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Abstract: Using Kelley's intersection number (and a variant of it) we define two classes of simple 
games, the regular and the strongly regular games. We show that the strongly regular games are 
those in which the set of winning coalitions and the set of losing coalitions can be strictly separated 
by a finitely additive probability measure. This, in particular, provides a combinatorial characteriza- 
tion for the class of finite weighted majority games within the finite simple games. We also prove 
that regular games have some nice properties and show that the finite regular games are exactly 
those simple games which are uniquely determined by their counting vector. This, in particular, 
generalizes a result of Chow and Lapidot. 
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1 Introduction 

In this work we use Kelley's intersection number and a variant of it to define, com- 

binatorially, two classes of simple games, the regular and strongly regular games. In the 

case where the set of players is finite the class of strongly regular games coincides with 

the class of weighted majority games. This, in particular, gives us a combinatorial char- 

acterization for the finite weighted majority games within the finite simple games. In 

the general case the class of strongly regular games is a proper subset of the weighted 

majority games. The class of regular games have some nice properties which are pos- 

sessed by the weighted majority games. 
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In Section 2 we define the notions which are relevant to our work. In Section 3 

we show that the strongly regular games are those simple games in which the set of 

winning coalitions and the set of  losing coalitions can be strictly separated by a finitely 

additive probability measure. We also derive some corollaries from this result and 

discuss some examples. In Section 4 we show that regular games possess some proper- 

ties of  weighted majority games. In Section 5 we show that the finite regular games are 

exactly those games which are uniquely determined by their counting vector. This, 

in particular, generalizes a result of  Chow and Lapidot. 

2 Pre l iminar ies  

In this section we define the notions which are relevant to our work. 

Let I be a set and C be.an algebra of  subsets of / .  A simple game on (I, C) is a 

function v : C ~ (0, 1 } such taht v(O) =0 and v(/) = 1. The members of I are called 

players, the members of  C coalitions. If the set I of  players is finitel the game v is cal- 

led finite game. A simple game v on (1, C) is monotonic if v(S) >1 v (T)  for each S, T E C 

such that S D T. The dual of a simple game v is the simple game v*, where v*(S) = 

v(1) - v ( I -  S), for each S E C. v is constant sum if v* = v. Let v be a simple game on 

(I, C) and let z q~/. Denote by Co the smallest algebra which contains C U  {{z} }. 

The constant sum extension of v is the simple game Voon (1 U {z }, Co), where 

= l v(s) z Cs 
vo(S) 

[ v * ( S -  {z))  z ~ s. 

Note that v 0 is monotonic iff v is monotonic and v ~< v*. 

Let a be a finite sequence (or set) of  coalitions in C. We denote by [a[ the number 

of members in a and by m(o) the maximum number of  members in a with a non-empty 
n 

intersection. Note that if o = ($1, ..., Sn), then m(a) = [I ~ Xsill**. Let B c C. Define 
i=1 

m(t7) /m(o 
i(B) --- inf ( lo l l  I o in a finite subset of  B ", i*(B) = inf [ Iol I o is a finite sequence 

members in B l- Note that i*(B) = inf { llf I1~ I f  E conv { Xs IS E B } }. of  
! 
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It is clear that i*(B) <<, i(B) for each B c C. The number i*(B) is called the inter- 
section number of B, it was introduced in Kelley (1959) in order to provide a neces- 

sary and sufficient condition for the existence of  a strictly positive measure on a 

Boolean algebra (for extensions of  Kelley results see Wilhelm). 

Let v be a simple game on(/ ,  C) and let W = ~S E C[ v(S) = 1 ) (i.e., W is the set of  

winning coalitions in v). Define 

i(v) = i(W) and i*(v) = i*(W). 

1 
The game v is called regular if max (i(vo), i(v~)) > ~ (recall that if w is a simple game, 

w o denotes the constant sum extension of  w). It is strongly regular if max q*(vo), 
1 

i*(v*)) > ]-. I r is  clear that a constant sum simple game v is regular (strongly regular) 

iff i(v) > ~ ( i*(v) > l  ). 

