
ISRAEL JOURNAL OF MATHEMATICS, Vol. 73, No. 1, 1991 

ON STRICTLY ERGODIC MODELS 
WHICH ARE NOT 

ALMOST TOPOLOGICALLY CONJUGATE 

BY 

EHUD LEHRER a AND HIMANSHU PANTb't 
aDepartment of Mathematics and Department of Managerial Economics and Decision Sciences, 

J. L. Kellogg Graduate School of Management, Northwestern University, 
2001 Sheridan Road, Evanston, 1I. 60208, USA; and 

bA T& T Bell Labs, 2000 N. Naperville Road, Naperville, IL 60523, USA 

ABSTRACT 

Answering a question raised by Glasner and Rudolph (1984) we construct uncount- 
ably many strictly ergodic topological systems which are metrically isomorphic to 
a given ergodic system (X,63, #, T) but not almost topologically conjugate to it. 

1. Introduction 

In [2], M. Denker and M. Keane showed that, given an ergodic almost topolog- 
ical dynamical system (X,(B,/~, T) which is not strictly ergodic, there exists an al- 

most topological dynamical system ( X', (g;/~', T' ) such that T and T' are metrically 
isomorphic but not finitarily isomorphic. This proof relies on realizing (i) the in- 
variance of strict ergodicity under finitary isomorphism and (ii) every ergodic to- 

pological process is metrically isomorphic to a uniquely ergodic topological process 

[1], [5], [6], and [7]. They end their proof by asking the question: Is the finitary 
isomorphism class for an ergodic topological process strictly smaller than the metri- 

cal isomorphism class? 
In what follows, a topological process would be a system (X,63,#, T) where 

T is a homeomorphism of the compact metric space X which preserves the prob- 

ability measure # defined on the Borel o-algebra 6~. We say that two such topo- 
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logical processes (X,(~, #, T) and ( Y, C, ~,, S) are almost topologically conjugate 

if there exist residual invariant Borel sets Xo and Yo where X ~ X0 and Y ~ Yo 

with /z(X0) = u(Y0) = 1 and a bimeasurable, bicontinuous isomorphism, 

4~ : (X0,/~, T) --, (Yo, u, S). So almost topological conjugacy is the same as finitary 

isomorphism. 

In response to the question asked in [2], S. Glasner and D. Rudolph showed in 

[4] that there always exist uncountably many topological processes, all metrically 

isomorphic such that any two are not almost topologically conjugate. They then 

pose the question whether these processes can be made strictly ergodic, that is: Do 

there always exist uncountably many non-almost topologically conjugate, strictly 

ergodic, topological processes which are metrically isomorphic to a given ergodic 

topological process? 

We answer the above question in the affirmative. 

2. Sketch of the proof 

Our proof is based on techniques different from those in [4] and uses some 

methods developed in [8]. The proof is essentially in two steps. In Theorem 1 we 

have a technique by which a given partition of the space X can be perturbed, by 

a small amount, such that the intersection of appropriate iterates of the union, of 

some fixed atoms of the new partition, can be made arbitrarily small. That is: given 

a set D, #(D) > 0, P = [Pl . . . . .  Pr-I I, a partition of  space X and a fixed set 

{nl,n2 . . . . .  nt} of integers where {nl,n2 . . . . .  nt} ~ {0,1,2 . . . . .  r -  1], then there 

exist integers n and k and a new partition P '  = [P(~,P[ . . . . .  Pr-1}, which is a 

small perturbation of P, such that 

I~(R n TnR n .  • • N TnkR) < I~(D O TnD O • . .  n T"kD) 

where R = U~=~ Phi" 
In the next step, we combine the technique of Theorem 1 with the technique 

of [81. 
Let {Dj} be a base for the topology of X. We build a sequence of partitions 

[Qj-} and a set A which, for every j ,  is the union of atoms of Qj. Furthermore, 

(1) Qi c_ Qi+l for all i __ 1, 

(2) V,=l Qi = (B, 

(3) for every i _> 1, Qi is a uniform partition (see [5]), 

(4) there exist two sequences of positive integers {n j} and [kj}, 

satisfying 

ix(A N TnjA n . . .  n TnjkjA) < l~(Dj n TnJDj n . . .  n TnJkjDj) Vj. 
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If (Y/, U,-) is the symbolic system corresponding to (X,  Qi, T) then (Y/, U/) is 

uniquely ergodic and (Y, u, U) is defined as the inverse limit of  I(Y,., Ui)]. Then 

(Y, p, U) is uniquely ergodic, metrically isomorphic to (X, ~, T) but not almost to- 

pologically conjugate. 

