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Abstract: We give a necessary and sufficient condition for the existence of a representation for a 
relation by a positive measure for the general case in which the relation is defined on any set of 
subsets of Q. 

1. Introduction 

The problem of describing the relations that are defined on an algebra of 
events, and can be represented by a probability measure, has been given a lot 
of attention: Kraft, Pratt and Seidenberg (1959), and Scott (1964), gave a 
characterization for the finite case. Savage (1954) gave a sufficient condition 
for a relation to be representable by a non-atomic measure. A full characteri- 
zation of the representable relations defined on a Boolean algebra has been 
given by Chateauneuf (1985). Such relations are representable if and only if 
they are well-bounded (WB), weakly Archimedian (WA), and perfectly 
separable (S). The proof is not constructive and is based on Fan’s theorem 
[Fan (1956)]. 

In some contexts we find relations defined on a certain collection of sets, 
not necessarily an algebra. Yaari (1987) in his essay on the dual utility theory 
discussed a relation defined on a set of random variables that attain values in 
the unit interval. These random variables are interpreted as lotteries which a 
decision maker might consider holding. Three of Yaari’s axioms are phrased 
in terms of accumulative distribution functions which correspond to the 
former random variables. An alternative set-up is, therefore, a relation 
defined on the set of the non-increasing right continuous functions, G, from 
the unit interval to itself, that satisfy G( 1) = 0. However, instead of consider- 
ing the functions G, we can consider the set of points enclosed between the 
axes and the graph of G: a(G) = {(x, t) 105 t 4 G(x)). Define a relation on these 
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sets by saying that a(G)>a(G’) if and only if G>G’. Notice that the 
collection of all a(G) do not form an algebra. It is only natural to ask: Under 
what conditions this preference can be represented by a probability measure? 

A decision maker might also face a situation where he should decide 
between leasing the portion A of a lot from time 0 to time t, and leasing the 
portion B from time 0 to time s. In this framework of time preferences the 
decision maker focuses only on alternatives of a certain sort: A x [0, t]. It is 
clear that these sets do not form an algebra, and it is still interesting to ask 
when these preferences are representable. 

As a consequence of a bounded rationality it might happen that a decision 
maker has preferences defined on some collection of events, not necessarily 
an algebra. Some events are not relevant, some demand time to compute and 
to consider. It seems natural and more realistic to get rid of the restricting 
assumption that a preference order is defined on an entire algebra. 

We give here two characterizations of all the representable relations 
defined on any set of events (not necessarily an algebra). The proofs are 
based on a separating theorem as well as on the fact that any continuous 
functional on L,(Q) (the set of all bounded functions of Sz endowed with the 
maximum norm) can be represented by a finitely additive measure. In the 
first characterization we do not use any separability assumption of the kind 
used by Debreu (1964). In the second one we do use it, and we utilize the 
dense denumerable set to phrase our condition. The first characterization 
along with the main arguments of the paper are given in section 2. Section 3 
is devoted to the second characterization. In this section we connect between 
Chateauneufs result and ours. We show that if an order satisfies (WB), (WA) 
and (S), then our conditions are also satisfied. Thereby, we provide another 
proof to Chateauneuf’s theorem. 

In section 4 we give two examples. Both examples present preferences on 
the collection of leasing alternatives: to lease the fraction A for t periods of 
time starting now (i.e., in the interval [O,t]). In the first example, we give a 
non-representable preference. The argument is simple and it is presented only 
to illustrate the role of characteristic functions and their norm. In the second 
example, we show how to employ our technique in order to obtain an 
extension of a given partial order to a complete order. 

Section 5 mentions an application of the main theorems to game theory. A 
coalition A is greater than coalition B if its value is greater than the value of 
B. This relation is representable by a probability measure p if and only if the 
characteristic function of the game u is given by a monotonic function f 
composite with the measure p, i.e., u=fo+ The result can be applied to 
games defined on an algebra of coalitions as well as to games defined on a 
general collection of coalitions. The latter is more natural in some political 
games. Due to ideological considerations it is reasonable to exclude some 
coalitions. For instance, the extremist parties in a parliament: the one from 
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the right and the one from the left will not form a coalition, but it may 
happen that each one will create a coalition with the center party. Therefore, 
in some cases it is more realistic to deal with a characteristic function defined 
on the plausible coalitions which do not necessarily form an algebra. 

