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Abstract

The primitive of the model is a partial order that indicates which
of two agents is more prosperous. This partial order depends on nu-
merical attributes that contain relevant data about the agents, such as
initial endowments, needs, etc. We give natural sufficient conditions
which ensure that this partial order can be represented linearly. A
linear representation implies the existence of an agent’s utility func-
tion that depends on his/her own situation as well as on that of others.

1The first version was entitle ”Well-Being Indices”.



1 Introduction

Individuals tend to compare themselves to others. Furthermore, they have a

sense of how well they do compared to their peer group. A certain salary is

considered high in one profession while considered low in another profession

(that may require just as much training). This is so, simply because a salary

is compared with other salaries within the same profession. In this paper

we deal with the issue of this ”relativeness”. The notion of relative utility is

defined and axiomatized.

Let a society consist of n agents. A vector x ∈ Rk represents the so-

ciety’s configuration. This vector contains relevant data about the agents

involved. It may contain agents’ salaries, needs, education, the resources of

the institutions the agents belong to, these institutions’ needs, etc.

The primitive of the model is a partial order %x called the prosperity

partial order, defined on the set of agents. The prosperity partial order

depends on the configuration x. i %x j is interpreted as ”agent i is more

prosperous than agent j”. This partial order represents the relative situation

of the agents with respect to their mates and may be either subjective, as in

the case when one compares her salary with the salaries of her peer group, or

objective, as in the following example. A foundation (like the NSF), receives

individual and group applications. These applications provide information

about the needs and endowments of the applicants under consideration. All

this information makes up the society configuration. By considering this

society configuration, the foundation ranks individuals and allocates funds

accordingly. The foundation in this case is external to the group of applicants

and, therefore, the induced partial order may be considered objective.

The main goal of the paper is to find natural conditions that ensure

that there exist vectors γi, one for each agent, such that i %x j if and only
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if 〈x, γi〉 ≥ 〈x, γj〉. The vectors γi are induced by the prosperity partial

order and they enable one to compare the utilities of different agents. When

〈x, γi〉 ≥ 〈x, γj〉, the relative utility of agent i is greater than that of agent j.

If such vectors exist, we say that % admits linear representation and 〈x, γi〉
is called the relative utility of agent i under the configuration x.

The vector γi represents the relative utility of agent i, which in turn takes

into consideration the endowments of all other agents. In this respect, the

utility of agent i is relative to the situations of other agents. (However, this

utility has meaning only when comparing the prosperity of different agents

induced by one configuration. The relative utility does not allow comparison

of the prosperity of one agent induced by different configurations.)

It turns out that the following axioms guarantee linear representation.

Axiom-CONV. For any two agents i, j, two society configurations x1, x2,

and two positive numbers, α1 and α2, if i Âx1 j (resp. i %x1 j) and i %x2 j,

then i Âα1x1+α2x2 j (resp. i %α1x1+α2x2 j).

Axiom-OPEN. For every x and every two agents i, j, if i Âx j, then

there exists a neighborhood of x, H, such that for every x′ ∈ H, i Âx′ j.

Axiom-ORDER. For every society configuration c, Âx is an order (de-

fined on the set of agents).

Axiom-RECIPROCITY. If there is a configuration x, where i Âx j,

then there is a configuration x′ such that i Âx′ j.

We say that a configuration x′ is insignificant for a group of agents G, if

adding x′ to any configuration x does not change the partial order Âx over

G (i.e., i Âx+x′ j if and only if i Âx j for every i and j in G).

Axiom-No TRIUMVIRATE. If there are at least four agents, then

there is no set of three agents G such that when x′ is insignificant for G, it

is also insignificant for all agents.

We show that if the partial order % satisfies CONV, OPEN, ORDER,

RECIPROCITY, and No TRIUMVIRATE, then % admits linear rep-
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resentation.

2 Relative utility

2.1 Prosperity partial orders

Let N = {1, ..., n} be the set of agents, and let the vector x = (x1, ..., xk) ∈ Rk

contain relevant data about the agents. This vector may contain data about

individual and institutional endowments, individual and group needs, etc.

Such a vector will be called a society configuration, or configuration in short.

The set of all possible configurations is called the configuration set and is

denoted by X.

We assume that for any vector x ∈ X, there exists a partial order Âx

defined on the set of agents N . This partial order will be referred to as a

prosperity partial order, or simply, prosperity order. We interpret i Âx j as

i being more prosperous than j when x is the society configuration.

Our goal is to transform the prosperity order to interpersonal comparable

utility functions.

2.2 A representation of a prosperity order

Definition 1 A function d : X −→ RN is a representation of Âx when

i Âx j if and only if d(x)i > d(x)j for every i and j.

It is clear that the order Âx has a representation if and only if for every

x ∈ x, Âx is a complete order.

Definition 2 When d : X −→ RN represents Âx, d(x)i is the relative

utility of agent i at x.
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Here the relative utility of agent i depends not only on his or her endow-

ments and needs, but also on those of other agents. Moreover, d(x)i and

d(x)j are comparable in the sense that when the utility of i, d(x)i, is greater

than that of j, d(x)j, agent i is indeed considered more prosperous than agent

j.

Note that d(·)i is not a utility function, and does not provide information

whether i is better off at the configuration x or at the configuration y. The

vector d(x) provides a ranking of the agents according to the prosperity order.

Definition 3 d : X −→ RN is a linear representation if for every i there

are vectors γi, i = 1, ..., n, in Rk such that d(x)i = 〈γi, x〉.
In words, d : X −→ RN is a linear representation if for each agent i there

is a vector γi, which represents the relative weights (negative or positive) of

the various components of the configuration, such that the dot product of x

and γi is equal to d(x)i.