The reason why (Y, ~, U) is not almost topologically conjugate to (X, ~, T) is 

provided by property (4). The set A corresponds to a certain open set, say, A, in 

Y. If, to the contrary, ( Y, p, U) and (X, ~, T) are almost topologically conjugate, 

then there is a bimeasurable, bicontinuous isomorphism ~ : X0 --, Y0, where X0 

and Y0 are full measure subsets of  X and Y, respectively. Thus, A'  contains, up 

to measure zero, an image of  at least one Dj. This is inconsistent with (4). 

For strict ergodicity it suffices to assume that the measure u has full support. The 

case of uncountably many models is an extension of  these techniques. 

3. Definitions 

Let P = [P0 . . . . .  Pr-~l be a partition of  X and q E N. We denote byFq(P)  the 

set of all P-q-names, i.e., 

Fq(P) = { ( a l  . . . .  ,aq) E 10 . . . . .  r -  l Jqllz(Pal N T-1pa2 0 . . . N  T-q+lPaq) > O } . 

DEFINITION 1. Let P be a partition. A word z = (Zl,Zz . . . . .  zl) has good 

P- (e ,q ,n )  statistics if for every (To . . . . .  Xq_~ ) = x E Fq(P) and 1 < s < l - n the 

following holds: 

. . . . .  Zi+q)=X, s < i < s + n - q ] - i z ( q N I T - i P x j l ] < e .  1 / ( n - q ) # { i / ( z i  
- / ] \  i=0 

That is, for any word x E Fq(P),  the distribution of  x in any n-subword of  z is 

close to its measure in the symbolic system produced by (X, T, P) .  A set of  words 

has good P- ( e, q, n) statistics i f every word in the set has good P-  (e, q, n ) statistics. 

DEFINITION 2. Given two partitions, P and Q, ]PI = I QI = n, then d(P, Q) = 

~_ain=l tL(PiAQi) is a measure of  the distance between the partitions. 

DEFINITION 3. Let Q be a partition. Q is said to be a uniform partition if, for 

every e > 0 and integer k, there is an integer n such that for each x E X and A E 
V ~-~ T-iO 

] (1 /n )# l t /T tx  E A;  0 < t < n - 1] - #(A)] < ~. 

DErImTION 4. Given a partition P and an integer m, P is m-universal if there 

is a set S in V m~ T - i p  and two relatively prime integers t and q satisfying 

tz(T'S M S) > 0 and #(TqS I"1 S) > O. 
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4. Previously known results 

Denote by Fm (P) the set of all the P m-names; the term word is used to denote 

a finite string of symbols. If  w is a word, then I w l denotes its length. 

PROPOSmOr~ 1 (Furstenberg's Multiple Recurrence Theorem [3]). I f  

T1, T2 . . . . .  Tt are commuting measure preserving transformations o f  a measure 

space (X,(B,I~) and A E (B with M A )  > O, then 

N 

l iminf ( l /N)  ~ #(T{-nA N T { " A  N . . .  fq T J A )  > O. 
N ~  n=l  

PRoPOSmOr~ 2 (see [8]). For every pair o f  integers, m , k  E N, m-universal par- 

tition P and ~ > O, there is a set o f  words E = E ( P , ~ , k , m )  and two integers I = 

l (P ,¢ , k ,m)  and n = n ( P , e , k , m )  such that: 

(i) For every x , y  E Fm(P) and l' > I there is a z E E and a word w such that 

I wl = 1' and z = xwy. 

0i) For each z E E every m-subword o f  z is in Fr,(P).  

(iii) Each z E E has good P - ( c , k , n )  statistics. 

PROPOSmOr~ 3 (see [8]). Given two integers m and k, two reals 6 > O, ~ > 0 and 

an m-universal partition P, there exist an integer h = ~ (P, ~,6, m) and a partition 

P '  such that 

(i) Fm(P')  c_ Fro(p). 
(ii) Each word in Fn(P' )  has good P'-(e,k, f~) statistics. 

(iii) The distance, in the sense o f  d, between P and P" is less than 6. 

(iv) P" is an fl-universal partition. 

The last statement we quote from [8] is: 

PROPOSmON 4. I f  P is an m-universal partition, Q is any partition and ~ > O, 

then there is a partition Q* such that: 

(i) d(O,Q*) < ~, 

(ii) P v Q* is an m-universal partition. 

5. The perturbation theorem 

In this section we show how to perturb a given partition P = [P0, P1 . . . . .  Pr-l} 

by a small amount to obtain a new partition, P'. In doing so we make sure that no 

new names (of a fixed length) are created and the intersection of appropriate iter- 

ates of the union of some fixed atoms of P '  is arbitrarily small. 