In the last section we provide an explicit formula for the representing 
measure, in the non-atomic case, using the terms of the relation, k. 

2. The first characterization 

Let 52 be a set, and B a field of subsets of Q, and let 2 be a reflexive 
relation defined on a set d ~93. We will assume that sZk@. A strong 
relation > can be derived from 2 as follows. A>B (A, BE &) if AkB and 

not BkA. Define ~={(x~,x~)IA,BE~,A~B} and $={(x~,x~)) 
A, BE&‘, AkB}, where xc is the characteristic function of the set C. For any 
finite string G of elements of x(&)~, the set of pairs of characteristic functions 

of subsets in d, G = (k,,, xs,), kA2, ze2), . . . , km, xeJ define the number n(G) 
to be 

n(G)=maxI(l/m) ? (xA,(~)-xB,(4)I 
w i=l 

In words, the function X7= 1 (x~,(o)-x~,(w)) is the number of times w is 
included in Ats minus the number of times w is included in Bi’s. n(G) is the 
maxima1 number that the absolute value of this function attains divided by 
the number of elements in G. 

Let 9’ E x(&)~. Define 

n(9’)=inf{n(G)\G. is a finite string of elements of S’}. 

Notation 1. Let j,E R. Define $A to be the set {(x~+~.x~,x~)~(x~,x~)E~}= 

(%X0,0) +9. 

Definition 1. A positive finitely additive measure (PFAM) p defined on Q is 
a Y-‘-representation of 2 if 

(i) AkB~op(A)Zp(f% 
(ii) (x~,x~)E~‘~~(A)>~(B). 

Theorem 1. Let 9’ c 9; and let ,I= n(9’). 

If n(9’ u @A, = i > 0, then there is an W-representation of 2 by a PFAM. 

Proof. Define C=conv{X,--XeI(j(A,Xs)E~‘u~~}. We claim that 3,= 
n(~‘u~~}=inf,,,llgll~, where IIoII~ is the maximum norm. It is clear that 
inf,,, Ilglla 52. However, for any convex combination ~cq(xA,-xB,) in C and 
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for any e>O, we can find an e-close rational convex combination 

C (Pile) (XA~ - ~a;), where Bi are integers that sum up to the integer /. Notice 
that n(G) of the finite string G consisting of Bi times the pair (xAi,xBi) for any 
i is s-close t0 IICCli(XAi-XBi)Ijm. S ince E > 0 and the convex combination from 
C are both arbitrary, we get inf,n(G)sinf,,, [[gl),. The inlimum at the left 
side is taken over all the finite strings of elements from 9”‘~ @A which is 
exactly 1. Thus, J,=inf,,, (IgIl,, and our claim is established. 

Let ~={f~UQ)Illfl 5. <A}, the i-ball around the origin. D is open. 
Moreover, C and D are disjoint convex sets. Thus by the separating theorem 
[see Dunford and Schwartz (1958)], there is a continuous linear functional of 

L,(% x*, and a number q such that x*(c) 2 q for any c E C and x*(d) <q for 
any d ED. Since any continuous linear functional of L,(R) is defined by a 
PFAM, we conclude that there is a finitely additive measure, pO, such that 
inc dp,, 2 q >fnd dp,, for any c E C and d E D. The function 0 is included in D. 

Thus, O<q. It remains to show that pclo is positive. Otherwise there is a set 
BEG such that &B) ~0. For every i’<i the function A’xnms is included in 
D. Hence 

Thus, 

(1) 

As 2 is reflexive, (J&x~,x~) ES:-, and iGxrre C. Therefore, &,(s2) 24. Since 
n,,(B) < 0, this contradicts (1). 

We will prove now that p0 is a Y-representation of 2. Let AZ& Since 

(XA + AX~, Xs) E gi, XA + AXn- Xe E C. Therefore, s XA + Ai(n- xe dpO 2 q. Hence, 
pe(A)-p,,(B) Zq--&U,,(Q). In order to complete the proof that p0 satisfies (i) 
of Definition 1 it remains to show that q-,&(Q) 2 0. But for every jb’ < 3., 
;l’xne D. Thus ,?‘pa(W) <q, and therefore &(s2) 5 q. 