Our goal is to identify a set of some natural properties of the partial order

Âx that characterize those having a linear representation.

3 Axiomatization

In all this discussion we confine ourselves to two types of configuration sets,

Rk and Rk
+, of the non-negative vectors. We introduce a few axioms that

characterize the prosperity orders that admit a linear representation. It turns

out that the axiomatization changes with the configuration set X. We start

with the case where there is no restriction over this set.

3.1 Full domain

In this subsection we provide a characterization of the prosperity partial

order that admits linear representation when a partial order Âx is defined

for every x ∈ Rk, that is, when X = Rk.
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Axiom-CONV. For any two agents i, j ∈ N , two configurations x1, x2,

and two positive numbers, α1 and α2, if i Âx1 j (resp. i %x1 j) and i %x2 j,

then i Â[α1x1+α2x2] j (resp. i %[α1x1+α2x2] j).

The axiom CONV states that if with respect to the vector x1, agent i is

considered more prosperous than agent j and with respect to the vector x2

agent i is considered more prosperous than or equally prosperous to agent

j, then in any positive linear combination of the two vectors, agent i is

considered more prosperous than agent j.

Define Rij (resp. Wij) to be the set of vectors c for which agent i is more

prosperous than agent j (resp. more prosperous than or equally prosper-

ous to agent j). CONV implies that both Rij and Wij are convex cones.

Furthermore, in any neighborhood of a point in Wij there is a point in Rij.

Axiom-OPEN. For every x and every two agents i, j, if i Âx j, then

there exists a neighborhood of x, H, such that for every x′ ∈ H, i Âx′ j.

The axiom OPEN states that if with respect to x, agent i is more pros-

perous than agent j, then so too is the situation when x is slightly perturbed.

OPEN implies that Rij is open. Let ` be an integer. Let 0 be a configuration

with all zero components.

` No Cycles Condition-`NCC. If there is an `×` matrix
(
rij

)
i,j∈N

such

that for every i, j ∈ N, rij ∈ Wij ∪{0}, and for every i ∈ N,
∑

j rij =
∑

j rji,

then rij 6∈ Rij for every i and j.

Note that if for every i, j ∈ N , (0, 0) /∈ Rij, then 2NCC is implied by the

fact that the sets Rij are induced by a partial order (since, Rij

⋂
Wji = ∅).

It turns out that the axioms CONV and OPEN together with the

nNCC are sufficient to characterize the prosperity orders that admit a linear

representation, as stated in the following theorem.

Theorem 1 A prosperity partial order has a linear representation if and

only if it satisfies the axioms CONV and OPEN together with the nNCC.
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Theorem 1 indicates in particular that nNCC, along with CONV and

OPEN, implies that the prosperity partial order can be extended to an order.

That is, any vector x actually induces an order on the set of agents. The

nNCC is strongly related to cycles and we elaborate on this in the sequel

(Chapters 4 and 7).

The no-cycle condition does not have a natural intuition and we therefore

suggest an alternative axiomatization. (The no-cycle condition will play a

major role in any case.)

Axiom-ORDER. For every configuration x, Âx is an order.

A prosperity partial order that satisfies ORDER is called a prosperity

order.

Lemma 1 3NCC implies ORDER.

Proof. Suppose to the contrary that there exist i1, i2, i3 such that r ∈
Wi1i2 ∩Wi2i3 ∩Wi3i1 , with at least one rij in its respective Rij. Set ri1i2 =

ri2i3 = ri3i1 = r. All other rij’s are set to zero. Thus,
∑

j ritj = ritit+1 =

r = rit+1it =
∑

j rjit (where 3 + 1 is understood here to be 1). This is a

contradiction to 3NCC.

As will be shown in Proposition 1 below, in the case of a full domain,

ORDER implies 3NCC.

Axiom-RECIPROCITY. If Rij is not empty, then neither is Rji.

RECIPROCITY states that if there is a vector x where the agent i is

more prosperous than agent j, then there is another vector where agent j is

more prosperous than agent i.

We say that a vector x′ is insignificant for a group of agents L if adding

x′ to any vector x does not change the partial order Âx over L (i.e., i Âx+x′ j

if and only if i Âx j for every i and j in L).

Axiom-No TRIUMVIRATE. If there are at least four agents, then

there is no set of three agents L such that when x′ is insignificant for L, it is

also insignificant for all other agents.
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When a difference of x′, added to a vector x, does not change the partial

order induced on L for any x, we say that x′ is insignificant for L. The

axiom No TRIUMVIRATE states that if there are at least four agents,

then there is no three-agent set L such that whenever x′ is insignificant for L,

a difference of x′ also does not affect the partial order over all agents. That

is, the partial orders Âx+x′ and Âx coincide.

Theorem 2 When No TRIUMVIRATE is satisfied, then a prosperity

partial order has a linear representation if and only if it satisfies the axioms

ORDER, CONV, OPEN and RECIPROCITY.

Notice that up to this point we dealt with partial orders induced by any

point in a Euclidean space (Rk in this case). If the partial order is induced

only by points in a subset of a Euclidean space (for instance, only by points

in the positive orthant), then RECIPROCITY is not sufficient. This case

is discussed in the next subsection.

3.2 Restricted domain

Here we discuss the case where the vectors x are in X+. It turns out that

Theorem 1 is valid here. That is, a prosperity partial order has a linear rep-

resentation if and only if it satisfies the axioms CONV and OPEN together

with the nNCC. However, Theorem 2 is not true.

Axiom-DIFF. If i Âx j, j %(x+d) i, j Âx′ m, m %(x′+d) j and m Âx′′ i,

then i 6%(x′′+d) m.

