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The purpose of this paper is twofold. First, to provide a transparent charac- 
terization of the family of metrizable social decision rules. Second, to provide the 
necessary and sufftcient conditions for a reasonable metric rationalization. 
Theorem I establishes that the class of metrizable social decision rules is uniquely 
characterized by a variant of the well-known Pareto condition. Theorem 2 
establishes that positional rules can be characterized in terms of a special class of 
additively decomposable quasi-metric rationalizations. Theorem 3 characterizes 
strong positional rules in terms of reasonable metric rationalizations. Journal qf 
Economic Literature. Classification Number: 025. 1’ 1985 Academic Press. Inc. 

I. INTRODUCTION 

Standard voting procedures can be represented by means of an 
additively decomposable metric which is defined on preference profiles 
whereby the socially selected outcomes are precisely those alternatives 
which are the closest to being unanimously most preferred. In general, the 
purpose of a metric is to define distance and the metric generated by a 
social decision rule defines the notion of an alternative being close to 

* We are indebted to Micha Perles. Don Campbell, and especially to an anonymous referee 
of this journal for their helpful comments and suggestions. 
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unanimously preferred. Additive decomposability requires that the distance 
between any two preference profiles be the sum of the distances between 
the respective individual preference relations comprising the two profiles. 
(Nitzan [S], Farkas and Nitzan [Z].) 

If some alternative is most preferred by all individuals then surely it 
should be declared the consensus “social choice.” This is the so-called 
unanimity principle which is naturally very appealing and has been accep- 
ted as axiomatic since Arrow’s work [ 11. Of course, a unanimously 
preferred alternative generally does not exist. A significant problem 
therefore is to find out in what precise sense different social decision rules 
attempt (if at all) to approximate or respect the political ideal of using the 
unanimity rule (see Wicksell [6]). Put differently, the problem is that of 
clarifying the meaning of the consensus obtained by various decision rules. 

A reasonable additively decomposable metric rationalization according 
to the unanimity criterion certainly suggests a natural interpretation for the 
social compromise attained by certain social decision rules. Furthermore, it 
is desirable for a social decision rule to be metrizable in the above sense 
because otherwise it cannot satisfy a weak version of the Pareto criterion. 
Specifically, our first theorem establishes that a social decision rule is 
metrizable according to unanimity if and only if it is Paretian. Such a rule, 
however, need not have an additively decomposable metric rationalization. 
Our second theorem establishes that any positional rule (sometimes 
referred to as weighted summation rules or point voting schemes) is uni- 
quely characterized by a reasonable symmetric additively decomposable 
quasi-metric rationalization. The rationalizations of the common plurality 
and Borda rules reported by Farkas and Nitzan [2] and Nitzan [5] can 
be derived as special cases of this general result. Theorem 3 characterizes 
strong positional rules in terms of reasonable symmetric additively decom- 
posable metric rationalizations. We conclude by demonstrating that a rule 
which has a symmetric additively decomposable metric rationalization is 
not necessarily a positional rule. 

II. METRIZABLE SOCIAL DECISION RULES 

Let X be a nonempty finite set of alternatives. N= ( l,..., n} is a finite set 
of individuals (decision makers). The set of linear orders (complete, trans- 
itive, and asymmetric relations) on X is denoted by P. The set of all 
preference profiles is denoted Q = PN. For each profile P = (P, ,..., P,) E Q, 
Pi E P( i E N) is individual i’s preference relation on X. A social decision rule 
is a function h: Q -+ 2X - {0}, where 2”- ((21) is the set of all nonempty 
subsets of X. 

Consider the set of profiles U(x) in &? having alternative x as a 
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unanimous best outcome, U(x) = V(x) x I’(x) x . . . x V(x), where V(x) = 
(PjEPIXPiI’ vyex, y#x >. Note that .x#y*U(x)nU(y)=@. 

DEFINITION 1. A social decision rule h is Paretian if Vx E X, P E U(x) * 
h(P) = (x}. 

Let 8 be a metric on Sz. This metric defines a distance function d between 
a profile P and a non-empty set of profiles YcQ, d(P, Y)= 
Min,, y&P, Q). 

DEFINITION 2. The metric 8 on CJ is a rationalization according to 
unanimity (henceforth a rationali~u-ation) for the social decision rule h, if 
VPEP,~(P)={XEXJ~(P, U(x))dd(P, U(y))Vy~l’]-. 

That is, the metric 6 rationalizes h according to the unanimity criterion 
whenever for any given profile P the social outcome is an alternative which 
is unanimously preferred according to the profile “nearest” to the profile P 
and for which ananimity exists. The characterization of the family of social 
decision rules having such a metric rationalization is provided by the 
following: 

THEOREM 1. A social decision rule h has a metric rationukution !f’ and 
0nl.v !f it is Puretiun. 

