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Abstract

Consider an agent who faces a sequential decision problem. At each stage the agent
Žtakes an action and observes a stochastic outcome e.g., daily prices, weather conditions,

.opponents’ actions in a repeated game, etc. . The agent’s stage-utility depends on his action,
the observed outcome and on previous outcomes. We assume the agent is Bayesian and is
endowed with a subjective belief over the distribution of outcomes. The agent’s initial
belief is typically inaccurate. Therefore, his subjectively optimal strategy is initially
suboptimal. As time passes information about the true dynamics is accumulated and,
depending on the compatibility of the belief with respect to the truth, the agent may
eventually learn to optimize. We introduce the notion of relative entropy, which is a natural
adaptation of the entropy of a stochastic process to the subjective set-up. We present
conditions, expressed in terms of relative entropy, that determine whether the agent will
eventually learn to optimize. It is shown that low entropy yields asymptotic optimal
behavior. In addition, we present a notion of pointwise merging and link it with relative
entropy. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

Consider an agent holding a subjective belief over the distribution of an infinite
stream of outcomes. At each stage the agent chooses an action and receives a
payoff which depends on his action, the new outcome, and perhaps on all previous
outcomes. The agent updates his belief in a Bayesian manner any time he observes
a realized outcome. While the agent maximizes payoffs according to his belief, the
realized outcomes are chosen according to the unknown real distribution. Typi-
cally, the agent’s belief is inaccurate and his strategy is suboptimal. We say that
the agent learns to optimize if his subjectively optimal strategy becomes optimal in
the long run.

In many examples a subjective agent may never learn to optimize. In other
examples agents always learn and there are cases where agents may or may not
learn, depending on the specific realized sequence of outcomes. A fundamental
problem in the Bayesian learning literature is to identify conditions under which
learning occurs.

Ž .In an inspiring example, Blume and Easley 1992 consider a multi-stage
economy, governed by an unknown stationary stochastic process. Each agent has a

Ž .‘‘misspecified’’ model using their terminology . This means that the agents are
undecided between two possible models regarding the stochastic process. Blume
and Easley show that the logarithm of the likelihood ratio between a model’s
distribution and the true distribution, namely the relative entropy, is the critical
parameter in determining whether learning occurs. In this paper we show how
relative entropy is connected with learning to optimize in a more general context
than implied by the example of Blume and Easley.

For every possible string of outcomes we consider the sequence of likelihood
ratios between the agent’s belief and the truth. We use this sequence to define the
agent’s relative entropy. We show that if the relative entropy is close to zero, then,
in the long run, the payoff to a patient agent is almost equal to the payoff
generated by the true optimal strategy.

The link we use to connect optimality and entropy is the notion of merging of
Ž .opinions, originated in Blackwell and Dubins 1962 . This notion captures the idea

that a subjective belief becomes closer to the true distribution as sufficient data is
Ž . Ž .observed. Kalai and Lehrer 1994 and later Lehrer and Smorodinsky 1996

introduce weaker versions of merging. These papers take a global approach and
study the issue of merging on a set of full measure.

It turns out that the existing notions of merging are too strong for the
optimization results discussed here. For our purposes we need to extend the
merging concept in two ways. First, we introduce a pointwise notion of merging
which allows us to study learning and optimization on specific sequences of
outcomes. That is, such merging allows for learning to occur on some sequences
of outcome while for other sequences merging and optimization fail. Second, since

Žthe focus of the paper is on ´-optimization, we resort to approximate merging i.e.,
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convergence of the subjective belief to the truth up to an ´ , on most stages of the
sequential decision process, while allowing for possibly significant mistakes on

. 3other stages .
Merging is used as a link between entropy and optimality in the following

manner: First, it is shown that whenever the relative entropy is close to zero
approximate merging occurs. This, in turn, implies that the agent learns to
optimize. A connection between entropy and optimization, in a different spirit, has

Ž .been obtained by Sandroni 1996 . He studies a model of asset pricing, similar to
Ž .the well known ‘‘Fruit Tree’’ model of Lucas 1978 . In Sandroni’s model the

agents are endowed with a subjective belief over the distribution of future prices
and dividends. Sandroni ties down the agents’ relative entropy to the long-run
distribution of wealth. He shows that the agents with the least entropy are the only
ones who remain in the market in the long-run.