Vol. 73, 1991 STRICTLY ERGODIC MODELS 5 

Tm~OR~M 1. Suppose that P = { Po . . . . .  Pf- i  } is a partition, D is a measurable 

set, 13 and 6 are positive numbers, and, finally, n l . . . . .  nt, m, q, k, n E N satisfy the 

following: 

(1) P is m-universal and each word in Fm (P) has good P- ([3, q, m ) statistics. Let 

l = l ( P , ~ , q , m )  as in Proposition 2. 

(2) (i) ix(D N TnD n T2nD N . . . n Tk"D) = ot > O. 

(ii) There is a pr ime number p < k satisfying p / 2  > 2(m + t ) / 6  + 1. 

(3) [ n l , . . . , n t ]  ~ [0 . . . . .  r -  11. 

(4) [3/q > 6. 

Then, there exists a new partition P '  = [P~, P ( . . . . .  Pr-  1 } satisfying the following: 

(a) Fm(P' )  C Fro(P); 

(b) d ( P , P ' )  < 6; 

(c) F, , (P ' )  has good P ' - (2 f3 ,q ,m)  statistics; and 

(d) ix(R n T~R O . . .  O TknR) < ix(D n T"D n . . .  n Tk"D) ,  where 

t 

R = UP; , , .  
i=1 

Since the proof  of  Theorem 1 is the key idea of  this paper,  let us review it. We 

first take a Rohlin tower which covers at least 1 - a / 2  of  the space. Moreover, the 

height of  the Rohlin tower, denoted by v, is bigger than 2(n + 1)k /a& Denote the 

base of  the tower by B. 

We define the new partition P '  by changing the P-names of  points in the Roh- 

lin tower. For instance, if we take level s of  the tower and say that all the points 

in the TS-1B having the name a (namely, included in the a tom Pa of  P)  will own 

a new name, b, we mean that T ' - 1 B  O Pa will be included in the a tom P~ of  P'. 

Let p be a prime number satisfying p < k and p / 2  > 2(m + 1)/6 + 1. Suppose 

first that n is not a multiple of  p. The main goal of  the construction is to rename 

all the levels, p - 1, 2p - 1, 3p - 1, and so on, so that Tip-IB will not have a 

name in {nl . . . . .  nt]. By doing so we ensure that a measurable set in the main 

body of  the tower (i.e., not in the (n + l )k  lowest levels), say, E, has the follow- 

ing property. For all x E E at least one of  the points, T - n x  . . . . .  T -"kx ,  has a 

name outside of  {n l, • • • , n t } .  In particular, if we denote E = R O Ui=(n+l)kV-I TiB 

(recall, v is the height of  the tower), then (T~R O • • • O TnkR) n E = ®. How- 
O--I ever, Ui=(,+~)k T iB covers at least 1 - (c#2 + (n + I )k ix (B) )o f  the space. Since 

ix(B) < 1/v < a / 2 ( n  + 1)k, o-1 Ui=(n+l)k TiB covers at least 1 - o~ of  the space. 

In view of  the above, 
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R O T'~R O . . . O  TnkR 

= ( E  n T " R  O • • • O T " k R )  U ( ( R \ E )  O T " R  O • . .  n T"kR)  c_ R \ E .  

Since this set is included in v-i X\Ui=tn+l~k TiB  we conclude that it has a measure of 

at most a,  and (d) is satisfied. 

So far we have not taken care of  (a)-(c). Instead of just renaming the levels 

ip - 1 we will rename a few levels above and below each one of these levels so that 

the P ' -m-names will be included in F m ( P ) ,  i.e., (a) is satisfied. Since p is much 

larger than / and m and since P '  differs from P only on the Rohlin tower, (b) will 

be satisfied. It follows from (4) that (a) and (b) imply (c). 

In a case when n is a multiple of  p,  we still want to replace names of  levels in 

the tower so that for every x E E at least one of  the points T - " x  . . . . .  T - " k x  has 

a name outside of [ nl . . . . .  nl I. We say that the level T i B  of the Rohlin tower has 

an index i, 0 _< i _< v - 1. 

Define the set of indices J -- [p ,2p  . . . . .  gp} ,  where n = gp. We replace the name 

of  all the levels with an index in J, namely, the levels TJB, j E J. Then we replace 

the levels with indices in n + J +  1, i.e., in the set {n + p  + 1,n + 2p + 1 . . . . .  