Proof: (i) The reader can easily verify that if 8 rationalizes h, then h is 
Paretian. 

(ii) Suppose that h is Paretian. Define 5 as follows: VP, Q E L?, 

P=Q 

6 is obviously symmetric, non-negative, and 6(P, Q) = 0 o P = Q. It also 
satisfies the triangle inequality and so 6 is a metric. Let us conclude the 
proof by showing that the metric 6 is a rationalization for h. Let d(P, Y) = 
Mine E y 6(P, Q), where P E 52, Y c Q. Define k R -+ 2x - (0) as follows: 
VPESZ, h(P)= { x~Xld(P, U(x))<d(P, U(y)) VJ~EX. We now show that 
h = h. If PE U(x) for some x E X, then d( P, U(x)) = 6(P, P) = 0. Hence, 
-~h(P)ad(P, U(z))=0 and so, PE U(Z)=X=Z. Therefore, h(P)= {x} = 
h(P). Suppose P $ U(x), Vx E X. Then Vy E X, d( P, U(y)) # 0. If x E h( P), 
then &P, Q) = 1 for any Q E U(x). Therefore, d(P, U(x)) = 1 and x E fi(P) 
from the definition of h. Therefore, h(P) c h(P). Suppose x E h(P). If 
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X$/Z(P), then 3y~h(P) and d(p, U(y))= 1. Therefore, d(p, U(x))=2 and, 
by the definition of h, x$/$P), a contradiction. Therefore, XE h(P) and 
/i(P) c h(P). Therefore, h(P) = h(P). Q.E.D. 

III. REASONABLE METRIC RATIONALIZATIONS 

The metric used in the proof of Theorem 1, S(P, Q), is induced by the 
choices determined according to the social decision function. That is, 
loosely speaking, the metric is based on what the profile does and not on 
what the profile is. Also, although the triangle inequality is satisfied by 
S(P, Q) it does not play any role in the proof and therefore the theorem 
could be stated as follows: a social decision rule h has a quasi-metric 
rationalization if and only if it is Paretian (6 is a quasi-metric if it is sym- 
metric, non-negative, and 8(P, Q) = 0 if and only if P = Q). The lack of 
dependence on the internal structure of the profiles and the inessentiality of 
the triangle unequality suggest that some unreasonable social decision rules 
may be rationalized by unreasonable quasi-metrics. 

In particular, the social decision rule need not be monotonic, 
anonymous or neutral’ and the distance function between preference 
profiles need not be reasonably related to the individual distances between 
the respective preference relations comprising the profiles. The normative 
appeal of metrizable rules as well as their interpretation are considerably 
strengthened once the distance function between profiles is “appropriately 
related” to the structure of the profiles. In this section, we suggest four par- 
ticular restrictions on quasi-metrics. A quasi-metric (metric) satisfying these 
requirements is considered as reasonable. We then demonstrate that only 
(strong) positional rules do have reasonable quasi-metric (metric) 
rationalizations. 

DEFINITION 3. A social decision rule h has an additively decomposable 
quasi-metric rationalization S if: 

(i) S rationalizes h; 

(ii) there exist n metrics on P, aj, i= l,..., n, such that for any two 
profiles P=(Pl,..., P,), Q=(Q,,.-, Q,), P, QEQ, @P, Q)=Cr=r Ji(Pi, Qj). 

’ Anonymity ensures that the social outcome is independent of the way in which individuals 
are labelled. Neutrality requires independence of the labelling of the alternatives. 
Monotonicity guarantees that as some alternative becomes more widely favored by 
individuals. it does not become more difftcult to sustain as a social outcome. For more formal 
definitions of these standard conditions which appear to be fundamental to democratic 
decision-making, see Fishburn [3, pp. lWlOl]. Example 1. below, confirms that a 
metrizable rule need not be neutral. 
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DEFINITION 4. A social decision rule h has a symmetric additiuely 
decomposable quasi-metric rationalization 6 if (i) and (ii) of Definition 3 are 
satisfied and di = ~5~ = 6, Vi, jc N. 

A metrizable rule need not however have an additively decomposable 
metric rationalization. A particular example is presented below. 