As in other fields, the notion of relative entropy measures randomness and
disorder. Clausis introduced entropy into thermodynamics in 1854. Later, Shannon
Ž .1948 made use of it in Information Theory to measure the capacity of a

Ž .communication device. Kolmogorov 1958 carried it over to stochastic processes.
Our definition is a natural extension of Kolmogorov’s.

Entropy has been previously introduced into economic theory in a few studies.
Ž .Lehrer 1988 used it to measure the richness of the information available to a

Ž .boundedly rational player. Neyman and Okada 1996 used entropy as a measure-
Ž .ment of the complexity of a strategy, as did Bollt and Jones 1996 .

The paper is organized as follows. Section 2 provides motivating examples,
Section 3 introduces the definitions of relative entropy and pointwise merging and
establishes the linkage between relative entropy, merging and optimization. Proofs
are given in Section 4 and Section 5 concludes.

2. Motivating examples

In the first four examples we focus on the following decision problem.
Ž .Consider a decision maker denoted DM who takes, at every stage, one of three

actions, a, b or c and receives a payoff. For simplicity let us assume that there are
Ž . Ž .two states H and T and the payoffs are as follows: u a, H s3, u a,T s0,

Ž . Ž . Ž . Ž .u b, H su b,T s2, u c, H s0 and u c,T s3.
Nature tosses a fair coin at every round and chooses its state accordingly. In

Žother words, nature evolves according to an i.i.d. process typically, the state of

3 The motivation for studying merging of opinions in the last decade has been the game-theoretic
Ž . Ž .learning literature. Kalai and Lehrer 1993 and Nyarko 1994 , used the notion of merging to show

Ž .that rational learning entails convergence to equilibrium in a subjective set-up. Sandroni 1998b
Ž .studies merging and learning in finitely repeated games, and Lehrer and Smorodinsky 1997 broaden

the class of examples under which rational learning leads to equilibrium.
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.nature is stochastically determined by the history of previous realized states .
Obviously, the optimal strategy for an expected utility maximizer is to choose
action b, resulting in a payoff of 2.

The DM, not knowing the true distribution, has some initial subjective belief
regarding the future realizations. At each round he observes the realized state,
updates his belief in a Bayesian manner and takes a decision which maximizes his
Ž .subjective expected payoff.

In the first and third examples the relative entropy is not zero and the DM fails
to optimize even in the long run. In contrast, the relative entropy in the second and
the fourth examples is zero and indeed the DM learns to optimize.

Example 1. Assume that the DM believes that nature follows an i.i.d. process, but
instead of the real probabilities he attributes to H the probability 1r4 and to T the
probability 3r4. The DM will stay firm on his belief regardless of the observed
history, and will always take the inferior action c. It turns out that the subjective

Ž .belief, induced by 1r4, 3r4 , has a non-zero relative entropy with respect to the
Ž .real one, induced by 1r2, 1r2 .

Example 2. As in the previous example, the DM believes that nature follows an
i.i.d. process, but does not know the coin’s parameter. Suppose that out of
complete ignorance, the DM believes that the coin’s parameter is selected accord-

w xing to the uniform distribution over the interval 0,1 . This induces a probability
distribution over the set of all sequences consisting of H and T. After a while, the
DM will observe histories where the frequency of H is nearly 1r2. Therefore, the
posterior over the set of parameters will be concentrated around 1r2. As a result,
the DM will eventually take the superior action b. This phenomenon, as we shall
show, is explained by the zero relative entropy of the belief with respect to the
truth.