2n + 1]; then in the sets 2n + J + 2, 3n + J +  3, and so on, until the set en + 

J + e, where e = [p /2] .  In other words, we always shift the previous set of indi- 

ces by n + 1. We do so e - 1 times. From that point on we go downward from 

p - 1 to e + 1, i.e., we replace the names of the levels with indices in (e + 1)n + 

J +  ( p -  1 ) , ( e +  2)n + J +  ( p -  2) . . . . .  2en + J +  (e + 1). Then we start again 

with a block of  g levels whose indices are 0 ( m o d p ) , l ( m o d p )  . . . . .  e ( m o d p ) ,  

(p - l ) ( m o d p ) , ( p  - 2 ) (modp)  . . . .  ,(e + 1)(modp).  And we continue with this 

procedure until the tower ends. 

In this procedure of replacing names we start with 0(modp)  and go up to 

e (modp)  and then proceed with (p - 1)(modp),  and go down to (e + l ) (modp)  

and continue again with 0(modp),  1 (modp),  and so on. In so doing we make sure 

that the distance (in the tower) between two levels whose names are replaced is at 

least e, which is, by 2(ii), greater than 2(m + l ) / 6 .  Therefore, we can use the 

method of the first case to replace the names of  these levels without enlarging the 

set of  m-names. 

In the following proof we denote by N S ( x )  the word in Fs(P)  that corresponds 

to (x,  Tx  . . . . .  T S - l x ) ,  where s is an integer. 

PROOF OF THEOREM 1: Let B be a base of  the Rohlin tower of height v = 

[2(n + l)k/&x] + 1 satisfying/z(Uy-~ T i B )  > l - cd2 .  

We change names of  length m + 21 on a Kakutani-Rohlin tower built on a base 
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B. Next we define the new partition P '  according to the new names. During our 

construction we take care to change the names in a way to ensure that certain lev- 

els in the new tower (the one with changed names) would not have any element 

from R. This enables us to make the intersection of  the appropriate iterates of  R 

arbitrarily small. Let p satisfy 2(ii). We divide the analysis into two cases. Since the 

proof  of the second case (n is a multiple of  p)  is similar to that of  the first one 

(n is not a multiple of  p) ,  we provide a full proof  of  the first case and only a de- 

tailed description of the construction in the second. 

Case  L" n is not a multiple o fp .  For each x in the base B (which is level 0) and 

for any level ip  - 1 satisfying ip  < v - ( m  + 1): choosey  E F m ( P )  such that its 

first symbol is not in the set [nl,  n2 . . . . .  n t} .  Such a choice is possible because we 

have made sure in our hypothesis that [n~ ,n2  . . . . .  nt] ~ [0,1,2 . . . . .  r - 11. 

We want to replace the name N m - l ( T i p - l x )  by y. Using Proposition 2 twice it 

follows that there exist words w and w such that [ w I = [w[ = l and every m- 

subword of  the concatenation 

z = u w y w u  is in F r o ( P ) ,  

where u = Nm-l(T-l-m+ip-lx) and u = Nm-l(Tl+m-l+ip-lx). Replace 

N 3 m + 2 t - l ( T - l - m + i p - l x )  by Z. Since the head _u and the tail u of  z are not changed 

(they are also names of the former partition P),  we actually replace words of length 

2 / +  m. 

The property that every m-subword of z is in F m ( P )  ensures that we do not en- 

large the vocabulary of  the m-names. Thus conclusion (a) is satisfied. 

It remains to show (b)-(d). 

CLAIM 1. d ( P , P ' )  < 6. 

PROOF. Observe t h a t  we change names of l levels below and l + m levels above 

each of t h e  levels ip, 1 < i < ( v  - m - l ) / p .  Thus we have changed names of at 

most 2(1 + m ) ( v  - m - l ) / p .  The measure of  each level is t~(B) -< 1/v. Thus, we 

have changed names of points in a set of at most 

[ 2 ( / +  m ) ( v  - m - l ) / p ]  ( I /v)  < 2(l  + m ) / p  < 6. 

The last inequality follows from hypothesis 2(ii). • 

Hypothesis (4) and the previous claim imply that conclusion (c) holds. Recall 
t R = Ut=~ Pnj. The following claim will take care of (d). 

CLAIM 2. #(R n T " R  O • • • O T " k R )  < # ( D  O T " D  n • • .  o T " k D ) .  
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PROOF. Denote E R O v- = (Ui=tn+l)k TiB) .  In words, E is the part of  R con- 

tained in the tower but not in one of  the lowest (n + 1)k levels. Since n is not 

a multiple of  p,  every point x E E satisfies the following: at least one of  the 

points T - " x ,  T -2"x  . . . . .  T - 'Wx lies in a level of  the type Tip-~B. However, all 

these levels are, by the construction, outside of  R. Therefore (recall that p < k) ,  

E O T " R  n • • • o T"kR = ~ .  Thus, 

R N TnR O . . . O  T"kR c_ ( R \ E )  n T"R  n . . . o  T"kR c_ R \ E .  