EXAMPLE 1. Let X= {x, y } and N = { 1,2}. A profile can be represen- 
ted by a pair, such as (x, y) implying xP, y, yP,x. Define, h(y, y) = y and 
/I(.) = x VP# (y, y); h is Paretian and therefore it has some metric 
rationalization 6. Suppose that b(P, Q) = 6,(P,, Q,) + 6,(P,, Qz) VP, Q. 
Since 6th Y), (x, xl) < &(x, y), (Y, Y)), we have MY, xl = 6,(-x, y) < 
6,(x, y). Since S((,v, xl, (x, x)) < &(.v, XL (y, y)), we have 6,(y, x) = 
6,(x, y) < 6,(x, y), a contradiction. Therefore, 6 is not additively decom- 
posable. 

The well-known Borda method and the common plurality rule do have 
additively decomposable metric rationalizations which are symmetric (cf. 
Farkas and Nitzan [2] and Nitzan [S]). These two social decision rules 
are typical positional rules (which are occasionally referred to as weighted 
summation schemes, scoring methods, or point voting methods). We 
demonstrate below that positional rules are uniquely charactrized by a 
special class of symmetric additively decomposable metric rationafizations. 

Let IX/ = s and denote by t(x, P,) the position of alternative x according 
to individual i’s linear order P,. That is, VP, E P, x E X, t(x, Pi) = 1 ( y E X: 
yP,x}I + 1. For 1 d j < s and Pi E P define the function r, r( j, Pi) = 
x0 t(x, Pi) = j. 

Remark I. By definition of r and t: 

(i) t(r(i, P,), pi) =j; 
(ii) r(t(x, P,), P,) = x; 

(iii) for any P, E P, PiE V(r( 1, Pi)). 

Let us denote by c a permutation of X. For a linear order P, E P and a per- 
mutation CJ denote by P: the permuted linear order. That is, ‘d-u, YE X, 
xP,poa(x) PPa(y). 

DEFINITION 5. A quasi-metric (metric) 6 on P is neutral if (VP,, Q,E P 
and any permutation cr of X) @P,, Q,)=&P;, Q:).’ 

‘This axiom is similar to Axiom 2 in Kemeny and Snell 14. Chap. II] who tirst introduced 
metrics into social choice theory. 
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DEFINITION 6. A quasi-metric (metric) 6 on P is monotonic if 
(Vx, ~EX,VP,EP)XP,?1~6(P,, V(x))<6(P;, V(y)). 

DEFINITION 7. A quasi-metric (metric) 6 on P is strongly monotonic if 
(Vx, J’EX, vPjEP)xP,y*6(P;, V(x))<&P,, V(y)). 

DEFINITION 8. A social decision rule h has a reasonable quasi-metric 
rationalization if it has a symmetric additively decomposable quasi-metric 
rationalization S (S= Z6) and 6 is neutral and monotonic. 

DEFINITION 9. A social decision rule h has a strongly reasonable metric 
rationalization S (S= C6) and 6 is neutral and strongly monotonic. 

DEFINITION 10. A social decision rule h is a (strong) positional rule 
if VPESZ, h(P) = {VEX: T(,x, P) 3 T(p, P)VyeX}, where T(x, P) = 
X,:‘= I a(t(x, Pi)) an d z is a real function defined on the positive integers that 
satisfies 

a( 1) > E(2) 3 a(3) 3 ... >, a(s) and for i > s, a(i) = 0 

(c1(1)>~(2)>~((3)> ... >M(s) and for i>s,a(i)=O). 

THEOREM 2. A social decision rule h has a reasonable quasi-metric 
rationalization if and only if it is a positional rule. 

Proof. (i) Suppose that the social decision rule h has a reasonable 
quasi-metric rationalization. For P, E P define 

dj) = d(P,, V(r(j, P,))) (j = l,..., s). 

LEMMA 1. The definition of E(j) is independent of the choice of Pi. 

Proof Let Pi, Q, E P. Consider the permutation cr on X such that 
Pp = Qi. Since, by assumption, 6 is neutral, VSE X and Va on X, 
&Pi, V(x)) = 6(P;, V(o(x))). By the definition of r, r(j, Pi) = xo 
t(x, Pi) =j. But, t(x, Pi) =j and t(a(x), Pp) =j. Hence, r(j, Py) = o(x) or 
q(r( j, P,)) = r(j, PT). Therefore, &Pi, V(r(j, P,))) = 6(Py, V(a(r(j, Pi)))) = 
&Q,, V&L P3)) = &QII Wj, QJ)). Define 

a(j) = E(S) - dj) (j = l,..., s). 

LEMMA 2. a(l)>a(2)> ... >,a(s). 

Proof (i) We need to prove that ~(s)-&(l) > E(S)- ~(2) 2 ... 2 
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c(s) - E(S) or E( 1) < 42) ,< . . . d E(S). By the monotonicity of 6, if xP, y, then 
&Pi, ~(?s))<S(P,, V(v)). Therefore, for 1 <j<s, 

E(j- 1) = S(P,, V(r(j- 1, P;))) G&P,, V(v(i, Pi))) = E(j). 