Example 3. The third situation we describe is similar to the example by Blume
Ž .and Easley 1992 , referred to in Section 1. Consider an agent which, as before,

Ž .believes that nature follows an i.i.d process i.e., uses a coin . The agent believes
that the parameter of the coin must be either 1r3 or 3r4, and puts some prior
probability p on the former and 1yp on the latter. The analysis of the long run
behavior is not straightforward. Does the agent’s belief converge to the mid-point
between the two coins, leading to optimal decisions? Does the agent swing back
and forth between the two extreme possibilities, or rather, does the belief converge
to one of the two parameters?

Blume and Easley show that the answer to this question can be given by
comparing the relatiÕe entropy of both coins with respect to the true one. Since
the relative entropy of the coin 1r3 is closer to zero than the relative entropy of

Ž .the coin 3r4, the DM will eventually believe with probability one in the former
Ž .possibility i.e., 1r3 inducing him to take the sub-optimal action a.
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Example 4. Suppose that for any finite history of length t, with m heads, the
2 tq 1 q3 ty m q3 m 4agent’s subjective probability is . We shall show in the sequel that

tq 14
Žthe relative entropy of this belief with respect to the truth the distribution induced

.by a fair coin is zero. Our main theorem will imply that the agent will actually
optimize in the long run.

In all the examples so far, we focused on standard sequential problems where
the payoff function is deterministic. Our last example demonstrates the possibility
of a stochastic payoff function, for which our results hold as well. In this example
the payoff at each stage depends not only on the current action and outcome, but
also on all previous outcomes.

Example 5. An agent facing a random walk on the integers has to decide at each
stage on an action, agA. Assume that at each stage the random walk either goes
one step right or left and that the agent’s stage payoff depends only on the random
walk’s location. That is, the stage payoff function is a function, u: A=N™R.
Here, the payoff function depends on the entire history of outcomes, yet the main
theorem still applies.

3. Model and results

In this section we provide a simple model of decision making under uncer-
tainty. We then introduce the notion of relative entropy of a subjective DM and
eventually, in our main theorem, we point out the connection between entropy and
optimality.

3.1. A model of sequential decision making

Let ts1,2,3, . . . denote time and let V be the finite set of nature’s possible
outcomes at time t. Let V N be the set of all infinite strings of outcomes, and
endow V N with the natural s-algebra, FF, generated by all finite cylinders. That

t Žis, let FF be the finite algebra generated by all finite strings in V the Cartesiant
. Ž ` . Ž .product of V with itself t times , and let FFss j FF . The event P v ists1 t t

the smallest event in FF that contains v. Denote by m the probability measure ont
Ž N . NV , FF according to which nature chooses vgV .

At time t, prior to the revelation of nature’s outcome v gV , an agent takest t

an action from a finite set A. The agent’s stage-payoff at time t, u , depends ont

the agent’s action, nature’s outcome at this time and on all previous outcomes. In

4 It is easy to show that this formula generates a well defined exchangeable distribution over
� 4NH, T .
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N Ž .other words, u : A=V ™R, such that u a,P is FF -measurable for any agA.t t t
� 4`Let us u denote the sequence of stage-payoff functions. The function u ist ts1

< Ž . <called M-bounded if u a,v -M for any vgV , tgN and agA. An agent’st

pure strategy prescribes an action to be taken at each stage t, given the relevant
information, i.e., all ty1 past actions and ty1 past outcomes. Formally, a pure

` Ž . ty1 Ž Ž .0strategy is a function f :j A=V ™A with A=V interpreted as thets1
.set containing the null history . Let S denote the set of all pure strategies.