However,  the measure of  R \ E  is less than the measure of  the set not covered by 

the tower plus the measure of  the (n + 1)k lowest levels. 

Precisely, 

# ( R \ E )  < i.t X TiB + ~ ( B ) ( n  + 1)k < or~2 + (n + 1)k /v  < et, 

and the claim follows. This completes the proof  of  (d) and thereby the proof  of 

Theorem 1, if Case I holds. 

Case II: n is a multiple o f p .  Let n/p  = g and e = [p /2 ] .  The idea is again to 

replace names of  a few levels in the Rohlin tower so that for every x E E at least 

one of  the points, T - " x  . . . . .  T - "~x  has a name outside [n~ . . . . .  nt}. Recall that 

J was defined as [p . . . . .  gp }. 

Instead of  replacing the names of  the level of  the type ip - 1, as was done in the 

previous case, we replace here the names of  the following levels: 

i. the first g (except for the base) levels whose indices are 0 (modp)  (i.e., the 

names of  the levels TPB, T2pB, . . . .  T"B);  

ii. the next g levels whose indices are l ( m o d p )  (i.e., the next g level with indi- 

ces in the set { n + p +  1,n + 2 p +  1 . . . . .  2 n +  I} = n + J +  1); 

iii. the next g levels whose indices are 2 (modp)  (i.e., the indices in 2n + J + 2). 

Continue this way to levels whose indices are 3(modp) ,  4(modp)  and so on until 

indices that are e ( m o d p ) .  From that point on we replace levels with indices that 

are (p  - 1 ) (modp)  and go backward to (p  - 2 ) ( m o d p )  until (e + 1 ) (modp) .  

In other words,  we continue replacing those levels whose indices are in 

( e +  1)n + J +  ( p -  1 ) , ( e + 2 ) n + J +  ( p - 2 ) , ( e + 3 ) n + J +  ( p - 3 )  . . . .  , 

2 e n + J +  ( e +  1). 

To sum up, for every 0 _< i _< p - 1, we replaced a block of  g consecutive levels 

whose indices are i ( m o d p ) .  Moreover, the distance between two changed levels is 

at least p - 1. We went up f rom 0 to e and down f rom p - 1 to e + 1 because it 

enables us to continue with the following g levels with indices that are 0 (modp)  
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while taking care of  (a) of  the theorem. The reason is that, after replacing the 

names of  those levels with indices in 2en + J + (e + 1), we continue replacing 

names of  the next g levels whose indices are 0(modp) ,  i.e., indices in n 2 + J. 

Thus, the distance between the last level in the former (i.e., the level with the in- 

dex 2en + gp + e + 1) and the first level in the latter (i.e., with index n 2 + p )  is 

e > p/2 - 1. When the distance between any two levels whose names are changed 

is at least p/2 - 1, we may employ the method used in the previous case (because, 

by 2(ii), p/2 > 2(2m + 1)/8 + 1) to replace names in the level described above with- 

out enlarging the set of  the m-names. 

We proceed then by replacing, inductively, names of  g consecutive levels 

whose indices are l ( m o d p ) , 2 ( m o d p )  . . . . .  e ( m o d p ) ,  (p  - 1 ) (mo d p )  . . . . .  

(p  - 2 ) ( m o d p ) ( e  + 1) (modp) ,  and so forth until the highest level of  the Roh- 

lin tower. 

The main feature of this construction is that, for every 0 < i ___ p - 1 and for any 

p consecutive blocks (of g changed levels), there is a block of  changed levels whose 

indices are i (modp) .  Thus, when one starts with x E E and goes with it k steps 

downstairs the tower in paces of  length n, one of  the steps should fall (since 

p < k) into one of  the changed levels, i.e., one of  T-nx  . . . . .  T-n*x is contained 

in one of  the changed levels, and therefore outside R. 

The proofs of Claims 1 and 2 in Case II are similar to their proofs in Case I, and 

are therefore omitted. • 

The following lemma ensures that by perturbing P by a small 6 we do not lose 

the m-universality property. 

LEM~ 1. For any m-universal partition P = {P0,P1 . . . . .  Pr-11 there exists a 

> 0 such that d(P,P ' )  < 8 implies that P' is also m-universal. 

PRooF. Since P is m-universal there exists S E VF=o 1T- ip  and two relatively 

prime integers, t and r, for which ~(TtS N S)~(TrS tq S) > 0. Choose 6 satisfy- 

ing 0 < 2m5 < (1/2)min{l~(TtS fq S),~t(TrS M S)] to ensure the lemma. 