Now suppose that E( 1) = 42). That is, 

Hence, there exist Q;E V(r(2, P,)) such that d(Pi, Q;) =O, but, by 
Remark l(iii), Pi+ V(r(2, P,)), and so 6 is not a quasi-metric, a contradic- 
tion. We thus obtain that E( 1) <s(2) 6 . . . 6 E(S). For PE Sz let 

h(P)= xex: i tx(r(x, Pi))> i a(t(g,P;))VJ’EJf 
,=I i= I 

We now show that h(P) = h(P). By definition, 

,;, a(t(x, Pi)) = ,g, E(S) - E(t(X, P,)) = m(s) - f &(l(.Y, P;)) 
i= I 

and so, 

i cr(t(x, Pi))3 i cc(t(y, Pi))- i e(t(x, P,))< i E(f(Y, P,)) 
!=I ,=I ,=I ,=I 

and therefore h can be defined as 

A(P)= 
i 

XEX: i E(f(.Y, Pi))< f &(t(y, Pf))V,vEX 
;= I ,= I I 

By Remark 1 (ii) and Lemma 1, 

dt(X, P,)) = 4Pi, V(r(t(x, Pi), Pi))) = &P,, V(x)). 

Hence, 

h(P)= -YE/Y: i d(Pi, v(S))< i d(Pi, V(y))VvEX =h(P). 
i= I ,=I 

(ii) Suppose that h is a positional rule. We have to show that h has a 
reasonable quasi-metric rationalization. 

For P,, Qi~ P, let us denote by y(P,, Q,) the inversion metric-the 
minimum number of steps needed to transform Pi into Qj, where a single 
step consists of interchanging the relative ranking of two neighboring alter- 
natives. 

642 37 I-14 
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Employing the real-valued function associated with the positional rule h 
(see Definition 9) let us define the following quasi-metric on P. For 
P,, Qie P, 

d(Pt, Qi)=~(l)-~(l +y(Pit Qi)). (1) 

Note that 6 is neutral and monotonic. Also note that 

min{y(P,, Q,): Qje V(x)} = t(x, P,)- 1. 

(1 ), (2), and the monotonicity of CI imply that 

(2) 

min{&P,, Q;): Qi~ V(x)‘, =~(l)-a(t(x, Pi)). (3) 

We now define the quasi-metric 8, on L2. For any two profiles P, Q in !I2 
&(P, Q) = C;!=, &Pi, Q;). We prove below that the quasi-metric 6 
rationalizes the positional rule h. For PE 52. qb # Y c 52 let d(P, Y) = 
min [6(P, Q): Q E Y]. For x E X and P E Sz we therefore obtain 

d(P, U(x))=min{S(P, Q): QE U(x)} 

=min 
i 

f d(P,, Q;): Qie V(x), i= l,..., n 
,=I 

= f min{ b(P,, Qi): Qie V(x)} 
,=I 

and so, by (3) 

d(P, U(x))= i (M(l)--(1(x, Pi))). 
i= I 

By assumption, for P E Sz, 

h(P)= ?cEX: (VYEX) i, a(t(X, Pj))> i Ct(t(y> Pi)) 
1 [ i= I i= I II 

= i XEX: (VyEx) f (a(l)-a(t(x, P;)) 
L i= I 

d t Ccc(l)-a(t(y,P,)) . 

,=I 11 
BY (61, 

h(P)= {XEX (VVEX)[d(P, U(x))<d(P, UY))l). 

(4) 
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Finally, note that h(P) is Paretian, that is, for PE U(x), h(P) = {x}, since 
SI( 1) > 42). So 8 is indeed a reasonable rationalization for h. 

Remark 2. If Vi, j, a1 + a;+ j.m , >, a, + a,, then 6 satisfies the triangle 
inequality. In other words, the above inequality defines a subclass of 
positional rules that have a symmetric, additively decomposable neutral 
and monotonic metric rationalization. 

THEOREM 3. A social decision rule h has a strongly reasonable metric 
rationalization if and on1.v if it is a strong positional rule. 

Proof. (i) Suppose that the social decision rule h has a strongly 
reasonable metric rationalization. Define a(j) (j= I,..., s) as in the proof of 
Theorem 2. 

LEMMA 3. a( I ) > a(2) > . . . > a(s). 

Proof (i) Use the definition of a(j), s(j), the strong monotonicity of 6, 
and a similar proof to that of Lemma 2. Using Lemma 3 and the proof of 
part (i) of Theorem 2, one directly obtains that h is a strong positional 
rule. 