We restrict the discussion to agents who are expected utility maximizers. For
Ž N . Ž < .any probability measure m on V , FF we denote by m P v , . . . ,v thet 1 ty1

Ž < .marginal on the t th coordinate of the conditional distribution m P v , . . . ,v .1 ty1
Ž .We say that fgS is m-optimal if f v , . . . ,v gargmax E1 ty1 ag A m ŽP < v , . . . ,v .t 1 ty1

Ž Ž ..u a,v , for all t and all vgV . In words, a strategy is m-optimal if itt

maximizes the expected utility under m. We use the notation f to denote anm

arbitrary m-optimal strategy.

3.2. Long-run payoffs

� 4` TGiven a sequence of stage payoffs, u , let U s1rTÝ u be the payofft ts1 T ts1 t

of the finite horizon decision problem, of length T. For an infinite horizon
Ž . ` tdecision problem let U s 1yr Ý r u be the discounted sum of payoffs.r ts1 t

For a fixed sequence of payoff function, u, we can think of U and U asT r

functions from S=V N into R.

3.3. SubjectiÕe optimization

In this paper we depart from the traditional approach to optimization, where
agents optimize with respect to the true distribution, m. We consider an agent
endowed with a subjective belief, m. Since the agent’s belief typically does not˜
coincide with the truth, an agent’s strategy might be initially suboptimal with
respect to m. However, as the agent accumulates information when more observa-
tions become available, he may learn to optimize. As illustrated in Example 1 this
is not necessarily the case.

Our goal in this paper is to identify conditions on the relation between the
belief and the truth that ensure optimality in the long run. In other words we seek
conditions under which the long run payoffs generated by f will be equal thosem

generated by f . We phrase these conditions solely in terms of the relative entropym̃

of the belief with respect to the truth.

3.4. Entropy and optimality

Relative entropy is defined to be the following random variable which depends
on likelihood ratios of the posteriors.
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Definition 1. The relatiÕe entropy of m with respect to m at v is 5˜

1 m P vŽ .Ž .˜ tm̃h v slim inf log ,Ž .m T m P vT™` Ž .Ž .t

where 0r0s0.

Remark 1. A straightforward corollary of Lemma 1 in Lehrer and Smorodinsky
m̃( ) Ž .1996 is that h v is m-almost eÕerywhere non-positiÕe.m

m̃Ž .Example 4 revisited. We calculate h v of Example 4 on the event consistingm

of the sequences where the asymptotic relative frequency of Heads is 1r2. Note
that the m-probability of this event is one.

T
T

2Tq1 Ty2 q3 q32

Tq14� 01
m̃h v slim inf logŽ .m TT 2T™`

T'1 1 1 3
slim inf log q .ž /T 2 2 2T™`

Therefore,

1 1
m̃h v Glim inf log s0.Ž .m T 2T™`

On the other hand,

'1 1 1 3
m̃h v Flim inf log q s0.Ž .m ž /T 2 2 2T™`

m̃Ž .We conclude that h v s0 m-a.e. Our main result asserts that if the relativem

entropy of the DM’s belief is close to zero, then his actual payoff is close to the
payoff generated by the true optimal strategy. That is, f generates a payoff closem̃

to the payoff generated by f .m

5 Ž .a In the definition we use lim inf as the limit need not necessarily exist. For further discussion
m̃Ž . Ž . Ž Ž .. Ž Ž ..see Section 5.3. b Note that h v is defined also in cases where m P v s0 and m P v )0,˜m t t

Ž Ž .. Ž Ž ..or when m P v )0 and m P v s0. In these cases the relative entropy may take the values˜t t

infinity or minus infinity.
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Our main result is the following.