The intuition of DIFF is as follows. Suppose that the difference d trans-

forms agent i from being more prosperous than agent j in x to being less

prosperous than j in x+d. Thus, d is responsible for worsening the situation

of i compared to that of j. The same happens to j compared to m. That

is, j is more prosperous than m in x′, but turns out to be less prosperous

than m in x′ + d. DIFF requires that the same difference d cannot change
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the situation of m compared to that of i in the same manner. That is, if

m is more prosperous than i in x′′, then it is impossible that m will be less

prosperous than i in x′′ + d.

Note that in the case of a full domain, CONV and ORDER imply

DIFF. This is so because there is an order Â−d induced by the vector −d.

If DIFF is violated, i Â(x′′+d) m. By CONV, this implies that i Â−d j.

Otherwise, j Â(x+d)+(−d) i, which contradicts i Âx j. Similarly, j Â−d m and

m Â−d i. We obtained that the order Â−d is cyclic, which is a contradiction.

Axiom-HOPE. For every i, j ∈ N , Rij is not empty.

HOPE ensures that there is at least one vector c where agent i is more

prosperous than agent j.

Theorem 3 Suppose that a prosperity partial order satisfies HOPE and

No TRIUMVIRATE. It has a linear representation if and only if it sat-

isfies the axioms CONV, OPEN and DIFF.

Theorems 2 and 3 deal with cases where the No TRIUMVIRATE ax-

iom is satisfied. In the case of three agents only this axiom imposes no further

restriction and linear representation is ensured by the other axioms. The case

where No TRIUMVIRATE is not satisfied, which is the degenerate case,

needs in addition a requirement that is equivalent to NCC. We refer to the

degenerate case in the next chapter and prefer not to discuss it in the game

theoretical context.

The proofs need some duality results which are presented in the following

section.

4 Linear representation

In this section we present a general duality result that may also be applicable

in different contexts. We therefore prefer to make it independent of the
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current discussion. For this reason, we repeat some conditions and notation

that were mentioned before.

The analysis will be divided into two cases. In the first, every point in

a Euclidean space induces a partial order over a finite set. In the second

case, only points in the positive orthant induce a partial order. The next

subsection, though, applies to both cases.

4.1 The general set-up and some general results

Let E be either Rk or Rk
+ and let N be a finite set. Suppose that for any

y ∈ E there is a partial order Ây defined on the set N . For every i, j ∈ N

denote by Rij (resp. Wij) the set of all y ∈ E such that i Ây j (resp. i %y j).

Thus, Wij = E\Rji. We assume that Rij and Wij are convex cones and

that Rij is open (in the relative topology in E). Thus, Wij (which is the

complement of an open set) is closed.

Lemma 2 For every i, j ∈ N , if neither Rij nor Rji are empty, then 0 6∈ Rij.

Proof. If 0 ∈ Rij, then a neighborhood of 0 is in Rij and must intersect

Rji, which is a non-empty cone. This is a contradiction.

Define `NCC similarly to how it was defined in the previous section.

nNCC is also denoted as NCC.

In what follows we deal with points in subsets of Rnk. Vectors in Rnk

will be referred to as lists of n blocks, consisting of k coordinates each.

For every r ∈ Rk, i and j, denote by ϕ(r, i, j) the point in Rnk whose i-

th block is r, j-th block is −r and all other blocks are zeros. Let B =

conv{ϕ(r, i, j); i, j ∈ N, r ∈ Rk}. For any ε > 0, Uε denotes the set

conv{ϕ(r, i, j); i, j ∈ N, ‖r‖ < ε}. This is an open neighborhood of zero in

the relative topology of B.

For every pair i, j ∈ N let Wij be the subset of B defined as follows:

Wij = conv{ϕ(rij, i, j); rij ∈ Wij}. Set W = conv∪{Wij; i, j ∈ N}. Note
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that Wij is a closed convex cone for every i and j. Moreover, W is a closed

and convex cone as a convex hull of closed convex cones.

Lemma 3 If for every i and j, Wij + Rij ⊆ Rij and if NCC is satisfied,

then for every i, j ∈ N and rij ∈ Rij, ϕ(−rij, i, j) 6∈ W .

Proof. Suppose to the contrary that for some i, j ∈ N and sij ∈ Rij,

ϕ(−sij, i, j) ∈ W . Since all the Wij are convex cones, this means that there

are rij ∈ Wij ∪ {0} such that for every m 6∈ {i, j}, ∑
`(rm` − r`m) = 0.

Moreover,
∑

`(ri` − r`i) = −sij and
∑

`(rj` − r`j) = sij. However, if in the

last two equations, sij and −sij are transferred to the left side, we obtain

(since by assumption, rij + sij is in Rij) a contradiction to NCC.

Theorem 4 There are γ1, ..., γn such that Rij = {r; 〈r, γi〉 > 〈r, γj〉} for

every i and j if and only if for every i and j, Wij + Rij ⊆ Rij and NCC is

satisfied.

Remark 2 Note that if γ1, ..., γn satisfy the condition of Theorem 4, then

for every e ∈ Rk and a positive constant c, cγ1 + e, ..., cγn + e also satisfy it.

This is so because {r; 〈r, γi〉 > 〈r, γj〉} = {r; 〈r, cγi + e〉 > 〈r, cγj + e〉}.
Proof. Suppose that NCC is satisfied. We claim first that if R`m∪Rm` 6=

∅, then for every i, either Ri` ∪ R`i 6= ∅ or Rim ∪ Rmi 6= ∅. Otherwise, we

can assume that there is r ∈ R`m ∩W`i ∩Wi` ∩Wmi ∩Wim for some i. We

therefore obtain a cycle in %r, which contradicts (as in Lemma 1) NCC.

