
and v′ coincide on F(Q)\{Q}, it is obvious that SSav(Q) = SSav′(Q). Therefore,
v′(Q) = SSav′(Q) is equivalent to Sav(Q) = SSav(Q). 	


In the following example (v, Q) has an empty core but a non-empty split core.

Example 2 Let n = 2, Q = (1, 1) and v(c) = v(c1, c2) = ((c1)2
/
(c1 + c2)).

Notice that v is homogeneous on F(Q). This implies that SSav = Sav so, by Prop-
osition 8, S − core(v, Q) is not empty. On the other hand, SSav(Q) ≥ v(1, 0) +
v(0, 1) = 1 > 1/2 = v(Q). Thus, by Proposition 1, (v, Q) has an empty core.

6 Appendix

6.1 Proof of Proposition 1

In order to prove the proposition, we define an auxiliary function on � – the unit
simplex of IRn .

Definition 11 Let (v, Q) be a fuzzy game. Define uv,Q : � → IR ∪ {+∞} by
uv,Q(q) = sup{v(c)/|c|; c ∈ F(Q), q = (c/|c|)}.
To illustrate the definition consider the following example.

Example 3 Let n = 2, Q = (2, 2), and for any c ∈ F(Q) let v(c) = (
c1 + c2

)2
.

Fix q = (
q1, 1 − q1

) ∈ �. In order to compute uv,Q(q), we need to maxi-

mize
((

c1 + c2
)2 / (

c1 + c2
)) = c1 + c2 with the constrains that c ∈ F(Q)

and
(
c1

/ (
c1 + c2

)) = q1. A simple computation yields uv,Q(q) = (
2
/

(1 − min{
q1, 1 − q1

}))
. 	


Definition 12 Assume that uv,Q is bounded. The concavification of uv,Q, denoted
Cavuv,Q, is defined as the minimum of all concave functions g : � → R such that
g(q) ≥ uv,Q(q) for every q ∈ �.

Cavuv,Q is a concave function as a minimum of concave functions. Moreover,
if uv,Q is continuous, then since � is a convex polygon, Cavuv,Q is also continuous
(see Laraki 2004).

Lemma 2 Assume that uv,Q is bounded. Then for every q ∈ �,

Cavuv,Q(q) = max

{ n+1∑

i=1

αi uv,Q(qi ); (i) q =
n+1∑

i=1

αi qi ;

(i i) αi ≥ 0, i = 1, . . . , n + 1;

(i i i)
n+1∑

i=1

αi = 1; and

(iv) qi ∈ �, i = 1, . . . , n + 1

}
.
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Proof Denote by w(q) the right-hand side of the equality without the restriction
that the number of elements in the convex combination is n + 1. First, it is clear
that w ≥ uv,Q on �. In addition, one can show that w is concave. Therefore,
w ≥ Cavuv,Q . On the other hand, if q = ∑L

i=1 αi qi where
∑L

i=1 αi = 1, qi ∈
�, αi ≥ 0, i = 1, . . . , L , then by concavity of Cavuv,Q we have Cavuv,Q(q) ≥∑L

i=1 αi Cavuv,Q(qi ) ≥ ∑L
i=1 αi uv,Q(qi ). It follows that w ≤ Cavuv,Q . Finally,

it is enough to consider convex combinations of no more than n + 1 elements by
the Caratheodory theorem. 	


The following lemma implies Proposition 1(i).

Lemma 3 The following three conditions are equivalent:

1. core(v, Q) is non-empty.
2. SSav(Q) = v(Q).

3. Cavuv,Q

(
Q

|Q|
)

= v(Q)
|Q| .

Proof (1) ⇒ (2) Let x ∈ core(v, Q) and assume that the equation
∑L

j=1 λ j c j =
Q holds, where c j ∈ F(Q), and λ j ≥ 0, j = 1, . . . , L . Then v(Q) = x Q =
∑L

j=1 λ j xc j ≥ ∑L
j=1 λ jv(c j ). Therefore, v(Q) = SSav(Q).

(2) ⇒ (3) This is a consequence of Lemma 2. Indeed, since v(Q) = SSav(Q),
it follows that if

∑L
j=1 α j (c j/|c j |) = (Q/|Q|), where c j ∈ F(Q), α j ≥ 0,

j = 1, . . . , L and
∑L

j=1 α j = 1, then
∑L

j=1 α j (v(c j )/|c j |) ≤ (v(Q)/|Q|). This

implies that
∑n+1

i=1 αi uv,Q(qi ) ≤ (v(Q)/|Q|) whenever
∑n+1

i=1 αi qi = (Q/|Q|)
and

∑n+1
i=1 αi = 1, αi ≥ 0, qi ∈ �, i = 1, . . . , n + 1. By Lemma 2 we get that

Cavuv,Q(Q/|Q|) = (v(Q)/|Q|).
(3) ⇒ (1)Cavuv,Q is concave over �. Let x ∈ IRn be a supporting hyper-

plane for Cavuv,Q at the point (Q/|Q|). Then x(Q/|Q|) = Cavuv,Q(Q/|Q|) =
(v(Q)/|Q|), so x Q = v(Q). Also, for every coalition d , xd = |d|x(d/|d|) ≥
|d|Cavuv,Q(d/|d|) ≥ |d|uv,Q(d/|d|) ≥ |d|(v(d)/|d|) = v(d). Therefore, x ∈
core(v, Q). 	