Ž N .Theorem 1. For any pair of measures m and m on V , FF , any M)0 and˜
Ž .´)0 there exists d)0 and VgFF, m V G1y´ a stage T and a discount0

factor 1)r such that for any M-bounded payoff function u, any vgV , if0
m̃Ž . <( ) < Ž . Ž . < ( )h v )yd , then: a U f , v yU f ,v -´ for any T)T ; and bm T m T m 0˜

< Ž . Ž . <U f ,v yU f ,v -´ for any r)r .r m r m 0˜

3.5. Pointwise merging of opinions

In order to prove Theorem 1 we first introduce a variation of the notion of
Ž .merging of opinions. Next, we link this notion to entropy Proposition 1 and to

Ž .optimality Proposition 2 .
Ž .Blackwell and Dubins 1962 introduce the notion of merging of opinions as a

way to express long run accuracy of beliefs. This notion was weakened by Kalai
Ž . Ž .and Lehrer 1993 and later by Lehrer and Smorodinsky 1996 who use it to study

learning in games. 6 All these notions were global notions and referred to
phenomena occurring on a set of measure one. Here we use a similar idea which is
weaker than all its predecessors on the one hand, and is a point-wise notion on the

7Ž .other hand. For a subset M;N we use d M to denote the upper density of M.

Definition 2. We say that a measure m, h-merges to m on v if˜

< < < < <d t there exists B g FF m B FF v ym B FF v )h Fh .Ž . Ž .� 4Ž . Ž .˜tq1 t t

In other words, m h-merges to m if the accuracy of the one-step-ahead˜
forecasts, according to m, is accurate up to h on a large proportion of stages.˜

The first step towards establishing our result is to show the connection between
entropy and h-merging.

Proposition 1. Fix m and m. For eÕery h)0 exists d)0 and a set V gFF˜ 1
m̃Ž .with m-measure 1 such that for any vgV h v )yd implies m h-merges to˜1 m

m on v.

The second step establishes the connection of h-merging to optimal strategies.

6 Ž .Another reference connecting merging to learning in games is Sandroni 1998a .
7 Ž . < �� 4 < Ž .The upper density of M is d M slimsup M l 1, . . . ,t r t. The lower density of M is d M

t™`

< � 4 <sliminf M l 1, . . . ,t r t.
t™`
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Ž .Proposition 2. For any M)0 and ´)0 there exists hsh ´ , M )0, a set
Ž .V gFF, m V )1y´ , a time T and a discount factor 1)r )0, such that2 2 0 0

for any M-bounded payoff function u and any vgV , if m h-merges to m on v,˜2

then:
( ) < Ž . Ž . < ( ) < Ž . Ž . <a U f ,v yU f ,v -´ for any T)T ; and b U f ,v yU f ,v -´T m T m 0 r m r m˜ ˜
for any r)r .0

4. Proofs

In this section we provide proofs for Propositions 1 and 2. The main result
follows as a corollary.

Proof of Proposition 1. This proof uses techniques developed in Lehrer and
Ž . kŽ . � Ž < . Ž < .4Smorodinsky 1996 . Let l v smax m v FF , 1rkPm v FF . Denote,˜t t ty1 t ty1

kŽ . t Ž . Ž < . kŽ .Y v s log l v rm v FF . Note that Y v is bounded by k. Consider thet k t ty1 t
kŽ . kŽ . Ž k < .Ž . kvariable Z v sY v yE Y FF v . Since the variable Y is bounded, sot t t ty1 t

is the variable Zk. In particular the variance of Zk is finite for every t. Moreover,t t
Ž k < . Ž k k . Ž Ž k k < ..E Z FF s 0 and for every s - t E Z Z s E E Z Z FF st ty 1 t s t s ty1
Ž Ž k < . k . k kE E Z FF Z s0. Thus, Z and Z are uncorrelated and so strong law oft ty1 s t s

Žlarge numbers for uncorrelated variables applies see for instance, Feller, 1971, p.
. Ž .243 . Therefore, there exists an event D gFF with m D s1 such that for anyk k

v in Dk

t1
k k <Y v yE Y FF v ™0.Ž . Ž .Ž .Ý j j jy1t js1

` Ž .Let V sl D , obviously m V s1. We claim that the event V is the1 ks1 k 1 1

one referred to in the proposition. Suppose this is not true, then there exists h)0
i ` i m̃ iŽ . Ž . Ž .and a sequence of v gV such that h v sh v ™ 0 and m does˜is1 1 m i™`

not h-merge to m on v i. In other words for any i there is a set of integers
Ž . Ž Ž .. Ž .N i ;N satisfying d N i Gh and for any tgN i there exists an event