It is not  difficult to construct an example of  an infinite simple game which is 

regular but not strongly regular. Indeed, let I be the set o f  natural numbers and C = 2 x, 

the class of  all subsets of/ .  Define a simple game v on C by 

v(S) = 1 r  ~1), or 1 E S a n d  IS[/>2] .  

2 
It is easy to see that v is a constant sum game and i(v) = ~ and therefore vis regular. 

For each n E1  we consider the 2n-term sequence a n = ( ( 1 , 2 }  . . . . .  {1, n) ,  I - { 1  ), 

m(an) n + l  n + l  
..., I -  ~ 1 )). It is clear that - - .  Therefore i*(v) for each n 'E  I; 

1 Ion I 2n <<" - ~ n  
thus i*(v) ~< ~. 

We note that it is possible to construct a regular finite simple game which is not 

strongly regular. Indeed, Gabelman's example (see section D of  Winder 1971)has this 
property. 

Finally a simple game v on (/, C) is a weighted majority game if there exist a finite- 

ly additive probability measure/~ on C and 0 < q  < 1 such that v(S) = 1 iff/a(S) ~>q. 

The pair 0z, q) is called a representation of v and we write v = (~, q). 
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3 S t r o n g l y  Regu l a r  G a m e s  a n d  Weigh ted  M a j o r i t y  G a m e s  

In this section we characterize the class of  strongly regular games (within the simple 

games) and study the relationships between this class and the class of weighted majori- 
ty games. We start with the main result of  this section. 

Theorem A." Let v be a simple game on (I, C). Then vis strongly regular iff there exists 

a finitely additive probability measure/1 on (I, C) such that 

sup {/I(S)IS E C, v(S) = 0)  < inf {/I(S)IS E C, v(S) = 1 ). (3.1) 

Proof." We first prove the sufficiency part of  the theorem. Let~t be a probability measure 

on C which satisfies (3.1). Let q = inf {/~(S)IS E C, v(S) = 1 ) and r = sup {/R(S)[S E C, 

1 1 1 
v(S) = 0 }. Choose 0 < e < q - r. We will show that q > 2'  implies i*(vo) > ~ and q < 2'  

1 1 
implies i*(v~)>5" Assume that q >5"  We define /l o : Co -+ IR+ by go(S) =/1(S) if 

z q~ S and go(S) =/R(S - {z }) + 2q - e - 1 if z E S. It is easy to see that Po is a measure 

q 1 
on Co and #o(S)/> q if Vo(S) = 1. Let 0 < 6 < - -  . By the definition of i*(vo) 

2 q - e  2 

there exist coalitions S 1 . . . . .  S n in Co such that vo(Si)= 1 for each 1 ~< i ~< n and 
1 n 1 n 1 
-II E XsilI** < i * ( v o ) + 6 .  Therefore - E Xsi<~(i*(vo)+6)Xlu{z}.  Hence, - 
n i = 1  n i = 1  g/ 

n 1 n 
E f{ Xsidl~o <~ (i*(vo) + 8)/ao(1 U {z }). This implies that - E lao(Si) <<. (i*(Vo) 

i = 1  I U  z )  /7 i = 1  

q 1 1 
- - 6  > If ~ < - w e  define a measure + 6)(2q e). Therefore i*(vo)>~ 2 q -  e 2" q 2 

/ao: Co ~IR+ by ~to(S ) if zq~S and I ~ o ( S ) = l ~ ( S - { z } ) + l - 2 q + e  i f z E S .  Then 
1 - q + e  1 

~o(S)~> 1 - q  + e if v~(S)= 1. Let 0 < 6  < By the same argument 
2 - 2 q  +e  2" 

(I - q  +e)  I 
which was used above we get i*(v~)>~ (2 - 2q + e) - 8 >~. 