Fix now ` and m in N such that R`m∪Rm` 6= ∅. Assume that r ∈ R`m and

consider the set Y = conv(ϕ(−r, `, m) +Uε)∪ {0})\{0}. Y is the open cone

generated by ϕ(−r, `,m)+Uε. By Lemma 3,W∩(ϕ(−r, `, m)+Uε) = ∅. AsW
is a cone, W∩Y = ∅. Since, both Y and W are convex and since the relative

interior of Y is not empty, there is a separating vector γ(`m) in Rnk that has

the following separating property: infb∈Y〈b, γ(`m)〉 < 0 ≤ supa∈W〈a, γ(`m)〉
(see Rockafellar, 1970). Denote by γ

(`m)
i the i-th block of γ(`m). For any

rij ∈ Rij, we obtain 〈ϕ(rij, i, j), γ
(`m)〉 ≥ 0. Thus, 〈rij, γ

(`m)
i 〉 ≥ 〈rij, γ

(`m)
j 〉

for every i and j. We may assume (due to Remark 2, by subtracting, if
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necessary, γ
(`m)
` from all the blocks) that γ

(`m)
` = 0.

We show now that γ
(`m)
m − γ

(`m)
` = γ

(`m)
m 6= 0. Since, infb∈Y〈b, γ(`m)〉 < 0,

there is an i such that γ
(`m)
i 6= 0. By the previous observation, since R`m 6= ∅,

either R`i ∪ Ri` 6= ∅ or Rmi ∪ Rim 6= ∅. We assume that R`i ∪ Ri` 6= ∅. (The

case where Rmi ∪Rim 6= ∅ is treated similarly.)

Let s ∈ R`i ∪ Ri` be such that ||s|| < ε (there exists such s since

R`i ∪ Ri` is a cone). By the definition of Y both ϕ(−r, `, m) + ϕ(s, i, `) and

ϕ(−r, `,m) + ϕ(−s, i, `) are in Y . Thus, 〈ϕ(−r, `, m) + ϕ(s, i, `), γ(`m)〉 ≤ 0

and 〈ϕ(−r, `, m)+ϕ(−s, i, `), γ(`m)〉 ≤ 0. Hence, if we show that 〈ϕ(s, i, `), γ(`m)〉 6=
0, we show that 〈ϕ(−r, `, m), γ(`m)〉 6= 0, which proves the desired inequality,

γ
(`m)
m 6= 0.

Recall that s ∈ R`i ∪ Ri` and that γ
(`m)
i 6= 0. Suppose, by negation,

that 〈ϕ(s, i, `), γ(`m)〉, which is equal to 〈s, γ(`m)
i 〉 − 〈s, γ(`m)

` 〉 = 〈s, γ(`m)
i 〉, is

equal to 0. Since R`i ∪ Ri` is open, there is an open ball around s which is

in R`i ∪ Ri`. Thus, for all e in an open ball around 0, 〈s + e, γ
(`m)
i 〉 have

the same sign (due to the separation property). Thus, all have to be zero,

meaning that γ
(`m)
i = 0. This contradicts the choice of i (i.e., γ

(`m)
i 6= 0). We

conclude that 〈ϕ(r, i, `), γ(`m)〉 6= 0 and thus γ
(`m)
m 6= 0, as desired.

As in the previous argument, if there is r ∈ R`m∪Rm` such that 〈r, γ(`m)
m 〉 =

0, then γ
(`m)
m = 0. Therefore, for any r ∈ R`m, 〈r, γ(`m)

m 〉 < 0 and for any

r ∈ Rm`, 〈r, γ(`m)
m 〉 > 0.

This conclusion is true only for the pair ` and m. However, having the

same construction for any such pair and taking the summation (γ1, ..., γn) =∑
`m γ(`m) will give us the required separation property of the theorem. This

concludes the proof of the ”if” direction.

As for the inverse direction of the theorem, suppose now that there are

γ1, ..., γn that satisfy 〈r, γi〉 > 〈r, γj〉 if and only if r ∈ Rij. In order to

prove NCC, assume that there are rij ∈ Wij ∪ {0} such that for any j,∑
i rij =

∑
i rji. Thus,

∑
i〈rij, γi〉 −

∑
i〈rji, γi〉 = 0. Summing all these

equations over all j provides the following:
∑

ij rij(γi− γj) = 0. Thus, no rij
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is in Rij, which proves NCC. The fact that for every i and j, Wij+Rij ⊆ Rij,

is clearly implied.

The following corollary is a particular implication of Theorem 4 to the

case of three elements in N (3NCC).

Corollary 1 For every distinct i, j, m ∈ N there are γi, γj, γm such that for

every a, b ∈ {i, j, m}, Rab = {r; 〈r, γa〉 > 〈r, γb〉} if and only if

(a) rij − rji = rmi − rim = rjm − rmj, where rab ∈ Wab ∪ {0} for every a, b ∈
{i, j, m}, implies that none of rab is in Rab; and (b) for every a, b ∈ {i, j, m},
Wab + Rab ⊆ Rab.

Proof. For every distinct i, j, m ∈ N , 3NCC is precisely (a).

4.2 The domain is the entire Euclidean space

Suppose that E = Rk.

The following proposition states that when the domain is the entire Eu-

clidean space, then ORDER implies 3NCC.

Proposition 1 If for every y ∈ E, Ây is an order, then for every i, j, m ∈ N ,

rij−rji = rmi−rim = rjm−rmj, where rab ∈ Wab∪{0} for every a, b ∈ {i, j, m},
implies that none of rab is in the respective Rab.

Proof. Assume to the contrary that there are i, j, m ∈ N and rab ∈ Wab∪
{0}, some in the respective Rab, that satisfy rij−rji = rmi−rim = rjm−rmj.

Without loss of generality, rij ∈ Rij. Let z = rij − rji. The order %z is

defined.