Ž .BsB t,i in FF satisfyingtq1

< < i < i <m B FF v ym B FF v )h .Ž . Ž .Ž . Ž .˜t t

Note that the complement of B satisfies the same inequality. Thus, we may
decompose both B and its complement to the atoms of FF in order to obtain,tq1

< < i < i <m P FF v ym P FF v )2h ,Ž . Ž .Ž . Ž .˜Ý tq1 t tq1 t
Ptq1

Ž < .Ž i.where the sum runs over all atoms P of FF . Since Ý m P FF v stq1 tq1 P tq1 ttq 1

Ž < .Ž i. < Ž < .Ž i. Ž < .Ž i. <Ý m P FF v one can split Ý m P FF v ym P FF v˜ ˜P tq1 t P tq1 t tq1 ttq 1 tq1

< Ž < .Ž i. Ž < .Ž i. <into two summations as follows. Ý m P FF v ym P FF v s˜P tq1 t tq1 ttq 1Xw Ž < .Ž i. Ž < .Ž i.x Yw Ž < .Ž i. Ž < .Ž i.xÝ m P FF v ym P FF v qÝ m P FF v ym P FF v˜ ˜tq1 t tq1 t tq1 t tq1 t
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Ž X. Ž < .Ž i.where the first summation Ý runs over all P of FF with m P FF vtq1 tq1 tq1 t
Ž < .Ž i. Ž Y .-m P FF v and the other S runs over all P of FF with˜ tq1 t tq1 tq1

Ž < .Ž i. Ž < .Ž i.m P FF v )m P FF v . Moreover, these two summations are equal.˜tq1 t tq1 t
kŽ i. Ž < .Ž i. < Ž < .Ž i. kŽ i. <As l v Fm P FF v , we obtain that Ý m P FF v yl v is˜t tq1 t P tq1 t ttq 1

Ž X.greater than or equal to the first summation Ý . Thus,

< < i k i <m P FF v yl v )h ; i ; tgN i .Ž . Ž . Ž .Ž .Ý tq1 t t
Ptq1

Ž . Ž .By part ii in Lemma 3 of Lehrer and Smorodinsky 1996 , there exists d)0
kŽ i. Žsuch that if Ý l v is sufficiently close to 1 which is guaranteed when k isP ttq 1

.large enough , then

k < iE Y FF v -yd ; tgN i .Ž . Ž .Ž .tq1 t

Now fix a ,b)0 such that

h h
yd q 1y aFyb-0.ž /2 2

Ž . Ž .Part i of Lemma 3 in Lehrer and Smorodinsky 1996 ensures that we can
choose k large enough to satisfy

k < iE Y FF v Fa ; i ; tgN.Ž .Ž .tq1 t

Ž . Ž .For each i extract an infinite sequence N i ;N i having the following two
Ž . Ž . <� < Ž .4 < Ž . Žproperties. a tgN i implies ll llF t, llgN i rtG hr2 . This is possible

Ž . . Ž . t kŽ i.since the upper density of N i is at least h . b 1rtÝ Y v Fjs1 j
t Ž k < .Ž i. Ž1rtÝ E Y FF v qbr2 This is possible due to the law of large num-js1 j ty1

.bers .
Ž .For tgN i the following then holds.