We will finish the proof by proving that for any (xA, x~)ER’, /l,,(A) - 
pa(B) > 0. However, if (xA, xs) E Y, then xA -_x~ E C. Therefore, &A) - 

&(B)=jXA-Xed&q>O. Q.E.D. 

Lemma 1. If .F is a union of subsets F-‘, ig N, the set of integers, such that 
for every i there exists an F-‘-representation of 2, then there is an 
F-representation of 2. 

Proof. Let pi be the F-‘-representation of 2. Set p =cz I 2-‘pi. ,U is a 
F-representation of 2, because for any (x~,xJEF there is an i such that 
(x~,xJER’. Thus, pi(B)-pi(B) is positive. Since ~j is an F-j-representation, 
pj(.4) -pj(B) is non-negative for all j#i. Hence, p(A) -p(B) is positive as a 
sum of non-negative summands and at least a positive one. 
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Theorem 2. Assume that F #@. There is an F-representation of 2 by a 
PFAM @ there is a sequence of subsets (Yi}i6N such that: 

(i) 9 is the union of {F’}; 
(ii) n(F-‘)=&>Ofor all iEN; 
(iii) n(f’ u &J = &. 

Proof. Assume first that there is an F-representation of 2, and that it is 
given by the PFAM p. Since 9 #a, ,u(n) >O. Thus, without loss of 
generality, we can assume that p(a)= 1. Define 9’= {(xA,xe) EFI~(A)- 
p(B)2 l/i]. We will prove that n(.F’)= l/i. Assume to the contrary that there 
is a finite string of elements from 9’, G =((x~,. xB,), . . j h,, xBJ such that 
((l/n) Cj”= 1 ~~,(a) - x~,(co) 1-c l/i for all w E Sz. 

Hence, (lli)~,(w)>~(lln)~~,.(o)-(lln)~X,,(w)I~((lln)CXA,(~)I-~(lln) 
cxB,(w)( =(lln)Cx,j(w)-(lln)~X,j(o). Thus, (fln)(Cx,,(o)-X,,(w))< 
l/iXJW). By integrating both sides with respect to p we get l/i< l/ip(s2), a 
contradiction. The same technique is applied to show that n(9--‘u #,,i) = l/i. 
The proof of the other direction is given by Theorem 1 and Lemma 
1. Q.E.D. 

Remark 1. By the proof of Theorem 2 it is clear that for the sequence {F’} 
it can be required that it is an increasing sequence, i.e., F--’ c pi+ ‘, 
i=l,2,.... 

Corollary 1. If s2 is finite then there is an F-representation of 2 by a 
PFAM iff 

n(F u.F”,,,)=n(9)>0. 

Proof. Since Q is finite, 9 is also finite. By Remark 1, one of the 6, should 
be 9 and the corollary follows. 

3. Alternative characterization 

3.1. Alternative characterization of preferences 

We will present here an alternative way to characterize the preferences that 
are presentable by PFAM. We will use here a separability axiom, used first 
by Debreu (1964) to characterize the preferences that are presentable by a 
utility measure. 

Definition 2. An order, 2, defined on d is separable (S) by a sequence 
{A,} c & tf for any B, CE& s.t. B>C there is an Ai which satisfies 
Bk Ai 2 C. To such a sequence we will call a dense sequence. 
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Let {Ai] be a dense sequence of the separable order 2. We can enlarge 
the sequence by adding the maximal element in d which is smaller than Ai if 
there exists such, and the minimal element in d which is greater than Ai if 
there is such. By doing so for any i we can get a maximal dense sequence {A;} 
which satisfies: if B>C (both are in &), then there are A, and Ajs.t.BkA,> 

Aj~C. 

Theorem 3. Let 2 be an order defined on &. 2 is presentable by a PFAM 
iff 2 is separable by a maximal dense sequence {Ai} with the following 
property: for any pair (Ai, AJ) s.t. A,>A, there exists a positive number uij 

which satisfies’ n((~~,, xA,) u S,,j) = Clij. 