We now prove the necessity part of the theorem. We first assume, that v is a 

constant sum game. Let B(I, C) be the Banach space of all real valued, bounded, 
I 

measurable functins on (I, C) with the supremum norm. Let ~ = i*(v)> 2" Define 

K =conv ({aXi} u {Xs IS E C, v(S) = I }). The definition of i*(v) implies that if 
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n 

r I . . . . .  r n are non-negative rational numbers with ~ r i = 1, and Sl . . . . .  Sn are coali- 
i = 1  n 

tions in C such that v(Si)  = 1 for each 1 <~i<~n, then II ~ riXsill~. >~i*(v). There- 
i = 1  

fore Ilfll ~>a for e a c h f E K .  LetBa = { f E B ( l ,  C)I l l f l [  < ~ } .  Then K andBa are non- 

empty disjoint convex subsets of  B(I, C) and Ba is open. Therefore by the separation 

theorem (see Theorem 8 page 417 in Dunford/Schwartz), there exist q E IR and a 

nonzero continuous linear functional ~b : B(I, C) ~ IR such that ~b(f) 1> q for each f E / ~  

and r  < q for each f E Ba. Since 0 E Ba, q > 0 and ~(XI) > 0. Therefore we may 

assume, without loss of  generality, that ~(Xt) = 1. Since aXr EK,  q <~ a. On the other 

hand aXx E cl(Ba). Therefore q = a. We now show that r  0 for each S E C. As- 

-~(Xs) 
sume, on the contrary, that there is S E C such that c~(Xs) < 0. Let 0 < e < 1 - O(Xs): 

Then q~((a - e) X i - s  ) = a - e - (a - e )~ (  Xs  ) = e~ - a@( X s  ) - e(1 - ~b(Xs)) > or, which is 

impossible because (c~-e )Xz_s  EBa .  We now use the fact that the dual of  B(I, C) 

is the space of all bounded and finitely additive measures on (I, C) (see Theorem 

IV.5.1. page 258 in Dunford/Schwartz). This yields the existence of a finitely additive 

measure ~ on C such taht ( p ( f ) = f f d t l  for each f E B ( I ,  C). Since g (S)=  ~ ( X s ) f o r  
I 

each S E C, what we have just shown above implies that ~ is a probability measure. Now 
1 

if S E C and v(S)  = 0, then X i - s  E K. Therefore /a ( I -  S) 7> ol. Thus #(S) ~< 1 - o~ < ~. 
1 

Hence sup {/1(S)IS E C, v(S)  = 0 } ~< ~ < ot ~< inf {#(S)IS E C, v(S)  = 1 }. 

Now if v is not  a constant sum game. Then v o and v~ are constant sum games. 

1 1 1 
Since v is strongly regular, i*(Vo) > ~- or i*(v~)  > 2" If i*(vo) > ~ then by what we 

have shown above there exists a finitely additive probability measure ~o on (1 U {z}, Co) 

such that sup {~zo(S)lS C Co and vo(S)  = 0} < inf {/ao(S)IS E Co, vo(S)  = 1 }. Let ~ be 
the restriction of/a o to C. Now, v o coincides with v on C. Therefore ~t = (1/X(/))X is 

1 
a probability measure on (I, C) which satisfies (3.1). Assume now that i*(v~)  > 2" Then 

there is a finitely additive probability measure #o on ( I U  {z}, Co) such that r =  

sup {/ao(S)lS E Co, v~(S)  = 0} < inf {/Io(S)IS E Co, v~(S)  = 1 } = q. Choose 0 < e < 
q - r .  Let ~ be the restriction of/a o to C. Then for each S E C, v(S)  = 1 implies ~(S) > 

1 - q + e, and v(S)  = 0 implies ~ (S) ~< 1 - q. Let bt = (1/~ (/))~. Then/l  is a probability 
measure on (I, C)which satisfies (3.1). 