i t i t1 m P v 1 m v 1Ž . Ž .˜ ˜Ž .t j k ilog s log F Y vŽ .Ý Ý jiit t tm vm P v Ž .Ž .Ž . jt js1 js1

t1 b
k i<F E Y FF v qŽ .Ž .Ý j jy1t 2js1

1 1 b 1 h
F ydq aq Fy n PdÝ Ý ž /t t 2 t 2jFt jFt

Ž .jgN i Ž .jfN i

1 h b
q t 1y aqž /t 2 2

h h b b
syd q 1y aq Fy .ž /2 2 2 2
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Ž .Therefore, for any i and any tgN i

1 m P v i bŽ .˜ Ž .t
log Fy -0,it 2m P vŽ .Ž .t

Ž i.which in turn implies h v Fybr2 contradicting our hypothesis. B

Before turning to the proof of Proposition 2, we state some auxiliary definitions
and results.

Ž .Let D V denote the space of all probability measures over V . For every
Ž . Ž Ž .. Ž . Ž .pgD V , agA and u: A=V™R, let E u a sÝ p v u a, v and letp v g V

Ž Ž ..E smax E u ap ag A p

( ( ))Lemma 1. E u a and E are uniformly continuous, across all M-boundedp p

payoff functions, w.r.t. the sup-norm topology.

Ž Ž ..Proof. It is easily seen that for any fixed agA, E u a is uniformly continuous.p

Thus, E is uniformly continuous as a maximum of finitely many uniformlyp

continuous functions. B

The next claim we need is a trivial observation regarding sequences in R.

� 4 � 4Lemma 2. Let a and b be two infinite bounded sequences in R. For eÕeryn n
Ž . <´)0 there exists h )0 s.t. if N ;N satisfies d N )1yh and lim a1 1 1 1 ng N n1

<yb -h , thenn 1

N N1 1
lim a y b -´ .Ý Ýn nN Nns1 ns1

The proof of Lemma 2 is straightforward and is therefore omitted. We are now
ready to prove Proposition 2.

Ž . Ž . Ž .Proof of Proposition 2. b follows from a by standard arguments. To prove a
note that the strong law of large numbers implies that the following is satisfied
m-a.e.

T1
lim u f ,v yE u f s0Ž . Ž .Ž .Ý t m t m t mTT™` ts1

and

T1
lim u f ,v yE u f s0.Ž . Ž .Ž .Ý t m t m t m˜ ˜TT™` ts1
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So by Egoroff’s Theorem one can choose T large enough such that on a set1

BgFF of m-measure 1y´r2, if vgB and T)T , then1

T1
u f ,v yE u f -´r4 1Ž .Ž . Ž .Ž .Ý t m t m t mT ts1

and
T1

u f ,v yE u f -´r4. 2Ž .Ž . Ž .Ž .Ý t m t m t m˜ ˜T ts1

< Ž < .By Lemma 1, for any h )0 one can choose h such that sup m D FF1 D g FF ttq 1

Ž < . <ym D FF -h implies˜ t

< < < <E u f yE u f s E yE -h r2Ž . Ž .Ž . Ž .m t m m t m m m 1˜ ˜ ˜

and

< <E u f yE u f -h r2.Ž . Ž .Ž . Ž .m t m m t m 1˜ ˜ ˜

These inequalities yield

< <E u f yE u f -h .Ž . Ž .Ž . Ž .m t m m t m 1˜

Without loss of generality we can choose hFh . Therefore, if m h-merges to˜1
Ž .m on v there exists a sequence of stages N ;N s.t d N )1yhG1yh and1 1 1

for all tgN1

< <E u f yE u f -h .Ž . Ž .Ž . Ž .m t m m t m 1˜

� Ž Ž ..4`Now choose h small enough, such that the sequences E u f and1 m t m ts1
� Ž Ž ..4`E u f satisfy the conditions of Lemma 2 for ´r4. This impliesm t m ts1˜