The point z is not equal to zero because if z = 0, then either rij = rji 6= 0,

which is impossible since Rij ∩Wji = ∅, or rij = rji = 0, which contradicts

Lemma 2.

We claim that i Âz j. Since, rji ∈ Wji ∪ {0}, j %z i would imply, by

the convexity of Wji, that j %z+rji
i. However, z + rji = rij. Therefore,
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i Âz j. By similar arguments, using that z 6= 0, j %z m and m %z i. This

contradicts the fact that Âz is acyclic.

As in the previous chapter, we need here a condition similar to No TRI-

UMVIRATE (and we call it here by the same name). We say that x′ is

insignificant for a set of L ⊆ N , if for every x, the partial orders Âx+x′ and

Âx coincide over L. No TRIUMVIRATE is satisfied if whenever x′ is

insignificant for L, it is also insignificant for N .

Remark 3 Suppose that for every i and j, Wij +Rij ⊆ Rij. Furthermore,

assume that Rij 6= ∅ implies Rji 6= ∅. Then there is only one (up to multipli-

cation with a positive constant) vector that separates Rij and Rji whenever

these are not empty. We denote this vector by βij.

Example 1 In this example we show that when there is a triumvirate,

namely, all βij are on the same plane, then there may be a linear represen-

tation of any triplet of N , but there is no linear representation for the entire

set. Suppose that the dimension of the Euclidean space is 2. For any pair

i ∈ N attach a different vector γi in R2. These vectors induce an order for

any x ∈ R2, that is, these vectors induce the separations βij between Rij

and Rji. Slightly perturbing each of βij will retain the order, which means

retaining 3NCC, while spoiling the linear representation.

Lemma 4 Suppose that there is a unique βij that separates Rij and Rji.

Furthermore, suppose that for any triplet i, j,m, βij is linearly dependent

on βim and βjm. Then, No TRIUMVIRATE implies that if there are at

least four elements in N , then for every p ∈ N there are three elements in

N , called i, j, m, such that βpi, βpj, βpm are linearly independent.

Proof. No TRIUMVIRATE implies that the linear span of all βij’s

is of a dimension greater than 2. Since βij is linearly dependent on βim and

βjm for every triplet i, j, m, for every m, the vectors βmj, j ∈ N span the

same subspace: the one generated by all βij’s. In particular, for every p ∈ N
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there are i, j and m such that βpi, βpj and βpm are linearly independent, as

desired.

Let T = {i, j,m} ⊆ N be a triplet of agents. We say that T generates

γT
i , γT

j , γT
m such that for every a, b ∈ T , Rab = {r; 〈

r, γT
a

〉
>

〈
r, γT

b

〉}. Note

that if T generates γT
i , γT

j , γT
m it also generates CγT

i +v, CγT
j +v, and CγT

m+v

for every non-negative C and vector v. Let T = {i, j,m}, S = {i, j, t} be two

triplets of agents; T and S generate γi, γj, γm, γt if T generates γi, γj, γm and

S generates γi, γj, γt.

Lemma 5 Suppose that T = {i, j, m} and S = {i, j, t} generate

γi, γj, γm, γt. Furthermore, suppose that T ′ = {j, t, m} and S ′ = {i, t, m}
generate γ′i, γ

′
j, γ

′
m, γ′t. Then, either βim, βjm, βt,m are linearly dependent or

there exist v ∈ Rk and C ≥ 0 such that γi = Cγ′i + v, γj = Cγ′j + v, γm =

Cγ′m + v, γt = Cγ′t + v, meaning that T ′ and S ′ also generate γi, γj, γm, γt.

Proof. Due to the uniqueness of the β′s, γi−γm = C1(γ
′
i−γ′m), γm−γj =

C2(γ
′
m−γ′j), γj−γt = C3(γ

′
j−γ′t), γt−γi = C4(γ

′
t−γ′i), where C1, C2, C3, C4 >

0. Summing up the the four equations gives 0 = (C1 −C4)(γ
′
i − γ′m) + (C3 −

C2)(γ
′
j − γ′m) + (C4 − C3)(γ

′
t − γ′m). Thus, either βim, βjm, βtm are linearly

dependent or C1 = C2 = C3 = C4 = C 6= 0.

If the latter is true we obtain, γi−γm = C(γ′i−γ′m), γm−γj = C(γ′m−γ′j)),

γj − γt = C(γ′j − γ′t)) and γt− γi = C(γ′t− γ′i). Thus, Cγ′i− γi = Cγ′m− γm =

Cγ′j − γj = Cγ′t − γt. This proves the desired result.

Theorem 5 There are γ1, ..., γn such that for every i, j ∈ N , Rij =

{r; 〈r, γi〉 > 〈r, γj〉} if and only if (a) for every y ∈ E, Ây is an order;

(b) for every i and j, Wij + Rij ⊆ Rij; (c) Rij 6= ∅ implies Rji 6= ∅; and

(d) No TRIUMVIRATE.

Proof. The ”only if” direction is simple. As for the ”if” direction, by (a)

and (c) we may assume, without loss of generality, that Rij 6= ∅ for every

i and j. This is so because if Rij = ∅, then, by (c), Wij ∩ Wji = E and

therefore, due to (a), for any m, Rim = Rjm and Rmi = Rmj, and we can

deal with N\{j} rather than with N .
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In order to use Corollary 1, we need to verify that (a) and (b) of this

corollary hold. By Proposition 1, assumption (a) implies (a) of Corollary 1;

(b) of Corollary 1 is the same as assumption (b).