Corollary 3.1: A strongly regular game on (I, C) is a weighted majority game. 
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Corollary 3.2: A finite simple game on (I, C) (i.e. the set I of  players is finite) is a 

weighted majority game iff it is strongly regular. 

Note that Corollary 3.2 gives a combinatorial characterization of  finite weighted 

majority games. 

Remark 3. 3." Let v be a constant sum simple game on (I, C). It is clear that if v is strongly 

1 
regular then ~ Xx ~ conv (Xs [ v(S) = 1 }. If I is finite and v is monotonic,  then the con- 

verse is also true. Indeed, since K = conv { X s l v ( S )  = 1 } is convex and compact, there 

1 
is 0 4:p E IR t and a E ~ such that p .  x > a ~>p. ~ Xx for each x EK. As v is mono- 

1 
tonic, we may assume that p E NS+ and ~ Pi = 1. Then p .  x > -  for each x EK. 

1 i~I 2 1 
Therefore IIx II.. > - for each x E K. As K is compact, i*(v) = inf { IIx 11.. Ix E K} > - .  

2 2 

If/a is a measure on (I, C) we denote by R ~ )  the range of/a. 

Proposition 3.4: Let v be a constant sum weighted majority game on (I, C). If vhas a 

1 
representation (/~, q) such that q > ~ ,  or R(,u) is closed subset of  [0, 1] (in particular 

if (I, C) is a a-algebra and g is countably additive), then v is strongly regular. 

1 1 
Proof." Assume first that v has a representation ~ ,  q) such that q > ~. Let 0 < e < q - 2" 

1 
There exist coalitions $1 . . . .  , Sn in C such that v(Si)= 1 for each 1 <~ i ~< n and - 

17 

n 1 n 1 n 
X s i < ( i * ( v ) + e ) X l ,  therefore - ~ f Xsflta<<,i*(v)+e. Thus - N la(Si)<~ 

i = I  F/ i = 1  I t /  i = 1  

1 n 1 
i*(v) + e. Since q <~ - ~ la(Si), i*(v) >1 q - e > -~. 

Y/ i = 1  

Assume now that v has a representation (p, q) such that R(~t) is closed subset of  
1 

[0, 1 ]. We will show that q > 2" Let a = inf {/I(S) IS E C, v(S) = 1 }. Then a ~< q. Since 

1 
R@) is closed, there is S E C such that/a(S) = a. As v is a constant sum, ot i> 2" Now, if 

1 1 1 
a = ~ then ~t(S) = Z and /1 (1 -  S) = ~, which is impossible because v is a constant sum. 

g . ,  

1 
Therefore a > - .  

2 
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1 
The following example shows that the assumption that q ~> 3 or R(/a) is closed in 

Proposition 3.4 cannot be removed. 

Example 3.5: Let I = {1,2 ,  3, ...} and C the algebra of  finite subsets of I and their 
complements. Define a measure ?, on C by X(S) = N 2 -n  for each S C C. Note that 

n E S  

1 1 p 
~ R(X). For otherwise ~ can be represented in the form ~ where p and l are positive 

integers, which is of  course impossible. Define a finitely additive measure ~ on C by 
1 3 

~(S) = 1 if S is infinite and ~(S) = 0 if S is finite. Let / l  = ~ + ~X. Then/a is a finitely 

1 1 
additive probability measure on C. Since ~ q~ R('h), we have 3 ~ R(/z). Define a simple 

1 1 
game v on (/, C) by v(S) = 1 if/a(S) ~>3' and v(S) = 0 otherwise. Since 3 ~ R ~ ) ,  v i s a  

constant sum weighted majority game. We will show that v is not  regular. Assume, on 
1 1 1 

the contrary that i(v) > 2" Let n be a natural number such that -n < i(v) - 2" For each 

natural number k let Sk = {1,3 ,  5 . . . . .  2 k -  1 }. Then for each k E 1  we have ~t(Sk) = 
1 ( ( ~ ) k )  1 I 
- 1 - .Therefore ~t(S k t_J ( 2 k } ) > 3 a n d t ~ ( I - S k ) >  3. L e t o =  {Sk U (2k))~=1 
2 

n + l  
U { I -  Sk)~= 1. It is easy to see that i(o) ~< - -~n"  Since i(v) <~ fro), this contradicts the 

1 
choice of  n. Thus i(v) <<. - and v is not regular. 