Proof. Necessity. If 2 is representable by p then there is a maximal dense 
sequence {Ai}. Let clij=~(Ai)-CL(Aj) f or any Ai>Aj. By the proof of 
Theorem 2 we know that n(((X,,XB)Ip(A)-p(B)zaij) u $E,j)=aij. However, 
the left side is smaller than or equal to n((xAi, xAj) u gzzj), which is obviously 
smaller than or equal to aii. Therefore, 

4(x.+ XA~) U sEz,)=aij>O. 

Sufficiency. For a fixed i and j, let C =conv({X,,, -xAj} u gaXj). By the 
assumption 0 < aij =inf_, llgll. Define D as the open ball with radius c(ij 
around the origin. We can separate by a PFAM, say pij, between C and D. 

By a similar argument that in the proof of Theorem 1, we infer that pij is 
non-negative. Moreover, pij is a (xAi,xA,)-representation. Since {Aj) is a 
maximal dense sequence, any positive combination of all pij is a 
F-representation. 

Remark 2. The condition in the previous theorem can be written down 
without utilizing the maximal dense sequence. We can say that 2 is 
representable by a PFAM iff 2 is separable and if for any A>B (in &) 
there exists a positive number q(A, B) which satisfies: n((xA,xB) u grlcAJ= 
q(A, B). This formulation is similar to that presented in Chateauneuf (198.5). 

3.2. Another proof of Chateauneufs theorem 

We will use the notation and terminology used by Chateauneuf (1985). We 
will assume that 2 is defined on all the algebra g. 

Definition 3. We say that an order 2 is weakly Archimedian (WA) if for any 
A>B, A,BEL%, there exists a positive integer n(A,B) such that 

‘We identify a singleton with its single element. 
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(2) 

where k, n, ) II are integers, and CikDi for all in I implies 

k/n > l/n( A, B). (3) 

In words, in any rational convex combination of functions xc, --xD, and 
xA - xe which is equal to xn the coefficient of x,_, - xe is bounded by n( A, B). 

Definition 4. The order 2 is well bounded (WB) if any C E 99 satisfies 
QkCk@ and !+a. 

Proposition 1. Let 2 be a (WB) order defined on @ and let A>B. If’ k is 

(WA), then n((xA, xs) u #,J = yl, where 4 = l/n(A, B). 

Proof. See appendix. 

Now we are ready to prove Chateauneuf’s theorem: 

Theorem 4 [see Chateauneuf (1985)]. An order 2 is representable by PFAM 
iffit is (WB), (WA), and (S). 

Proof. We will prove sufficiency. Assume that 2 satisfies all the conditions. 
Take a maximal dense sequence {Ai}. BY Proposition 1 

n((xA,T h,) u 9 I,n,A,. A,j) = l/n( Ai, Aj) for every Ai> Aj. Therefore, Theorem 3’s 
conditions are satisfied. Thus, 2 is representable by a PFAM. 

4. Two examples 

In the following examples we have a situation described as follows. A lot 
owned by a lessor is offered to a lessee for holding t periods of time. Not 
only the entire lot 1 is offered (say, the unit interval), but also its parts. The 
potential lessee should decide on the combination (A, t), i.e., the portion A of 
the lot to be held on lease from time 0 to time t, that he wants to hold. 

Formally, we have a preference relation defined on the collection 
d= {(A, t)= A x [0, t]} and not on an entire algebra. For the sake of 
simplicity we will say that t E [0, I]. The first example demonstrates the role 
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of the characteristic function and not the power of the theorems. The second 
example exhibits how to extend the domain of a partial order, and it utilizes 
the technique formerly presented. 

Example 1. Consider a case where only four offers are available: (I, l), (A, t), 
(A, s), and (B, t), where A $ B and t<s. The preferences of the lessee are given 
by: (I, 1) is strictly preferred over any other offer, (B, t)>(A, t) and all other 
pairs of offers are equivalent. Is this order, >, representable? The answer is, 
No. A simple calculation shows that n(F)= l/2. We will prove that 
n(9 u #rJ< l/2. By Corollary 1 it implies that the order, >, is not 
representable. 

(X&I), %a,0 
are in $I,2. 