Part (ii) of Proposition 1 follows immediately from part (i). 	


6.2 Some properties of the Sa and SSa operators

Lemma 4 Let v, v′ be two bounded functions on F(Q) with v(0) = v′(0) = 0.
Then

(1) v ≤ Sav.
(2) If v ≤ v′ then Sav ≤ Sav′.
(3) Sav is SA on F(Q).
(4) Sav = SaSav.
(5) The infimum of any family of SA functions is SA.
(6) Sav = inf{g; g ≥ v and g is SA}.
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Lemma 5 Let v, v′ be two bounded functions on F(Q) with v(0) = v′(0) = 0.
Then

(1) v ≤ SSav.
(2) If v ≤ v′ then SSav ≤ SSav′.
(3) SSav is SSA on F(Q).
(4) SSav = SSaSSav.
(5) The infimum of any family of SSA functions is SSA.
(6) SSav = inf{g; g ≥ v and g is SSA}.
The proof of Lemma 4 is similar to that of Lemma 5 and is therefore omitted.

Proof of Lemma 5 (1) and (2) are clear. As for (3), fix c ∈ F(Q) and assume that the
equation

∑L
j=1 λ j c j = c holds where λ j ≥ 0 and c j ∈ F(c), j = 1, . . . , L . Let

ε > 0. By the definition of SSav, for any j = 1, . . . , L , there exist c j1, . . . , c jK j
∈

F(c j ) and non-negative numbers α j1, . . . , α jK j
such that

∑K j
i=1 α ji c ji = c j and

∑K j
i=1 α ji v(c ji ) ≥ SSav(c j ) −

(
ε
/∑L

j=1 λ j

)
. It follows that,

L∑

j=1

λ j SSav(c j ) ≤
L∑

j=1

λ j

⎛

⎝
K j∑

i=1

α ji v(c ji ) + ε
∑L

j=1 λ j

⎞

⎠

= ε +
L∑

j=1

K j∑

i=1

λ jα ji v(c ji ) ≤ ε + SSav(c).

The last inequality is due to the fact that
∑L

j=1
∑K j

i=1 λ jα ji c ji = c. Since ε > 0 is
arbitrary we have (Bondareva 1962).

(4) follows from (3). To prove (5), let {gα}α∈I be a family of SSA functions
and define w = infα∈I gα . Assume that the equation

∑L
j=1 λ j c j = c holds where

λ j ≥ 0 and c j ∈ F(c), j = 1, . . . , L . Then for some fixed α̃ ∈ I, gα̃(c) ≥
infα∈I

∑L
j=1 λ j gα(c j ) ≥ ∑L

j=1 λ jw(c j ). Since this is true for every α̃, we get

that w(c) ≥ ∑L
j=1 λ jw(c j ), so w is SSA.

(6) follows from the previous claims. Indeed, denote w = inf{g; g ≥ v and
g is SSA}. By (3), SSav is SSA on F(Q) and by (1) it is above v. Therefore,
w ≤ SSav. On the other hand, if g is above v then by (2) SSag ≥ SSav. If g is
also SSA, then g = SSag ≥ SSav. Since this is true for every such g, it follows
that w ≥ SSav so w = SSav. 	


References

Aubin, J.P.: Mathematical methods of games and economic theory. Amsterdam: North-Holland,
1979

Aubin, J.P.: Cooperative fuzzy games. Math Operat Res 6, 1–13 (1981)
Bondareva, O.: The theory of the core in an n-person game (in Russian). Vestn Leningr Univ 13,

141–142 (1962)
Branzei, R., Dimitrov, D., Tijs, S.: Convex fuzzy games and participation monotonic allocation

schemes. Fuzzy Sets Syst 139, 267–281 (2003)



342 Y. Azrieli and E. Lehrer

Butnariu, D.: Stability and Shapley value for an n-persons fuzzy game. Fuzzy Sets Syst 4, 63–72
(1980)

Laraki, R.: On the regularity of the convexification operator on a compact set. J Convex Anal 11,
209–234 (2004)

Moulin, H.: Axioms of cooperative decision making, pp 98–102. Cambridge: Cambridge uni-
versity press, 1988

Shapley, L.S.: On balanced sets and cores. Naval Res Logist Q 14, 453–460 (1967)
Shapley, L.S., Shubik, M.: On market games. J Econ Theory 1, 9–25 (1969)
Sharkey, W.W., Telser, L.G.: Supportable cost functions for the multiproduct firm. J Econ Theory

18, 23–37 (1978)
Telser, L.G.: Economic theory and the core. Chicago: The university of Chicago press, 1978