2 
The following example shows that the assumption that v is a constant sum in 

Proposition 3.4 is also essential. 

Example 3.6: Let I be the set of  natural numbers and C = 2 l, the class of  all subsets of  
/. Let /a  on C be the measure defined by/a(S)  = N 2 - n ,  for each S C/ .  Define a 

nES  

weighted majority game v on C by v(S) = 1 iff/~(S) = 1. It is easy to see that i (v~) = 0. 
1 1 

We will show that i*(vo)<<--~. Assume, on the contrary, that i * ( v o ) > 2 "  Let n be a 

1 1 
natural number such that n + 2  < i*(vo). Consider the 2n-term sequence o = ({ 1, z}, 

re(o) n + 1 m(o) 

L o---~ - 
(n, z}, I . . . .  , / ) .  It is clear that 2n " Since i*(vo)<~-]-~-, we get a con- 

tradiction. Therefore v is not strongly regular. 
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4 Proper t ies  o f  Regular  Games  

In this section we prove some properties of regular games. We start with the following 
simple proposition. 

Propositon 4.1: Let v be a regular game on (I, C). Then it is monotonic. 

Proof." Let S E  C such that v(S)= 1, and let T E  C, TDS.  Assume, on the contrary, 
that v(T)= 0. Then vo(T)=0  and v* ( I -  T)=  1. Therefore Vo(/U { z } - T ) =  1 and 
v * ( / -  T) = 1. Since v(S) = 1, v * ( / -  S) = 0 and v~(S U (z }) = 1. As S fq ( / -  T) = q~, 

�9 1 . , 1 

we have t(Vo) <~ ~ and t(Vo) " <~ ~, which contradicts the fact that v is regular. 

Let v be a simple game on (/, C). A coalition S E C is at least as desirable as a 
coalition T, written S _~ T, if for each U E C such that U (~ (S U T) = 0 we have 
v(TU U)= 1 implies v(S U U)= 1. The relation ~ was introduced in Lapidot (1968). 
It generalizes the relation of desirability for players (see Definition 9.1 in Maschler/ 
Peleg 1966). It is also studied in Einy (1985), Einy/Neyman (1988). It is clear that in 
weighted majority game >" is complete. The following proposition shows thatin regular 
games >" is also complete. 

Propositon 4.2: Let v be a regular game on (/, C). Then the desirability relation of v is 
complete. 

Proof." We assume first that v is a constant sum. Assume, on the contrary, that there 
exist $1, $2 E C, which are incomparable with respect to ~.  Then there exist T1, 

T 2 E C  such that (S 1 uS2)O(T 1UT2)=0 and v(S1UT1)=I,  v(S1UT2)=0, 
v(S2 U T2)= 1, v(S2 U T1) =0. Since v is a constant sum, v(I-(S1 U T2))= 1 and 
v(I-(S2 U TI)) = 1. Let o = ($1 U T1,S2 U T2,I-($1 U T2), I - (S2  U/'1) ). Then 
1 1 

Xs = ~ XI. But this contradicts the fact that v is regular. Assume now that v is 
lal s~o 
an arbitrary regular game on (I, C). Then by what we have just shown Vo or v~ has a 
complete desirability relation. By Theorem 4.2 and Theorem 5.1 of Einy (1985), vhas 
a desirability relation. (The results in Einy 1985 are formulated only for finite simple 
games, but the same proofs work also in the general case). 
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5 Finite Regular Games 

Along this section we assume that I = { 1 . . . . .  n } and C = 2 I, the class of all subsets of/ .  
Let v be a simple game on (I, C) and i E/ .  Denote 