)) ~9 and both (0.5~, 1) + ~~~~~~~ x(~,~)) and (0.5~~~. 1I +x(~.+ x(,& 
Thus, the norm of the function f = (1 -cc - fi) (xcB, t) -xcaJ + 

40.5X,, 1) +X(A,s, -X@I,rJ +B(O.5&& 1) +x~~,~)--x~~,~J is at least n(9 uR_,,,) for 
all non-negative a and p satisfying c( + b s 1. However, if, for instance, 
o[=/I=1/3, then f is equal to l/3. Thus, 1/3=~~f~~~n(9~$r,~), and the 
order > is not representable. 

Example 2. We will define a partial order on the collection {(A, t)} and we 
will see that by using our technique we can extend it to be a complete order. 
Let {pi} be an increasing (yi+ 1 refines 9J sequence of finite partitions of I’. 
Divide any pi into two sets of atoms: oPi and gi in such a way that any 
atom C of ail 1 intersects u di. Precisely, pi= di u Bi, di n Bi = 0, and 
for any C eyi_ 1 there is a /zr # C’EJZ!~~.~. C’ E C. In words, a certain part of 

C is missing in pi. Define now a partial order. Say that (B,s)>(A, t) if (1) 
xcB,sJ is pi_ 1 measurable and (2) (A, t) is a union of atoms from gi. In other 
words, (B,s) is a union of atoms from pi- 1, and (A, t) is a union of atoms 
from pi, and thus there exists a non-void set C, such that C c (B, s)\(A, t). 
The question is whether this partial order can be extended to all the 
measurable sets of 12. The answer is, Yes. 

Define pi = {((B, 4, (A, t)) IxtB,sj is pi measurable and (B,s)>(A, t)}. Notice 
that in the definition of the partial order, >, we made sure (by missing a 
part of the pi-atoms in gi+r) that if (B,s) is a union of 9i-atoms it 
cannot be covered by the union of all those sets (A, t) that are less preferred 
than it. For any (x~~,~),x~~,~))E@ there exists an atom C~9’~‘s.t. Cc(B,s)\ 
(A, t). Thus, for any finite string of length /, of elements from S’, 

G=(ks,,sj,, x~a,,t,,))j”= 1, there exists an atom C~g~+r s.t. I(j(C c(Bj,sj)\ 
(Aj, tj)} 12 d/lPi( ( =/ divided by the number of atoms in pi). Therefore, 
2 =n(B’) 2 l/(9i( > 0. Define 3 = Uyi. In the same fashion it can be 
confirmed that I = n(9-’ u $J. 

By applying our technique one can get a PFAM pi s.t. for any j and 

(x~~,~), x(~,~)) in F:‘, pi( B, s) 2 pi( A, t) with strict inequality whenever j = i. Any 
positive convex combination of pi, say p, is an $-presentation. The last step 
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is to extend the partial order > by using the measure p, and saying that 
D> D’ (both are measurable sets in Z2) if p(D) > ,u(D’). 

5. Application to game theory 

A game in coalitional form is a triple (@a, u), where Sz is the set of 
players, B is a set of subsets of 52 (a set in B is called coalition), and v is a 
function v:B -+ IR, where v(D) =O. Theorems 2 and 3 give two characteriza- 
tions of those games which can be written as v = f op, where f is a 
monotonic function. We can define an order 2 on the set @ as follows: 
SkT if o(S)~u(T). If p represents this order, then the function p(S) -u(S) is 
monotonic on the range of p. 

An interesting case is the case where 1521~ cc, and B = 2: Here we can 
apply Corollary 1. 

6. An explicit formula for the measure 

In this part we also use the maximum norm of functions that are averages 
of characteristic functions. This number was used first by Kelly (1959) who 
characterized those algebras rz4 such that there exists a measure TV defined on 
d that satisfies ,u(A) >O for every A E&‘. A variation of the same number 
was used also by Einy and Lehrer (1989) who applied it to cooperative game 
theory. 

Savage’s Theorem [Savage (1954)] characterizes those relations on an 
algebra of subsets which can be represented by a non-atomic probability 
measure. We provide here an explicit formula for this measure given the 
weak relation, 2, defined on an algebra JZ! of subsets of 52. 

Notation. Let A E&‘. Denote 

where the infimum is taken over all d = {A,, . . . , A, ( Aik A for all i). In words, 

for any 8 as above, j\CAER~Al\n is the maximal number of sets from & that 
have a non-void intersection. The following theorem states that if p(A) is a 
non-atomic probability measure that represents 2, then &A) is equal to 
o(A), which is the intimum over all the b’s of the relative maximal number of 
sets from d which have non-void intersection. 