Now, by Corollary 1, for every subset S = {i, j, m} of N there are

γS
i , γS

j , γS
m such that for every a, b ∈ S, Rab = {r; 〈

r, γS
a

〉
>

〈
r, γS

b

〉}. In

particular, γS
i − γS

j separates Rij and Rji. By Remark 3, assumptions (b)

and (c) imply that there is only one (up to multiplication with a constant)

vector, denoted βij, that separates Rij and Rji. This means that if S ′ and S ′′

contain three elements each and i, j ∈ S∩S ′, then γS
i −γS

j = C(γS′
i −γS′

j ) for

some positive number C. Furthermore, for every triplet i, j, m, βij is linearly

dependent on βim and βjm, as in the hypothesis of Lemma 4.

Using (d), Lemma 4 ensures that there are four elements in N , say,

1, 2, 3, 4, such that β14, β24, β34 are linearly independent. Note that this in-

dependence implies other types of independence: that of (βij)j; j 6=i for every

i and of (βij)i; i6=j for every j.

We will show how this enables us to produce first γ4, using {1, 2, 3, 4},
and then γm, using {1, 2, 3, 4,m}. Finally, we will show that there is no

inconsistency, meaning that for every m and n in N , γn − γm = Cβmn,

C ≥ 0.

This will be done in three steps.

Step 1: creating γ4

Set T = {1, 2, 4} and S = {1, 2, 3}. S and T together generate γ1, γ2, γ3, γ4.

Similarly, T ′ = {2, 3, 4} and S ′ = {1, 3, 4} generate γ′1, γ
′
2, γ

′
3, γ

′
4. From

Lemma 5, since β14, β24, β34 are linearly independent, there exist v ∈ Rk

and C ∈ R such that γ1 = Cγ′1 +v, γ2 = Cγ′2 +v, γ3 = Cγ′3 +v, γ4 = Cγ′4 +v,

meaning that T ′ and S ′ also generate γ1, γ2, γ3, γ4. In particular we obtain

that for every distinct i and j, γi − γj = Cβij for some positive C.

Step 2: creating γm using 1, 2, 3, 4,m for every m > 4.

Suppose that γ1, γ2, γ3, γ4 are obtained from Step 1 and that m is greater

than 4.
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In order to construct γm, we first find a permutation of (1, 2, 3, 4), (i, j, k, t),

such that both {βij, βik, βim} and {βjm, βkm, βtm} are linearly independent.

We divide the proof that such a permutation exists into four cases.

Case 1: β1m depends on some β1i, i ∈ {2, 3, 4}. In this case {βij, βik, βi1} is

linearly independent (because, {β12, β13, β14} is independent). Furthermore,

{β1j, β1k, β1m} is linearly independent and so is {βjm, βkm, β1m}. Therefore,

(i, j, k, 1) is the desired permutation.

Case 2: β1m linearly depends on {β1i, β1j} for some i, j ∈ {2, 3, 4},
but does not depend on any β1j, j ∈ {2, 3, 4}. Denote by k the member

of {1, 2, 3, 4} \ {1, i, j}. Since {β12, β13, β14} is independent, {β1k, β1j, β1m}
is independent. Thus, {β1m, βkm, βjm} is also independent. Furthermore,

{β1i, β1k, β1m} is independent (otherwise, β1m depends on β1i, in contra-

diction to the assumption). Therefore, {βi1, βik, βim} is independent and

(i, 1, k, j) is the desired permutation.

Case 3: β1m is a linear combination of all {β12, β13, β14} and not of any

strict subset of it. In this case, both {β12, β13, β1m} and {β13, β14, β1m} are lin-

early independent. The first independence implies that {β21, β23, β2m} is lin-

early independent, while the second independence implies that {β1m, β3m, β4m}
is linearly independent. Thus, the permutation (2, 1, 3, 4) ensures the desired

claim.

Case 4: {β12, β13, β14, β1m} are linearly independent. Therefore, {β2m, β3m, β4m}
and {β12, β13, β1m} are independent. Thus, the permutation (1, 2, 3, 4) en-

sures the desired claim.

Second, we will use the independence of {βij, βik, βim} and {βjm, βkm, βtm}
to construct γm. Using the independence of {βij, βik, βim}, we construct

γ′i, γ
′
j, γ

′
k, γ

′
m as in step 1.

There exist a positive scalar C and a vector v such that γi = Cγ′i+v, γj =

Cγ′j + v. Normalizing all γ′i, γ
′
j, γ

′
k, γ

′
m by multiplying by C and adding v,

we obtain γi, γj, γ
′′
k , γm. Since βij and βik are independent, so are βjk and

βik. The fact that γ′i − γ′k ∈ span{βik}implies that γi − γ′′k ∈ span{βik}
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(normalization does not change it). The same argument holds for j and k.

Hence, γj − γ′′k ∈ span{βjk}. This implies that γ′′k is equal to γk.

Note that γm was constructed without using t. It is still left to show

that there is some positive scalar C that satisfies γt − γm = Cβtm. Since

βjm, βtm, βkm are linearly independent, they generate γ∗j , γ
∗
k, γ

∗
t , γ

∗
m (as in step

1). We can find a positive scalar C and a vector v such that γj = Cγ∗j + v,

and γk = Cγ∗k + v, in order to transform γ∗j , γ
∗
k, γ

∗
t , γ

∗
m to γj, γk, γ

∗∗
t , γ∗∗m .

Since {βjm, βkm, βtm} are independent, so are βjt and βkt. This implies that

γ∗∗t = γt. From the independence of βjm, βkm, it implies that γ∗∗m = γm. As

γ∗t − γ∗m = Cβtm for some C > 0, the same is true for γm − γt.

Step 3: For every m,n ∈ N, γm − γn = Cβmn, for some C ≥ 0.

γm and γn were created using {1, 2, 3, 4,m} and {1, 2, 3, 4, n}, respectively.