W(v) = {S IS  c / ,  v(S) = 1), w(v) = [W(v)[ (5.1) 

fv(i) = I {SIS ~ W(v),i ES)I = ~, v(s)  (5.2) 
seW(v) 

i e s  

~v(i) = ~ (v(S)  - v (S  - { i ))) .  (5.3) 
S C I  

Note that fly(i) is the non-normalized Banzhaf index of  v. The counting vector of  v is 

the (n + 1) dimensional vector, f v  = (fv(1) . . . . .  f v (n ) ,  w(v))  (see Chow 1961 and 

Lapidot 1972). The characteristic vector of v is the (n + 1)-dimensional vector/~v = 

(/~v(1) . . . . .  ~v(n), w(v)).  Note that for each i E l w e  have 

w(v)  - f v ( i )  = ~ v(S)  = ~ v (S  - {i}) + ~. v ( S -  (i}) 
s e W ( v )  s e W ( v )  se~I(v)  

= ~ v ( s ) -  ~ ( v ( s ) - v ( s - { i ) ) )  
seW(v )  s e W ( v )  " 

i e S  i c S  

+ ~ ( v ( s -  ( i ) ) -  v(s)) 
s~W(v)  

= f v ( i )  - ~v(i). 

Therefore 

f v ( i )  = (fly(i) + w(v)) /2 ,  for each i E l .  (5.4) 

We also have 

[3v, ( i )  = ~, ( v * ( S )  - v * ( S  - {i))) = 
S C I  S C I  

( v q - s )  u {i))-  v g -  s)) 

-- 2: ( v (TU( i ) ) -v (T ) )=#vq) .  
T C I  



204 E. Einy and E. Lehrer 

Thus we have 

~v(i) = ~v* (i), for each i C L (5.5) 

(For monotonic games, (5.5) is Theorem 5 in Dubey/Shapley). 

Chow (1961) and Lapidot (1972) showed that a weighted majority games is 
uniquely determined by its counting vector. The following theorem shows that the 
monotonic simple games which are uniquely determined by their counting vector are 
exactly the regular games (in particular, it generalizes the Chow/Lapidot result). 

Theorem B: Let v be a monotonic simple game on (1, C). Then v is regular iff it is 

uniquely determined by its counting vector. 

Proof: We first assume that v is regular and show that it is uniquely determined by its 
counting vector. Let u be a simple game on (1, C)such that f  u =fv. We show that u = v. 
Assume, on the contrary, that u ~ v. Let i E L  Then by (5.4) and (5.5) we have 

f ~ , ( / )  = ( ~ , ( t ' )  + ~(v*))/2 = ( ~ ( i )  + ~ ( v * ) ) / 2  

= (#~ (i) + ~o(u*)) /2  = ( # ~ ,  (i) + ~ ( u * ) ) / 2  = f ~ ,  q). 

By the definition of Vo and Uo, we havefvo(i ) =fv(i) +fv*(i)=fuq) +fu*q) =fuo(i). 
By duality, fvS(i ) = fu~(i). Also we have fvo(Z ) = ~o(v*) = ~o(u*) = fuo(Z ) and by duali- 

ty, fvS(Z ) =fu~(Z). Thus for each k EI t3  (z) ,  fvo(k)=fuo(k ) and fv~(k)=fu~(k). 
Now, since v--/:u, Vo--/:Uo and v~ 4:u~.  Let o =  W(vo)-W(uo), o'= W(uo)-W(vo), 
r = W(v~)- W(u~), r' = W(u~)-  W(v~). Then e '= ((lt3 ~ z ) ) - S I S E a ) ,  r ' =  
( ( IU ( z ) ) - S I S E T ) .  Since u o :/ :v o and u~ ~v~ ,  a, e'--/:O and r, r '  :/:0. Let lo = 

1U {z). Sincefvo(k)=fuo(k)andfvs(k)=fus(k)foreach k EIo,  we have ~ Xs = 
seW(vo) 