6. Construction of a uniquely ergodic model 

In the main result of  this chapter we construct, using Theorem 1 and the meth- 

ods developed in [8], a uniquely ergodic, topological model which is metrically iso- 

morphic but not almost topologically conjugate to a given ergodic model. 

THEOREM 2. Given an ergodic topological process ( X , ( t ,  #, T) and a sequence 

{Dj] of  nontrivial sets in X, we can construct: 
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(i) a uniquely ergodic topological system ( Y, C, v, U) which is metrically iso- 

morphic to (X,6],#, T), 
(ii) a clopen set A in Y, and 
(iii) increasing sequences o f  positive integers [ nj } and [ kj ] such that the follow- 

ing inequalities, 

p(A n unJA N . . .  n u"J*JA) 

< ~(Dj Cl T"iDj N . . .  N T"JkJDj) for al l j  in N, 

are true. 

Ot~TLINE OF ThE PROOF. We will construct rows of partitions [ Q/] ,  1 _< i _< j 

a n d j  E N: 

Q2 Q2 

Q~ Q~ Q] 

Qlk Q2 k Qk . . .  Q~. 

Further, we will show that vi, the sequence Q~ converges to a partition Qi. The 

sequence [Qi] of partitions will have the following properties: 

(P1) Qi c_ Qi+l for all i >_ 1. 

(P2) Vi°°=l Qi = (B. 
(P3) For each i >_ 1, Qi is a uniform partition. 

We will be interested in a set A, which, for every i, will be the union of certain at- 

oms of Qi and will satisfy the inequality: 

(P4) #(A f) TnJA ('1 . . .  0 T"J~JA) < #(D i f) T"JDj fq . . .  0 T"JkJDi) for a l l j  

in N. 

For every (X, Qi, T) we consider the corresponding symbolic system (Y~, U/). The 

space (Y, U) will be defined as the inverse limit of the sequence {(Y/, U/)}. 

DEFINITION 5. Let {D i} be a sequence of positive measure sets in (g, and P = 

{P0,. • . ,  Pr-i ] be a partition of X, A be a union of some atoms of P and, finally, 

{kj}J= 1 and [nj]}= l be two sequences of integers such that 

#(A f) TnJA f) . . .  f) TnJgJA) < #(Dj f) T~JDj 0 . . .  0 TnJkJDy), 

for 1 <j<_t.  
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We say that partition Q is an improvement of P in the sense of  the intersection 

property if there exists a set B which is a union of certain atoms of  Q and two in- 

tegers n t + l , k t +  1 such that  

iz(B O T"~B n . . .  o T~JkJB) < # (D/O T~JDj O . . .  O TnJkJDj), 

for l _ j < t +  1. 

PROOF Or THEOREM 2: We will use the following terminology: 

(i) Let R be a perturbation of the partition Q and A be a union of  certain at- 

oms of Q. We will say that A',  which is a union of R-atoms, corresponds to 

A if it is a union over the same indices as A. 

(ii) Let V, U', U be partitions of X, where V__G U and U' is a perturbation of U 

(in particular I U'I = I U[), then U' induces a natural perturbation V' of V 

(for details see [8]). 

REMARK 1. If U ~  V; U' a perturbation of Uand V' is the natural perturba- 

tion of Vthen d(V, V')  <_ d( U, U'). 

CONSTRVCTION. Start with a partition R] = [K0 . . . .  ,Kq_~ ] which is 1-univer- 

sal, and let {Q;] be a sequence of partitions of X such that VQi = (g. 

Stage 1: Given 

1. R I, which is 1-universal and F~ (RI) has a good R I-(1,1,1) statistics, and 

2. the set D~ with #(D~) > 0. 

Let 6 > 0 be the one satisfying Lemma 1 with P = R] and m = 1. By using The- 

orem 1 (getting n~ and k~ from Proposition 1 so that hypothesis (2) is satisfied for 

D = D1, m~ = l~ = 1, and the set {0} for hypothesis (3)), we obtain a new parti- 

tion Q~ = {K6 . . . . .  Kq_l] satisfying 

(a) Fl(Q~) c_Fl(R~). 
(b) d(QI ,RI )  < 6. 

(c) Q] is 1-universal and F1 ( Q] ) has good Q~- (2,1,1 ) statistics. 

(d) g(K~ n Tn'K~ N . . .  n T",~K[~) </z(DL n T'qDl n . . .  n T"~k~DI). 

Label this Kd as A~ and let 

/x(D 1 n Tn~DI O " "  O T n l i C l D l )  - g(Al O T~JA1 n . . .  n T"*k*Al) = "ql. 