To see why γm−γn = Cβmn, for some C ≥ 0, we need to find i, j ∈ {1, 2, 3, 4}
such that βim, βjm, βnm are linearly independent. When such i and j are

found, βim, βjm, βnm can be used to produce γ∼i , γ∼j , γ∼m, γ∼n . Due to the in-

dependence of βim, βjm, and of βin, βjn we can normalize γ∼i , γ∼j , γ∼m, γ∼n to

γi, γj, γm, γn, thus proving that γm − γn = Cβmn, for some C ≥ 0.

It remains to show that such i, j can be found. If such i, j cannot be

found, then each of {β1m, β2m, βnm}, {β1m, β3m, βnm} and {β1m, β4m, βnm} is a

set of linearly dependent vectors. This means that both {β1m, β2m, β3m} and

{β1m, β2m, β4m} are linearly dependent. The first dependence implies that

{β1m, β12, β13} are dependent, and the second implies that {β1m, β12, β14} are

linearly dependent.

This may happen without a contradiction to the independence of {β12, β13, β14}
only if β1m and β12 are linearly dependent. In this case we can employ the de-

pendence of {β1m, β3m, βnm} and of {β1m, β4m, βnm} to show that {β1m, β3m, β4m}
are linearly dependent. The latter contradicts the independence of {β12, β13, β14}.
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4.3 The domain is the positive orthant

Suppose that E = Rk
+. In the previous case, where the domain was the entire

Rk, the fact that every Ây was an order implied that there was no trivial way

to obtain rij − rji = rmi − rim = rjm − rmj. However, this is not the case

when the domain is restricted, as illustrated by Example 2 below. Here, we

need additional conditions.

Definition 6 The set {Ây}y∈E of partial orders is extendable if there is a

system of orders {Ây}y∈Rk that agrees with the originals.

The following theorem is an immediate implication of Theorem 4.

Theorem 6 Suppose that No TRIUMVIRATE holds. There are

γ1, ..., γn such that for every i, j ∈ N , Rij = {y; 〈y, γi〉 > 〈y, γj〉} if and

only if (a) the system {Ây}y∈E of partial orders is extendable; (b) with re-

spect to the extension, for every i, j ∈ N , Wij + Rij ⊆ Rij; and (c) with

respect to the extension, Rij 6= ∅ implies Rji 6= ∅.
The subject of extendability is related to NCC and is discussed in Ap-

pendix A. It turns out that NCC implies that the set {Ây}y∈E of partial

orders is extendable and that (b) and (c) of Theorem 6 are satisfied.

Theorem 7 Suppose that Rij 6= ∅ for every i, j and No TRIUMVIRATE.

Then, there exist γ1, ..., γn such that for every i, j ∈ N , Rij = {y; 〈y, γi〉 >

〈y, γj〉} if and only if (a) for every i, j, m ∈ N , rij−rji = rmi−rim = rjm−rmj,

where rab ∈ Wab ∪ {0} for every a, b ∈ {i, j, m}, implies that none of rab is

in Rab; and (b) for every i, j ∈ N , Wij + Rij ⊆ Rij.

Proof. Suppose that (a) and (b) hold. These imply (a) and (b) of

Corollary 1 for any i, j and m. Thus, by Corollary 1, for every subset S =

{i, j, m} of N there are γS
i , γS

j , γS
m such that for every a, b ∈ S the fact that

r ∈ Rab implies
〈
r, γS

a

〉
>

〈
r, γS

b

〉
. Therefore, γS

i − γS
j separates Rij and Rji.

Assumption (b) guarantees that there is only one (up to multiplication with

a constant) vector that separates Rij and Rji. As in the proof of Theorem

5, it proves the desired assertion.
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The following example shows that the assumption that every Ây is an

order may not imply (a) of Theorem 7.

Example 2 Define R12 = {r ∈ R3
+; 〈r, (1, 2,−2)〉 > 0}, R13 = {r ∈

R3
+; 〈r, (2, 1,−6)〉 > 0} and R23 = {r ∈ R3

+; 〈r, (1, 2,−14)〉 > 0}. R12, R31

and R32 are defined similarly way with respective reversed strict inequalities.

It is easy to see that R21 $ R31 $ R32. Thus, every point in R3 induces

an order. Let, r12 = (0, 1.25, 1) ∈ R12 and r21 = (1, 0.25, 1) ∈ R21. Thus,

r12−r21 = (−1, 1, 0). Also, let r31 = (0, 5.75, 1) ∈ R31 and r13 = (1, 4.75, 1) ∈
R13. Hence, r31 − r13 = (−1, 1, 0). Finally, let r23 = (0, 7.25, 1) ∈ R23 and

r32 = (1, 6.25, 1) ∈ R32. Thus, r23 − r32 = (−1, 1, 0). This contradicts (a)

of Theorem 7. In particular this is a contradiction to 3NCC, which is a

necessary condition for linear representation. Therefore, this example does

not have a linear representation.

In R2
+ such an example is impossible. That is, if any point in R2

+ induces

an order, then 3NCC (or (a) of Theorem 7) is satisfied.

Proposition 2 If for every y ∈ E, Ây is an order, and if for every i, j, m ∈ N

there is a point s in the interior of E such that i ∼s j ∼s m, then for every

i, j, m ∈ N , rij− rji = rmi− rim = rjm− rmj, where rab ∈ Wab∪{0} for every

a, b ∈ {i, j, m}, implies that none of rab is in Rab.

Proof. Suppose to the contrary that there are i, j, m ∈ N and rab ∈
Wab ∪ {0}, with at least one in the respective Rab satisfying rij − rji =

rmi − rim = rjm − rmj = z. Without loss of generality, rij ∈ Rij. By

assumption, there is a point s in the interior of E such that i ∼s j ∼s m.