~, X s and 2; Xs = 2; Xs. Therefore 2; Xs = ~ Xs and 
s~W(uo) s~W(v 8) s~W(u~) sea seo'  

2; Xs = ~, X8. This yields that 2; Xs = 2; XXo_ s and ~; Xs = 2; X1o_S, 
S e t  S e t '  S E a  S e e  S e t  Se.r 

1 1 1 
1 Y_, Xs = ~ X / o  a n d - -  ~ Xs = ~ X t  o. The re fo r e i (vo )~< land  which imply that lal s e o  Izl s e t  

1 
i(v~) <<,-~, which is impossible because v is regular. 

Assume now that v is uniquely determined by fv and show that it is regular. As- 
sume, on the contrary, that vis  not regular. Then there exists a set e C W(vo) such that 
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1 1 
~ Xs ~< ~ XI o, where I o = I U {z }. Without loss of  generality we may assume 

Iol Sea 
that [o[ is an even positive integer. For otherwise we can omit one member from o and 

1 1 
the inequality - -  ~ Xs <~-~ Xx o is still valid. Let o '  = {Io - SIS E o}. Then Z Xs ~< 

Iol S~o S~o 

XT. Let F be the set of  all constant sum simple games on (Io, Co) such that if 
TEa" 

u o E F, then 

(1) Ouoq) >~13Voq) for each i E I o ,  

(2) there is i E I o  such that/3uo(/)/> 4 +/3Vo(/), 

(3) 160(Uo) - [0(vo)l is an even integer. 

We will show that P r 0- Indeed, define a game u o on (Io, Co) by uo(S ) = vo(S) if 

SqSa 'ua ,  and uo(S)=vo(Io-S) if S E a ' U o .  Since Y~ Xs<<. ~ Xs, fuo(i)>~ 
SEa  SEa '  

fvo(i ) for each i E I o. By (5.4), ~u o (i) >~ ~vo(i) for each i E I o . We show that/3 u o :~/3%. 
Let u be the game on (I, C) which satisfies u(S) = uo(S) for each S E C. It is clear that 

u o is the constant sum extension of  u. We show now that fuo 4=fvo. Assume, on 

the contrary, that fuo =fro" Since fvo(Z ) = co(v*), fuo(Z) = co(u*), co(Vo) = co(v) + 
co(v*), and co(Uo) = co(u) + co(u*), we have co(u) = co(v) and co(u*) = co(v*). Let iEI.  
Then fvo(i)=fv(i ) +fv*(i) and fuo(i)=fu(i ) +fu.(i)" Now, (5.4) and (5.5) imply 

co(u*)- co(u) 
that fv* q) = fv(i) + co(v*)2- co(v) and fu .(i) =fu(i) + 2 -. Therefore fv(i) = 

fuq). As co(v) = co(u), fv =fu, which is impossible because v is uniquely determined 

by fv and u v ~ v. Therefore fuo vafvo" Since co(uo)= co(vo) = 2 n, there is i E I  o such 

that fuoq)--/:fVeq)" By (5.4), ~uo(/)va~vo(i). We will show that /3uoq)~>4 +~Voq). 
As fuoq)>fVo(i), ~ X s ( i ) <  E Xsq), and thus since Io[ is even Z Xs(i)~< 

SEer SEo' SEo 

Io[ 
- - - 1 .  Therefore ~ X s ( i ) -  ]~ X s ( i ) = l o l - 2  ~ Xs(i)~>2. Hence fuo(i)>~ 

2 sea '  s e a  s e a  

2 +fvo(i ). As co(Uo) = co(Vo), /3uo(i) >~ 4 +[3%( 0. Since I W(Uo)- W(Vo)l = Iol is even 
integer, Uo E F. 

Let F* be the set of  all constant sum simple games on (Io, Co) such that i fu  E F* 

then 

(1) [3uq ) >~[3v~q), for each i E I o ,  

(2) there is i E I  o such that (3u(i) >>-4 + (3vS(i), 

(3) I W(u) - W(v~)I is an even integer. 