(ii) Suppose that the social decision rule h is a strong positional rule. 
Employing the function CI associated with the positional rule h, let 
&j)=a(j- 1)-a(j) (j= l,..., s). Since h is a strong positional rule d(j) > 0 
(j= 2,..., s). 

Define 17, to be the transposition that interchanges the relative ranking 
of the neighboring alternatives, x, -v, such that t(r(j, P,), f7,(P,)) = j- 1 
and t(r(j- 1, Pi), Z7,( P,)) = j. Let us denote by II, the permuted 
preference relation of individual i. Note that 17JIIi(Pi)) = P, for any Pin P 
and 2 <j< s. Consider the following metric 6 on P: For P,, Q;E P, 

Min i d(a,):l7,,(n,, ,(...(n,,(P,))...)=Q, . 
,=I 

We verify below that 6 satisfies the triangle inequality. The other 
requirements (see (1 ), (2), (3) in part (ii) of Theorem 1) can be readily 
verified. Let P,, Q,. Rig P, 

&f’,. PiI= $, ha,) where n,,(...(n,,,,,))...)=Q, 
/=I 

&Q,, R,)= i 9(B,) where n,,(...(n,~,(Q,))...)= R, 
,=I 
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SO 

and therefore, by the definition of 6, 

d(f’i, Ri) G f: d(a,) + i #(B/J= a(Pi, Qi) + S(Qtt Ri). 
j= I ;= I 

Now for any P, R E B let 6(P, Q) = C;=, &Pi, Ri). The proof that 6 
rationalizes h is similar to the proof of Theorem 2(ii). 

Remark 3. In Theorem 2 the quasi-metric indicating the distance 
between P, and Qi is a function of the minimal number of steps needed to 
transform Pi into Q,. In Theorem 3 the metric measuring the minimal 
“cost” of moving from Pi to Qj is a function of the particular steps made 
and not merely their number. In general, the cost of transposition fl, differs 
from that of nk. 

We conclude by showing that a Paretian social decision rule h need not 
be a positional rule even if it has a symmetric additively decomposable 
metric rationalization. Consider the following: 

EXAMPLE 33. Let X={x,y,z}, N={l,2}, and P={a,b,c,d,e,f}, 
where 

a: xyz, b: xzy, c: yxz 

d: yzx, e: zxy, f: zyx. 

For each individual in N, consider the metric Ji on P which is defined in 
the following symmetric matrix (rows and columns refer to elements in P 
and the entries indicate the corresponding distance between the linear 
orders). 

u h c d e j 

a 0 2 2 2 12 
b 2 0 2 2 2 2 
i 2 2 2 2 0 2 2 0 2 12 2 

; : 2 2 2 2 : 0 2 2 0 

‘Note that constructing a simpler example with (XI =2 and n=2, as in Example 1, is 
impossible here. If  1x1 = 2 and h has an additively decomposable metric rationalization, then h 
must be a positional rule. This is a direct corollary of Theorem 3 as in such a case the metric 
is neutral and strongly monotonic. 
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Suppose that VP E Sz, 

t;(P)= {UEXIi?(P, U(u))d(P, U(Z))V~EX)~ 

where 

d( P, Y) = yi: 8( P, Q) and &P, Q, = i &U’;, Q,,; 
E i= I 

d((a,n),U(,-))=~((a,d),(e,e))=s,(a,e)+6,(d,e)=1+1=2 

4(u, 4, U(x)) = &(a, d), (a, a)) = 8&f, a) = 2 

4(a, 4, U(Y)) = &(a, 4, (c, 4) = &(a, c) = 2. 

Therefore, &(a, d)) = {x, J’, zl. 

We now show that 6 cannot be a positional rule. Suppose to the con- 
trary that there exist c(( 1 ), a(2), a(3), a( 1) > a(2) 3 a( 3), such that 

VPESZ,t;(P)= 
i 

uEX[ $ a(r(u, Pi))> i a(t(z, P,))VzeX 
i= I ,=I 

77x, (a, d)) = a(t(x, a)) + a(r(x, d)) = a( 1) + ~(3) 

T(z, (a, d))=a(t(z, a))+a(t(z, d))=a(3)+a(2). 

Since 

or 

&T 4)= $4 y, z}, 7-(x, (a, d))= T(2, (a, d)) 

r(l)+a(3)=a(l)+a(2)-a(3)=a(2) 

a(l)+a(2)=a(2)+a(3)-a(l)=51(3). 

Hence, a( 1) = a( 2) = a( 3), a contradiction. 
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