Consider the point s + tz, where t is a small number. If t is small enough,

the point s+ tz is still in E. As in the proof of Proposition 2 the order %s+tz

is cyclic, that is, i Âs+tz j %s+tz m %s+tz i.

This proposition implies the following theorem.

Theorem 8 Suppose that for every i, j,m ∈ N there is a point s in the inte-
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rior of E such that i ∼s j ∼s m. Suppose in addition that No TRIUMVI-

RATE holds. Then, there exist γ1, ..., γn such that for every i, j ∈ N ,

Rij = {y; 〈y, γi〉 > 〈y, γj〉} if (a) for every y ∈ E, Ây is an order; and (b)

for every i, j ∈ N , Wij + Rij ⊆ Rij.

Proof. Proposition 2 ensures, due to (a), that for every subset S =

{i, j, m} of N there are γS
i , γS

j , γS
m such that for every a, b ∈ S, Rab =

{r; 〈
r, γS

a

〉
>

〈
r, γS

b

〉}. Therefore, γS
i − γS

j separates Rij and Rji, when-

ever at least one of them is not empty. The uniqueness of the separation is

needed in order to finish the proof.

The fact that for every i, j, m ∈ N there is a point s in the interior of

E such that i ∼s j ∼s m, guarantees that for every i and j, if Rij 6= ∅,
then Rji 6= ∅. As in the proof of Theorem 5, we can assume without loss of

generality that Rij 6= ∅ for every i and j. The uniqueness of the separation,

again as in the proof of Theorem 5, is now guaranteed by (b). Due to No

TRIUMVIRATE all the triplets produce γ1, ..., γn that satisfy the desired

property.

The No TRIUMVIRATE is needed to extend the linear representation

of any case of three elements to a linear representation of the partial orders

over all N . In the case where No TRIUMVIRATE does not hold, there

are three elements in N that determine the orders of all other elements in

N . In this case, in order to extend the linear representation of any three

elements in N to all N , we need the NCC condition.

4.4 The connection to Gilboa and Schmeidler (2001)

Gilboa and Schmeidler (2001) resort to a similar duality structure in a differ-

ent context. In both discussions, vectors in a subset of the Euclidean space

define partial orders or orders over a finite set of elements. There, the vec-

tors, which are in the unit simplex of Rk
+ represent empirical distributions,

while here the vectors contain data about agents, such as needs, endowments
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etc. Moreover, while the finite set there is the set of alternatives, here it is

the set of agents.

Gilboa and Schmeidler (2001) always assume that each vector induces a

complete order on the finite set. They prove that if Rij are open and convex

cones, then an additional condition, the diversity axiom, ensures a linear

representation.

The diversity axiom requires that for every list a, b, c, d of distinct ele-

ments (here, of agents and there, of alternatives) there exists a vector, say,

x, such that a Âx b Âx c Âx d. This result is an implication of Theorem 8,

since the diversity axiom implies No TRIUMVIRATE and the fact that

for every triplet i, j and m there exists a point s in the interior of E that sat-

isfies i ∼s j ∼s m, as assumed by Theorem 8. The reason why the diversity

axiom implies No TRIUMVIRATE is that when the separating vectors

are all in the same two-dimensional plane, there may be at most 12 orders

of any four elements, while the diversity requires 4! orders.

No TRIUMVIRATE actually requires that there are four elements in

N whose respective separating vectors are not on the same plane. Thus, a

diversity axiom applied to only one set of four elements would be sufficient

(but not necessary). In fact, requiring 13 orders of the four instead of the

entire 24 would be sufficient to ensure No TRIUMVIRATE. Hence, the

axiom DIFF (which is anyway a necessary condition) and the existence of

13 orders of one set of four elements in N imply the existence of linear

representation.

Diversity of every three elements in N is sufficient to imply the assumption

of Theorem 8 (for every triplet i, j and m there exists a point s in the interior

of E that satisfies i ∼s j ∼s m). Hence, the diversity of every three elements,

the existence of 13 orders of one set of four elements in N and ORDER imply

the existence of linear representation.

In the case where all the separating vectors are in the same plane, we could

not find a more intuitive condition than NCC to ensure linear representation.
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5 The proofs of Theorems 1, 2 and 3

Proof of Theorem 1. This is an immediate implication of Theorem 4.

(Recall that in the previous chapter we assumed that Rij are all open and

convex cones, which are equivalent to OPEN and CONV.)

Proof of Theorem 2. This is an immediate implication of Theorem 5. Note

that (a) of Theorem 5 is equivalent to ORDER. Moreover, (b) of Theorem

5 is equivalent to RECIPROCITY. Finally, (c) of Theorem 5 and the

assumption regarding the fact that Rij are all open and convex cones are

equivalent to CONV.

Proof of Theorem 3. This is an immediate consequence of Theorem 7,

since DIFF implies (a) of the theorem.

6 Final comments

6.1 Refining the set of axioms

It appear that the RECIPROCITY axiom can be dispensed with, but we

were unable to show it. The idea of finding the desired separation vectors

should take the following direction. For every triplet, there is a triplet of

separating vectors, as ensured by Theorem 4 (the NCC is satisfied by three

elements). Thus the set of k separating vectors that separate three is non-

empty and, moreover, convex. The objective then is to show that these

convex sets (one for each triplet) have a non-empty intersection.

6.2 The NCC and extending the domain

Ashkenazi and Lehrer (2001) show that if for every vector in a subset of an

abstract vector space there exists a partial order that satisfies the NCC, then

an order can be defined on every vector in the vector space such that the

orders extend beyond the existing partial orders and the NCC is satisfied.
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It means, in particular, that the NCC enables one to extend partial orders

to complete orders without losing the no cycles condition.
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