Choose a sequence {ej], of real numbers, satisfying Ej>i~ j < ei and vi, iei ~ 0. 

It is to be noted that the only use of hypothesis (3) of Theorem 1 is to identify the 

set U~=I Phi, and hence the set R which corresponds to it after perturbation. 

Let 61 = 1. 
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Stage 2." We refine and perturb Q~ in two steps to obtain Q2 which is an im- 

provement both in the sense of  uniformity as well as in the sense of the intersec- 

tion property. 

Part 1: In Part 1 we refine the partition Q~ and then perturb it slightly to ob- 

tain partition R 2 which is an imporvement of Q~ in the sense of uniformity. Fol- 

lowing Proposition 4 we can refine Q~ to obtain P2 = Q~ v Q~', where 

(i) d(Q~,Q2) < e2, and 

(ii) P2 is 1-universal. 

Define 62 = min{~2,61,T11/kl I / ( ( 2 ) 2 3 ) .  

We are defining 61 in this way to make sure that perturbation by 62 will not de- 

stroy the intersection property of set AI,  obtained in stage 1. 

For partition Q~, m~ = 1, k = 2, e2, and 62, we apply Proposition 3 to obtain 

a new partition R 2 and an integer m 2 such that the following hold: 

(el) Fm, (R 2) c Fm I (P2), 

(c2) each word in Fmz(R 2) has good R2z-(ez,2, mz) statistics, 

(c3) d(R2,p2) < (1/2)62, 

(c4) R2 z is an m2-universal partition. 

Because of (c3) and the choice of 62 we have: 

(c5) #(A~ 0 T"IA~ N. . . [7  T"lktA~) < Iz(Dl f7 T~D1 N.. .CI T"~k~Dl), 
where A i is the set in R2 z which corresponds to A ~ in Q~. (See the note on 
terminology before construction.) 

Part 2: We want to use Theorem 1 to perturb the partition Rz z to obtain an- 

other partition, Q2 z, which is an improvement of R z in the sense of the intersec- 

tion property. We have 

1. An mz-universal partition R z where Fm2(R 2) has good R~-(e2,2,m2) 

statistics. 

2. The set Dz, #(Dz) > O. 
Let 6 satisfy Lemma 1 with m = m2 and P = Rz z. Moreover, 6 < Min[62,c21/2. 

By Proposition 1 we can choose two large integers kz and n2 such that: 

(i) /~(D217 Tn2D2 17 . . .  (7 TnEkZD2) = c~2 > 0; 

(ii) there exists a prime number P2 < kz such that p2/2 > 2(/2 + m2)/6 + 1, 
where 12 = I2(R~,ez,2,m2) as in Proposition 2. 

By Theorem 1 and Lemma 1 there exists a new partition Q~ such that 

(a) Fm2(Q~) c_ Fm2(R~), 
(b) d(R~,Q~) < 6, 
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(c) Fro2 (Q~) has Q2_ (2e2,2, m2) good statistics, 
(d) if A~' is the set in Q2 which corresponds to A~ then 

#(A~' N TnzA~ ' N . . .  n Tn2kzA~ ') < #(D2 N T"2D2 n . . .  n T~Zk2D2), 

(e) QZ is mz-universal. 

Rename A]' as Az. 
The set of integers, needed for hypothesis (3) of Theorem 1, is the set of indi- 

ces which the atoms of A] have in R~. The role of set R of conclusion (d) in The- 

orem 1 is played by A ~'. 

These properties, (a)-(d), imply that properties, similar to (cl)-(c5) listed before 

in Part 1, hold for Q2 and A 2 also. That is, since ml - m2, by (cl) of Part 1 and 

(a) we have: 

( c l ' )  Fml(P2) D Fm,(R22) DFml(Q~), 
(c2') Fm2(Q 2) has good Q~-(2ez,2,m2) statistics. 

Combining (b) and (c3) we get (recall 6 _< 62/2): 

(c3') d(Q2,p2) < 62, 
(c4') Q~ is an mz-universal partition. 

Because of (c5) of Part 1, (d), (c3') and because of the appropriate choice of 62 we 

have that A2 retains the intersection property corresponding to n~ and k~, and 

therefore: 

(c5') F o r j  E {1,21 

/z(A 2 n TnJA2 n . . .  ("1 T"JkiA2) < tz(Dj n T't]Dj n . . .  n TnjkJDj). 