Theorem 5. Let 2 be a complete relation defined on the algebra d of 
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subsets of 52. which has a representation by the non-atomic probability measure 

p. Then, p(A) = o(A). 

A simple and known corollary is the following: 

Corollary 2 [Savage (1954)]. If k has a representation by a non-atomic 
probability measure, then this measure is unique. 

Proof of the Theorem 5. Let p be a non-atomic measure that represents 2, 
and let A EL&. If p(A) is a rational number, say p(A)= p/q5 1, then divide 52 
into q pairwise disjoint subsets B,, . . . , B,, each of which with probability l/q. 

It can be done because p is non-atomic. Define Ai = Bi u. 1. u Bi+ p- 1, where 

if i + p > q then i + p represents i +p (mod q), and let 

&={A,,...,A,}. 

By the definition, Bi is contained only in Ai_p+ 1, Ai -p+2,. . . , Ai for every 
1 iilq. Thus, -- 

lll~J))CP=,x,,Il,=Plq. 

Therefore, a(A) sp(A) for all A whose measure p(A) is rational. Since n is a 
probability measure (in particular a positive measure), if CkB 1 A 
(A, B, C E d) then CkA. Therefore, the intimum is taken in the definition of 

a(A) over a broader collection than 
o(A)zi;(B). Thus, for all AC& if ,u(A) 
rational number which is greater than 
AE,d. 

in the definition of o(B). Hence, 
is irrational O(A) is less than any 
p(A). Therefore a(A) 5 p(A) for all 

In order to show that p(A)So(A) for all AE d, assume, to the contrary, 
that there is &={A,,...,A,IAikA for all i} so that 

<AA). 

Define the following two functions: 

f(d=1/(&‘1 i X/J4 and g(o) = ,dA)xdd. 
i=l 

By (4) we have 

f(w)<g(w) for all oEC2. 

(4) 

(5) 
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Integrate both sides of (5) with respect to p and get (since p represents 2): 

dA)5 llla( i PL(AiNP(AI 
i=l 

By this contradiction, we get o(A) =dA) as desired. Q.E.D. 

Appendix 

Proof of Proposition 1. Clearly, n((~~, xB) u gV) 2~. It remains to prove the 
inverse inequality. Take an arbitrary rational convex combination 

where a,, . . . , a,,,, p are positive rational numbers that sum up to 1. We have 
to show that Ilf\j 2 q. 

f<= 1 therefore g=j+(l -Ilf(()Xn also satisfies g 5 1. Since g is a step 
function, h=~~-g is also a step function. Thus, it can be written as a 
positive combination (not necessarily convex) of characteristic functions: 
h=~~zl yjxE., where yj are positive rational numbers. We conclude that 

~n=f+(l -flfIl)xQ+h. Hence, JJf/lXn=f+h=Ccci(YlXn+Xc,-_Xo,)+ 
C YjXE, + P(xA -xS). Thus. 

(Il.~((-YICZi)XR=CCli(XC,-XD,)+CYjXE,+B(XA-Xe). (A.11 

The latter is a combination allowed in (2), because Cik:Di and Ejk@ [recall 
that 2 is defined on 98 and it is (WB)]. 

Claim. ((fll-VCcci>O. 

Proof of the Claim. Otherwise, we can subtract (IJfJJ --~CC&~ from both 
sides and get, by renaming the sets and the coefficients, 0=c6,(xF,- I+) + 
p(xA -xs), where 6, are rational numbers and F,kH,. We can multiply all 
the coefficients by any positive number c. We can also add xrr to both sides 
to obtain: 

Since 5220 we can use (3) and deduce that cp< n(A, B). As B >O and c is an 
arbitrary positive number, we get a contradiction. This concludes the proof 
of the claim. 
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We return to (A.l) and use again (3) in order to infer that the coefficient of 

(xA -xB) which is P/(((f(( - c .) q 
we get llfll zq, as desired. 

c(, IS at most n(A,B)= l/q-. Since /I= 1 -Cai, 
Q.E.D. 
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