As v~' is not  regular, by the same arguments which were used above, it can be shown 

that F* 4: 0. We now need the following claim. 
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Claim 5.1: At least one of  the games v o or v~ is monotonic. 

Assume, on the contrary, that Vo and v~ are not monotonic. Then there exist S 1 C 

$2 C 10 and T 1 C T2 C I 0 such that vo(S1 ) = 1, vo(S2) = 0 and v~(T x ) = 1, v~(T2) = O. 
Since v and v* are monotonic, z E $2 - $1 and z E T2 - T1. Now v(S 1 ) = 1, v ( I -  $1) >1 
v (1-$2)  = 1 and v(T1) <<.v(T2 - (z)) = O, v (1-  7/'1) = O. Let u be a simple game on 

(I,C) such that W ( u ) = ( W ( v ) U ( T I , I - T t ) ) - ( S I , I - S 1 ) .  Then Z Xs = 
s~W(u) 

Xs and co(u) = co(v), which means that fu =fv. But this is impossible because 
seW(v) 
u :/: v and v is uniquely determined by fv. 

We are now ready to complete the proof of  Theorem B. By Claim 5.1. at least one 

of  the games v o or v~ is monotonic. Assume, without loss of  generality, that Vo is 

monotonic. Let u o E P such that ~ 3uo(i ) <~ ~ 3u(i), for each u E P. Let i E I  o 
i E I  o i E I  o 

such that 3uo(i ) >1 3vo(i ) + 4 >t 4. 03vo(i ) >~ 0 because Vo is monotonic). Let S C I o 

such that uo(S ) = 1 and u o ( S -  (i)) = O. Let w o be a simple game on (Io, Co) such 

that 60(Wo) = (W(Uo) U (S - {i), I o - S ) )  - (S, (I  o - S )  U {i)).  Then w o is a constant 

sum, 3wo(J ) = 3u o(~. ) for /' E1  o - ( i ) ,  and 3wo(i ) = 3uo( i ) -4  >-3vo(i ). Since Vo is 
monotonic and w o is not, w o 4: Vo. We will get a contradiction to the minimality 

of  ~ 3uo(i) by showing that w o E I'. It is easy to check that [W(Wo)- W(Vo)[ 
i~-_/o 

is even. We will show that 3wo 4= 3%. Assume not. Let w be the restriction of  Wo 

to (I, C). By (5.4) fvo(Z ) = (3vo(Z) + 2n)/2 and fwo(Z ) = (3wo(Z) + 2n)/2. As fvo(Z ) = 
co(v*) and fwo(Z)=co(w*), we have co(v*)= w(w*). Therefore co(v)= co(w). Let 

i EI. Then 3%(0 = 23v(i), 3wo(i)= 23w(i). Therefore t3v(i) = 3w(i) and by (5.4) we 

obtain fv(i) = (3v(i) + w(v))/2 = (3w(i) + co(w))/2 = fw(i). Thus fv  = fw, which implies 

that v = w. But this is impossible because Vo 4:Wo. Now, since 3wo @3Vo there is/' E [  

such that 3wo(1" ) > 3vo(J). We will show that 3wo(J) >>" 3vo(J) + 4 and then w o E P. Let 

o = W(Wo)-W(Vo), o ' =  W(Vo)-W(Wo). As fwo(J ) >fro(/" ) and Iol is even, we have 

Xs(j) - ]~ Xs(J') >~ 2, which means that fwo(]  ) ~fvo(J) + 2. Therefore 3wo(J)~ 
S E a  S E o '  

3Vo (J" ) + 4. 
Note that a regular finite simple game may not be a weighted majority game. 

Indeed Gabelman discovered a montonic simple game with 15 players which is unique- 

ly determined by its counting vector and is not a weighted majority game. (See Section 

D in Winder 1971.) 
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