Let 72 = MD2 n T"2D2 N - . .  n Tn2k2D2) - #(A2 n Tn2A2 n . . .  n T"2k2A2). 
Observe that Q22 is a perturbation of P2 which refines Q~. So denote by Q2 the 
natural perturbation of Q~ that Q2 induces. By Remark 1, d(Q~,Q 2) < 62. We 

now have the second row of partitions with the following desirable properties: 

(dl) property (cl') implies F,, l (Q2) c_ Fml (Q¢), 
(d2) from property (c2) it follows that each word in Fm2(QT) has good 

Q/Z_ (2e2,2, m2) statistics, i = 1,2, 
(d3) d(QZ, Q~) < 62, 
(d4) Q~ is mz-universal, 

(d5) f o r j E  [1,2}, 

/z(A2 O TnJA2 n . . . n T"ikJA2) < #(D2 O T"JD2 0 . . .  N T"JVD2), 

(d6) by construction, Q~ c_ Q2 z. 

Notice that, for every i, A2 is a union of certain atoms of Q2, 1 _< i _< 2. 
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Continuing inductively in the same way we obtain partitions [Q]}, s E N, 1 <_ 

i _< s, sets As which are Qf-measurable for all 1 _< j _< s and integers ms, ks, ns such 

that (we do not mention the analogy of (d4) because it had importance only dur- 

ing the construction): 

(dl ' )  Fms(Q s+l) C Fms(QS), where i < s, s E N, 

(d2') Fms(Q~) has good QS _ (2es,S, ms) statistics, 1 _< i _< s, i and s in N, 
(d3') d(QS+l,QT) < 6s+1 for i <  s, 

(dS') for 1 _< j __< s, s E N, 

#(As f'] T"JAs A . . .  f] T"JkJAs) < #(Ds f'3 T"JDs 0 . . .  f] T"JkJD~), 

(d6') Q7 c QT+l, i < s, 

(d7') A~+I corresponds to As; thus/z(A~hAs+l) < 6~+1. 

By (dY), {QT}s is a Cauchy sequence. Thus, it converges to a partition denoted 

by Qi. Furthermore, by (d7'), the sequence [Ai] converges to a set A which is 

Qi-measurable for every i. 

Note that at this point of (P1)-(P4), mentioned in the outline, only (P4) needs 

a proof. Fix j .  By construction, for every p > j + 1, g(AjAAp)  < (1/2)6/+1. 

Choose a large p such that #(AAAp)  < (1/2)6j+1. Thus, #(AAAj )  < 6j+1. Be- 

cause of (d5') (for j = s) and since A is a perturbation of Aj by less than 6/+1, 

which is smaller than 

(#(Dj CI TnJDj f') . . . f') TnjkJDj) - #(Aj  ('l TnJAj CI . . " f") TnjkjAj))/kj, 

we get (P4). 

Now we are ready to conclude: 

CI.AIM 5. There exists a uniquely ergodic system (Y, C, v, U) which is metrically 

isomorphic to (X,(B,~, T) and a clopen set .zi in Y which satisfies: 

v(A  f] U"JJ N . . .  CI U"/'JJ) < #(Dj CI T"iDi N . . .  ("t T'ikJDj) 

for every j E N. 

PROOF OF TIlE CLAIM. Define (Y~, vi, U~) to be the symbolic system induced by 

(X,  Qi, T). Since Qi is uniform, (Yi, vi, Ui) is uniquely ergodic. Let (Y, C, v, U) be 

the inverse limit of 

"" "-" (Y2, U2) ~ (YI,UI). 

By setting [Dj} as a base for the topology of X and using the method of [4], we 

use Theorem 2 to obtain a uniquely ergodic topological system ( Y, C, v, U) which 
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is metrically isomorphic but not almost topologically conjugate to (X,63, #, T). 

Moreover, by assuming that measure p has full support we get (Y, C, u, U) to be 

strictly ergodic. 

This concludes the proof of Theorem 2. 

Starting with countably many models (Y,, Ci, U~), we can apply the same tech- 

nique to the countable collection of the topological bases of these models to con- 

struct one more strictly ergodic model which is isomorphic but not almost 

topologically conjugate to any Y~. 

Hence, we state: 

TUEOREM 3. There exist uncountably many strictly ergodic topological models 

which are metrically isomorphic to a given ergodic model (X,(B, l~, T) but not 

almost topologically conjugate to (X,63, iz, T). Furthermore, no two are almost 

topologically conjugate. 

We conclude by noting that our technique fails to apply to Z z action. B. Weiss 

notified us that a combination of the idea presented here and the one given by 

Rosenthal [9] may work. After checking it, we think that an extension of our re- 

sult to Z 2 action requires just Rosenthal's technique and ours and no new one. 

Therefore, we decided not to elaborate on this direction. 
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