T1
lim sup E u f yE u f -´r4.Ž . Ž .Ž . Ž .Ý m t m m t m̃Tt™` ts1

Ž .Again, by Egoroff’s theorem there exists CgFF with m C )1y´r2 and T2

such that for all T)T and all vgC m h-merges to m on v implies˜2

T1
E u f yE u f -´r2. 3Ž .Ž . Ž .Ž . Ž .Ý m t m m t m̃T ts1

Ž .Let V be the intersection of B and C. Obviously m V )1y´ . Let2 2
Ž . Ž . Ž . Ž .T smax T , T . By inequalities 1 , 2 and 3 we can deduce that for any0 1 2

vgV if m h-merges to m on v, then˜2

T1
< <U f ,v yU f ,v s u f ,v yu f ,vŽŽ . Ž .Ž . Ž .ÝT m T m t m t t m t˜ ˜T ts1

T1
F E u f yE u f q´r4q´r4Ž . Ž .Ž . Ž .Ý m t m m t m̃T ts1

F´r2q´r4q´r4s´ .
B
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Proof of Main Theorem. Let V be the intersection of the full measure set V of1

Proposition 1 and the set V of measure 1y´ of Proposition 2. Given ´)0 use2

Proposition 2 to find h such that h-merging will entail ´-optimality. Now by
Proposition 1 we can find the minimal entropy, d , which will ensure h-merging.

B

5. Final remarks

5.1. An alternatiÕe definition

Our main result connects relative entropy with optimization in a sequential
decision problem. The relative entropy we introduced is defined in terms of the
likelihood ratio of the belief and the truth. An alternative approach is to define the
entropy in terms of the expectation of the logarithm of the likelihood.

1 m P vŽ .Ž .˜ tm̃Ž .Formally, let e v s lim inf E log . Under standardm T™` m ž /T m P vŽ .Ž .t
m̃Ž .boundedness conditions the law of large numbers ensures that e v is m-almostm

m̃Ž .surely equal to h v , which implies that both definitions are essentially equiva-m

Ž . Ž .lent. Note that Blume and Easley 1992 and Sandroni 1996 use the latter
definition.

5.2. Day to day optimization

Another interesting issue is with regards to the day to day loss of utility
resulting from subjective optimization, when compared to objective optimization.
It turns out that our results imply that on almost all days the agent loses no more
than some ´ , providing that the entropy is close to zero. The formal statement is
given, without a proof, in the following theorem.

Proposition 3. For any ´)0 there exists d)0 such that with m-probability 1, if
m̃Ž .h v )yd , then the lower density of the set of stages, D, is at least 1y´ ,m

� < Ž Ž .. Ž Ž .. < 4where Ds t; E u f yE u f -´ .mŽP < v , . . . ,v . t m mŽP < v , . . . ,v . t m̃1 ty1 1 ty1

5.3. Existence of the limit

In the definition of relative entropy we used the limit inferior as the limit does
not exist in general. As the following example shows, even when both measures,
m and m, are stationary, the limit need not necessarily exist.˜

� 4NExample 6. Let Vs 0, 1 and m be the measure generated by a fair coin.
Construct m as follows. msÝ` p m , where m is generated by flipping a fair˜ ˜ ks1 k k k

coin t times and then repeating the same stream of t outcomes deterministicallyk k
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� 4time after time. The sequence t is chosen so that t y t ™` fast. Finally, thek kq1 k
� 4`probability vector p should satisfy p rÝ p™` fast. Note that for anyk ks1 k j) k j

k, m is stationary and, therefore, m is. When the observation at date ts t q1 is˜k k
Ž .different from that of date 1 this will happen infinitely often, m-a.e. one obtains

Ž . Ž . Ž . t Ž1rt log m P rm P f1rt log 0r 1r2 sy` The f sign comes from˜ t t
. Ž . Ž .p rÝ p™` . On the other hand, when ts t , 1rt log m P rm P f0 for˜k j) k j k t t

large enough k.

However, when m is stationary and m is Markovian of any order, the limit˜
Ž .exists see Lehrer and Smorodinsky, 1995 .
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